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I.

Suppose that a problem in geometry can be solved by intersections of straight lines and circum-
ferences of circles: If one combines the points thereby obtained with the centers of the circles and
with the points that determine the lines, the result is a set of right triangles whose elements could
be calculated by the formulas of trigonometry; moreover, these formulas are algebraic equations of
the first or second degree; thus the principal unknown of the problem is found by solving a series
of quadratic equations whose coefficients are rational functions of the data and of the roots of the
preceding equations. Accordingly, to know if a geometric construction can be performed with ruler
and compass, it is necessary to ask if the roots of the equation to which the construction leads can
be made to depend on a system of quadratic equations derived as indicated above. Here we shall
consider only the case where the equation of the problem is algebraic.

II.

Consider the following system of equations:

x21 + Ax1 + B = 0

x22 + A1x2 + B1 = 0

...

x2n−1 + An−2xn−1 + Bn−2 = 0

x2n + An−1xn + Bn−1 = 0

(A)

∗Original publication: Journal de Mathématiques Pures et Appliquées, ou Recueil Mensuel de Mémoires sur les
Diverses Parties des Mathématiques; Publié par Joseph Liouville. Tome Deuxième, 1837, pp. 366–372. Available
at http://sites.mathdoc.fr/JMPA/feuilleter.php?id=JMPA 1837 1 2. Translated from the French by Brian Hayes,
October 2006; revised January 2017. Please send corrections to brian@bit-player.org.
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in which A and B represent rational functions of certain given quantities p, q, r,. . . , while A1 and
B1 are rational functions of x1, p, q, r,. . . ; and, in general, Am and Bm are rational functions of
xm, xm−1,. . . , x1, p, q,. . . .

Any rational function of xm, such as Am or Bm, takes the form

Cm−1xm + Dm−1
Em−1xm + Fm−1

if one eliminates powers of xm higher than the first by means of the equation1 x2m + Am−1xm +
Bm−1 = 0, where Cm−1, Dm−1, Em−1 and Fm−1 designate the rational functions of xm−1,. . . , x1,
p, q,. . . ; the expression can then be reduced to the form A′m−1xm + B′m−1 by multiplying the two

terms from Cm−1xm+Dm−1

Em−1xm+Fm−1
by −Em−1(Am−1 + Dm) + Fm−1.

Within the last equation of the system (A), the variable xn−1 occurs inside each of the coeffi-
cients An−1 and Bn−1. For each such occurrence of xn−1 we can substitute the two roots (first one
then the other) of the preceding equation. The substitution produces two values for the first term of
the final equation (that is, x2n); multiplying one of these values by the other yields a fourth-degree
polynomial in xn whose coefficients are expressed as a rational function of xn−2, . . . , x1, p, q, . . ..
Within this polynomial we can make corresponding substitutions for the variable xn−2, using the
two roots of the previous equation; we obtain two results whose product is a polynomial in xn of
degree 23, with rational coefficients in xn−3, . . . , x1, p, q, . . .. Continuing in the same manner, we
arrive at a polynomial in xn of degree 2n, where the coefficients are rational functions of p, q, r, . . ..
Setting this polynomial equal to zero yields the final equation f(xn) = 0 or f(x) = 0, which contains
all the solutions of the problem.2

