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Abstract

This paper, associated with a broader conference talk on the fundamental physical
limits of information handling, emphasizes the aspects still least appreciated. Infor
mation is not an abstract entity but exists only through a physical representation,
thus tying it to all the restrictions and possibilities of our real physical universe.
The mathematician's vision of an unlimited sequence of totally reliable operations
is unlikely to be implementable in this real universe. Speculative remarks about the
possible impact of that, on the ultimate nature of the laws of physics are included.

1 In t roduct ion

The fundamental physical limits of the computational process have been an ob
ject of study for some decades. A roadmap to the earlier work in this field was
presented in [1]. At that time it had become clear that, contrary to widespread
earlier discussions, the classical communications channel does not require a
minimum energy expenditure per shipped bit. It had also been widely as
sumed that a quantum mechanical channel, designed to transmit classical bits
(guaranteed to be in a 0 or 1 state rather than in a coherent superposition
of 0 and 1) required a minimal energy per transmitted bit, proportional to
the bit rate. Since the appearance of Ref. [1] it has been shown that such a
quantum channel, whether transmitting classical bits or qubits (quantum su
perpositions of 0 and 1) does not require such a minimal energy expenditure
per bit [2,3].

The results presented by this author, concerning the energy requirements of
the communications channel have, despite their conflict with earlier notions,
attracted relatively little attention in the published literature. That arises,
in part, from the recent emphasis on quantum computation and quantum
parallelism [4]. That body of work has displaced questions concerning energy
requirements. While the early proposals [5] for quantum computers viewed
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unclocked processes, activated by the system's initial kinetic energy, the more
detailed recent proposals invoke continual external pulses, presumably requir
ing continual energy expenditure. Therefore, the proponents of quantum par
allelism have deemphasized the earlier emphasis on minimal energy consump
tion. Rather than repeat, here, older discussions of reversible information han
dling, we emphasize in this brief written version, associated with a broader
talk, those aspects of the subject which are still least understood and appre
ciated.

Information is inevitably inscribed in a physical medium. It is not an abstract
entity. It can be denoted by a hole in a punched card, by the orientation of
a nuclear spin, or by the pulses transmitted by a neuron. The quaint notion
that information has an existence independent of its physical manifestation is
still seriously advocated [6]. This concept, very likely, has its roots in the fact
that we were aware of mental information long before we realized that it, too,
utilized real physical degrees of freedom.

Our intuition has misled us in other ways. When we learned to count on our
sticky and classical fingers, we naturally thought of information as classical.
Today we understand that we can utilize a coherent quantum superposition
of 0 and 1. This author has expressed skepticism [3,7] about the practicality
of quantum mechanical computation, in which data has to be subject to a
great many successive steps. That differentiates quantum computation, with
its implicit parallelism capability, from a communications link; in the latter
each bit is likely to receive limited handling. Despite my reservations about
practical utility, I welcome the quantum computation proposals and effort.
They help to underline the central message addressed here: The physical na
ture of information ties it to all the restrictions and possibilities of our actual
physical universe. This is a message passed by this author for many decades

Our prevailing pattern of thought differs substantially from the point of view
advocated here. There is a tendency to think of mathematics as a tool which
somehow existed before and outside of our physical world. Mathematics, in
turn, allowed the formulation of physical laws which then run the world, much
as a process control computer runs a chemical plant. Here, instead, we em
phasize that information handling has to be done in the real physical world,
and the laws of physics exist as instructions for information handling in that
real world. It, therefore, makes no sense to invoke operations, in the laws of
physics, which are not executable, at least in principle, in our real physical
world.

Our accepted laws of physics invoke continuum mathematics, which is, in turn,
based on the notion that any required degree of precision can be obtained
by invoking enough successive operations. But our real universe is unlikely



to allow an unlimited sequence of totally reliable operations. The memory
size is likely to be limited, perhaps, because the universe is limited. Even in
an unlimited universe it is a strong presumption to invoke the possibility of
assembling an arbitrarily large organized memory structure. Furthermore, in a
world full of deleterious processes including noise, corrosion, electromigration,
incident alpha particles and cosmic rays, earthquakes and spilled cups of coffee,
it would be unreasonable to assume that each step in an unlimited sequence of
operations can be carried out infallibly. Redundancy can be invoked to reduce
error probabilities, but only to reduce, not to eliminate. Furthermore, error
protection comes at the expense of extra apparatus and extra steps, thus using
up the available parts of the universe more quickly.

What can replace the real number system and allow for the limitated precision
of real physical operations? I do not know. The replacement does not neces
sarily lead to algorithms with a limited number of bits. The limited precision
may appear in a more statistical fashion. The laws of physics are algorithms
for calculation, and in their proper form must respect the limited information
handling capabilities of the real universe. The reader may ask: "Does our lim
ited ability to describe the physical world prevent that world from doing its
own thing more precisely? Isn't it just our knowledge that is limited?" The
answer: Behavior which cannot be followed, described, or observed, is not a
matter of science. If I am told that seven angels are on the head of a pin and
that angels are not detectable, I cannot call that an erroneous assertion. But
it is not a matter for science.

The question arises: Can I not know that 2 + 2 = 4 exactly, and not just
to a very high degree of accuracy? If we want to prove 2 + 2 = 4 within
a closed postulate system describing the integers, or the real numbers, that
requires a very limited number of successive steps, with each step depending
on relatively few bits. The difficulties we have stressed will be minimal, and
we can go through the required procedure with high probability that it was
free of error. But the use of mathematics in physics requires us to go beyond
operations within a closed postulate system. We need to do number crunching,
and in that task have to invoke real physical information bearing degrees of
freedom. That is where the problems that we have identified will turn up. We
cannot expect to distinguish 7r, as defined by a series expansion, from some
terribly close neighbor.