One can always suppose that before beginning the calculation one has reduced the equations
(A) to the smallest possible number. Then no one of those equations, say x2m+1 + Amxm+1 +
Bm = 0, can be satisfied by a rational function of the quantities given and the roots of the
preceding equations. Because, if that were possible, the result of substitution would be a rational
function of xm, . . . , x1, p, q, . . ., which one can put in the form A′m−1xm+B′m−1, and one would have
A′m−1xm +B′m−1 = 0. From this relation we could derive a rational value of xm which, substituted
into the equation quadratic in xm, would lead to a result of the form A′m−2xm−1 + B′m−2 = 0.
Continuing, one would arrive at A′x1 + B′ = 0, or in other words the equation x21 + Ax1 + B = 0,
which would have as roots certain rational functions of p, q, . . . ; the system of equations (A) could
thus be replaced by two systems of n − 1 quadratic equations, independent of one another, which
contradicts the assumption. If one of the intermediate relations, such as A′m−2xm−1 + B′m−2 = 0,
were satisfied exactly, the two roots of the equation x2m−1 +Am−1xm+Bm−1 = 0 would be rational
functions of xm−1, . . . , x1 for all the values that these quantities can assume, so that one could
remove the equation in xm and successively replace the root by its two values in the following
equations, which would again reduce the system of equations (A) to two systems of n−1 equations.

III.

In summary, the equation of degree 2n, f(x) = 0, which gives all the solutions of a problem
capable of being solved by means of n quadratic equations, is necessarily irreducible, that is to say,

1Translator’s note: In the printed text the second term of the equation is am−1xm, which I believe is a printer’s
error for Am−1xm.

2Translator’s note: In the preceding paragraph I struggled to find a translation that was faithful to the French
text and that also made mathematical sense. I failed. The result may well misrepresent both the language and the
mathematics.
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it cannot have roots in common with an equation of lesser degree whose coefficients are rational
functions of the givens p, q, . . ..

Suppose, on the contrary, that an equation F(x) = 0 with rational coefficients is satisfied
by a root of the equation x2n + An−1xn + Bn−1 = 0, by assigning whatever values are needed
to the quantities xn−1, xn−2, . . . , x1. The rational function F(xn) of a root of this last equation
can be reduced to the form A′n−1xn + B′n−1. As always, we indicate by A′n−1 and B′n−1 rational
functions of xn−1, . . . , x1, p, q, . . .; in the same way A′n−1 and B′n−1 can respectively take the form
A′n−2xn−1 + B′n−2, and so on; we arrive thus at A′1x2 + B′1, where A′1 and B′1 can be put in the
form A′x1 + B′, and where A′ and B′ represent rational functions of the data p, q, . . . .

Since F(xn) = 0 must be true for one of the values of xn, there must be a case where A′n−1xn+
B′n−1 = 0. Furthermore, A′n−1 and B′n−1 must be null separately, since otherwise the equation

x2 + An−1xn + Bn−1 = 0 would be satisfied by the value −B′n−1

A′n−1
, which is a rational function of

xn−1, . . . , x1, p, q, . . .—and that is impossible. In the same way, if A′n−1 and B′n−1 are zero, then
A′n−2 and B′n−2 must be zero also, and so on until A′ and B′ which will be identically zero, since
they contain only quantities given. But then A′1 and B′1, which also take the form A′x1 + B′ = 0
when one substitutes for x1 each root of the equation x21 +Ax1 +B = 0, are canceled for these two
values of x1; likewise, the coefficients A′2 and B′2 can be put in the form A′1x2 +B′1 by allowing x2
to take the value of one or the other of the roots of the equation x22 +A1x2 +B1 = 0, corresponding
to each value of x1, and consequently they cancel for the four values of x2 and the two values of x1
that come from the combination of the first two equations (A). By the same principle one can show
that A′3 and B′3 are made equal to zero by assigning to x3 the 23 values drawn from the first three
equations (A), together with the corresponding values of x2 and x1. Continuing in this manner, it
is seen that F(xn) has a zero for each of the 2n values of xn in all the equations (A), or for the 2n

roots of f(x) = 0. Thus an equation F(x) = 0 with rational coefficients cannot admit any one root
of f(x) = 0 without admitting them all; hence the equation f(x) = 0 is irreducible.

IV.