If we have only limited precision available, how does that bear on the laws of
physics? One possibility relates to the ultimate source of irreversibility and of
fluctuations in the real world, a world where we can readily observe departure
from Hamiltonian behavior [9]. The lack of precision in the laws of physics
is, essentially, a noise source. Furthermore, irreversibility is often explained
by some sort of coarse-graining process. That is also supplied, directly and
unavoidably, by the lack of precision. Limited precision may, furthermore, be



the cause of the apparent classical behavior so conspicuously displayed around
us. There are many proposed explanations for that, and we can cite only a
few [10], including some counter-arguments. Some of these explanations may
be correct, and there may not really be a need to say more. Nevertheless, a
totally quantum mechanical behavior, in systems with some complexity, and
followed for some time, requires a precise evaluation of phases for the com
peting histories, for the competing Feynman paths. In a world with limited
precision relative phases will, eventually, get lost and this will lead to classical
behavior. As in my discussion of noise and irreversibility, the limited preci
sion acts as if the universe had an unpredictable environment with which it
interacts.

Even if the very speculative ideas above related to irreversibility, noise, and
apparently classical behavior, are wrong, there is a more basic underlying
theme. Information handling takes place in the physical world and mathemat
ics depends on that physical world, its laws and its parts. At a minimum, we
caution those who invoke the wave function of the whole universe. Where is
the second universe which is used to denote that state?

Our view that mathematics is part of the physical world can be used to re
solve a longstanding supposed puzzle. There are many references to Wigner's
remarks about "the unreasonable success of mathematics," e.g. Ref. [11]. That
success, in characterizing the physical world is indeed a puzzle if we start from
the presumption that mathematics existed before and exists apart from the
physical universe. Instead, mathematics uses the physical universe, and is a
part of physics. The utility of mathematics is related to the theme [11] that
the laws of physics have a unity and are not separate at every possible level.
Counting physical objects, pebbles, bones, steps, or people, was the start of
mathematics. Kronecker got it wrong when he said that God made the inte
gers, man made the rest. The integers were the beginning of our experimental
observation of the universe.

My emphasis on the executability of operations on information is an enlarge
ment of a view advocated by P. W. Bridgman, Nobel laureate, high pressure
physicist, and author of a number of discussions of "operationalism." The lat
ter can be considered to be a pragmatic Yankee variant of logical positivism.
Logical positivism has largely been cast aside today. But Bridgman's humbler
plea that science deal with specifiable and executable steps is surely accept
able common sense, even if we admit that a totally unambiguous specification
is unlikely. Bridgman, in 1934, published a paper A Physicist's Second Reac
tion to Mengenlehre [12]. The journal that published the paper was oriented
to fundamental questions in mathematics. The paper starts with a remark
able qualifying note by the editor: "The Scripta Mathematica takes pleasure
in publishing this interesting article by Professor P. W. Bridgman. As in the
case of all articles, however, it is understood that this does not necessarily



represent the views of the editors." Bridgman was, by that time, already well
known, and science is normally full of divergent viewpoints. Decades later, we
can only guess that the unusual editorial qualification represented the editor's
desperation. He may have been hesitant to turn down a famous scientist and,
at the same time, was afraid of the wrath of his readers. Bridgman's paper
presents his attempt to wrestle with the paradoxes of set theory. He objects
to self-referential definitions and asks for mathematical procedures in which
each successive step can be carried out directly and unambiguously. Bridg
man rules out operations which depend upon information available only later
on, i.e. depend on the outcome of the step being taken. I quote one of his
illustrations:

Another example of the sort of situation which may arise when our terms
do not have the proper amount of staticness is afforded by the example of
the map of London, made on one of the flag stones of London itself. The
difficulty is that the map itself, being a part of London, must be represented
in the map, and this map of the map must again be represented, and so
in unterminating progression. The point here is to be sought in the oper
ational meaning of London. "London" is not a fixed and static thing, but
itself changes as the action in question progresses, for the London with a
map is not the same as the original London without a map. Here, therefore,
by employing a non-static, fluent, object instead of the fixed object of Aris
totelian convention, we find ourselves involved in an infinite process, which
of course cannot be carried out actually, so that the corresponding physical
object has no "existence."

Bridgman (in contrast to this author) is tolerant of an unlimited sequence
of steps. He does not, however, allow for something else to be done after an
infinite sequence. That rules out the famous diagonal procedure which appears
in much of mathematics from Cantor to Godel. No wonder the editor felt the
need to insert a disclaimer. Incidentally, in the above quotation from Bridgman
we can substitute "wave function of the universe" for "map of London."

In a remarkable coincidence(?) Bridgman uses the word program for such a
succession of unambiguously executable instruction. He would have been en
tirely satisfied by a restriction of mathematics to that which can be done on a
Turing machine, which came along a few years later. Indeed Bridgman's paper
can be viewed as a want ad for a Turing machine. Bridgman did not go on to
ask about the physical realizability of the operations in such a machine. That
extension is the point of Ref. 8 and of this discussion. Bridgman's notions, of
course, are not totally unrelated to reservations put forth by others interested
in the foundations of mathematics [13], e.g. intuitionism, but do not seem to
match any of those all that closely.
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