It follows immediately from the preceeding theorem that all problems that lead to an irreducible
equation whose degree is not a power of 2 cannot be solved with straight lines and circles. Hence the
duplication of the cube, which depends on the equation x3 − 2a3 = 0, which is always irreducible,
cannot be done by elementary geometry. The problem of finding two mean proportional numbers,
which leads to the equation x3 − a2b = 0, is in the same class whenever the ratio of b to a is
not a cube. The trisection of the angle depends on the equation x3 − 3

4x + 1
4a = 0. This equation

is irreducible if it has no root that is a rational function of a, and that is the case as long as a
remains algebraic; thus the problem cannot be solved in general with ruler and compass. It seems
to us that it has never before been demonstrated rigorously that these problems—so famous among
the ancients—are not susceptible to solution by the geometric constructions to which they were so
attached.

The division of a circle into equal parts can always be reduced to the solution of the equation
xm − 1 = 0, in which m is a prime number or a power of a prime. When m is prime, the equation
xm−1
x−1 = 0 of degree m−1 is irreducible, as Gauss has made clear in his Disquisitiones arithmeticae,

section VII; thus the division cannot be accomplished by geometric construction if m − 1 = 2n.
When m is of the form aα, one can prove, by slightly modifying the demonstration of Gauss, that
an equation of degree (a − 1)aα−1, obtained by setting equal to zero the quotient of xa

α − 1 by
xa

α−1−1, is irreducible. Thus it is necessary that (a−1)aα−1 be of the form 2n at the same time as
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a− 1, which is impossible unless a = 2. Hence, the division of the circle into N parts can be done
with ruler and compass only if the prime factors of N different from 2 are of the form 2n + 1 and
if they include only the first power of this number. This rule was stated by Gauss at the end of his
work, but he did not give the proof.

In the equation

x = k + A′
m′√

a′ + A′′
m′′√

a′′ + etc.,

where m′, m′′,. . . are powers of 2 and k, A′, A′′,. . . , a′, a′′,. . . are commensurable numbers, the
value of x is constructable with lines and circles, and so x cannot be a root of an irreducible equation
whose degree m is not a power of 2. For example, one cannot have x = A m

√
a if ( m

√
a)p is irrational

for p < m; it is easy to show that x can take this value only when m is a power of 2. We have found
several particular cases of the theorems on incommensurable numbers, which we have presented
elsewhere3.

V.

Let us suppose that a problem has led us to an equation of degree 2n, F(x) = 0, and that we
can be sure this equation is irreducible; then the question is whether the solution can be obtained
by means of a series of second-degree equations.

Turning again to the equations (A):

x21 + Ax1 + B = 0

x22 + A1x2 + B1 = 0

...

x2n−1 + An−2xn−1 + Bn−2 = 0

x2n + An−1xn + Bn−1 = 0,

(A)

we need to construct an equation f(x) = 0 with rational coefficients that gives all the values of
xn and to identify it with the given equation F(x) = 0. To perform this calculation we note first
that An−1 and Bn−1 reduce to the form an−1xn−1 + a′n−1 and bn−1xn−1 + b′n−1, so that xn−1 can
be immediately eliminated in the last two equations (A), which yields an equation of the fourth
degree in xn. There, we can then replace:4

an−1 by a′′n−1xn−2 + a′′′n−1,

a′n−1 by aivn−1xn−2 + av,

bn−1 by b′′n−1xn−2 + b′′′n−1,

b′n−1 by bivn−1xn−2 + bv,

An−2 by an−2xn−2 + a′n−2, and

Bn−2 by bn−2xn−2 + b′n−2

and then eliminate xn−2 in the fourth-degree equation we have just obtained as well as in the
equation x2n−2 + An−3xn−2 + Bn−3 = 0, and so on. The last terms in the series an−1, a′n−1,

3Author’s note:Journal de l’École Polytechnique, Cahier XXVI.
4Translator’s note: In the French text the last of the six quantities listed is given as Bn−1; I believe it should

be Bn−2.
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a′′n−1,. . . , bn−1, b
′
n−1,. . . , etc., should be rational functions of the coefficients of F(x) = 0. If one can

assign them rational values that satisfy the equations under the constraints identified, then one will
reproduce the equations (A) in the system equivalent to the equation F(x) = 0; if the conditions
cannot be satisfied in giving rational values to the variables we have introduced, then the problem
cannot be reduced to the second degree.

This procedure can be simplified by supposing that the roots of each of the equations (A) give
the last term of the next equation. Thus, one can take Bn−1 as the unknown in the penultimate

equation, since Bn−1 = bn−1xn−1 + b′n−1, whence xn−1 =
Bn−1−b′n−1

bn−1
. In this way the eliminations

are made more rapidly, introducing four unknown quantities into the fourth-degree equation that
results from the first elimination, eight into the eighth-degree equation, and so on, in such a way
that the constraints imposed are of the same number as the quantities to be determined. But we
must also set aside for separate handling the case where one of the quantities such as bn−1 is zero.

An example is the equation x4+px2+qx+r = 0. Let us continue by taking quadratic equations
of the form x21 + Ax1 + B = 0 and x2 + (ax1 + a′)x + x1 = 0; on eliminating x1 and substituting
we have:

2a1 −Aa = 0,

a′2 −Aaa′ −A + a2B = p,

2aB− a′A = q,

B = r,

where

B = r,

a =
2q

4r − a2
,

a′ =
Aq

4r −A2
,

A3 + pA2 − 4rA + q2 − 4rp = 0.

Since B, a and a′ are expressed as rational values in terms of A, p, q and r, it is necessary and
sufficient that the cubic equation in A have for its root a rational function of the given data. This
condition is always satisfied when q = 0, whatever the values of p and r, because A = −p then
satisfies the last equation.

In taking x1 as the last term of the second quadratic equation, we have excluded the case where
this term is independent of the root of the first equation; but in treating this case directly one will
never encounter a solution that is not already among those of the equations above.

Thus, by a calculation more or less long, we can always be certain of knowing if a given problem
is capable of solution by means of a series of quadratic equations, provided that we can recognize
whether or not an equation can be satisfied by a rational function of the data and if it is irreducible.
An equation of degree n is irreducible when a search of the divisors of the first term of degree 1,
2,. . . ,n2 , reveals that none of the coefficients are rational functions of the given quantities.

The question can therefore always be reduced to determining whether an algebraic equation
F(x) = 0 of a single variable can have for its root a function of this kind. For this, there are several
cases to consider:
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1. If the coefficients depend only on given numbers that are integers or fractions, it is sufficient
to apply the methods of commensurable roots.

2. It can happen that the data represented by the letters p, q, r can take on infinitely many
values without ever fulfilling the conditions for solving the problem, as when they designate
several lines situated arbitrarily; then, after having reduced the equation F(x) = 0 to a form
in which the coefficients are ratios of p, q, r,. . . , and in which the coefficient of the first term is
unity, we can replace x by5 amp

m+am−1p
m−1 + · · ·+a0, and set equal to zero the coefficients

of the various powers in the result. Now the equations in am, am−1,. . . , are to be treated in
the same way as the equation in x, that is to say, we replace these quantities by functions of
q alone, and continue in this manner until we have eliminated all the letters and are left with
numerical equations that can be handled as in the first case.

3. When the data are irrational numbers, they must be roots of algebraic equations, which we
can assume to be irreducible. In this case, if we replace x by amp

m + · · · + a0 in F(x) = 0,
the first term of the equation thereby obtained should be divisible by that of the irreducible
equation of which the number p is the root; when this division can be done exactly, we arrive
at equations in am, am−1,. . . , which we treat like the equation F(x) = 0, until we reach purely
numerical equations. It should be noted that m can always be chosen less than the degree of
the equation that yields p.

These procedures are arduous to carry out in general, but we can simplify them and get more
precise results in certain very common cases, which we shall study with particular attention.

5Translator’s note: In the French text the second term of this equation has a minus sign for reasons I do not
understand; I have made all terms positive.
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