Note: This table accompanies the following article: “Gauss’s Day of Reckoning,” by Brian Hayes, American Scientist, Vol. 94, No. 3, May-June 2006, pages 200-205. Most of the information was gathered in 2006 or earlier, with only a few later updates. The article and other related resources are availble through this list of links.

authordatelangseriesmethodformula
Sartorius1856de            
Winnecke1877de            
Cantor1878de            
Hanselmann1878de            
Munro1891en            
Scripture1891en            
Mathe1906de1, 2, 3, ..., 10050 pairs          
Galle1916de            
Prasad1933en            
Schlesinger1933de            
Bell1937en81297, 81495,...,100899           
Dunnington1937en            
Bieberbach1938de1, 2, 3, ..., 10050 pairs          
Dunnington1955en1, 2, 3, ..., 10050 pairs          
Worbs1955de1, 2, 3, ..., 4020 pairsn/2 (a+b)         
Muir1961en1, 2, 3, ..., 10050 pairs1/2 n (n+1)         
Polya1962en1, 2, 3, ..., 2010 pairs(n (n+1))/2         
Schaaf1964en1, 2, 3, ..., 10050 pairsn(a+b)/2         
Ogilvy1966en0, 1, 2, 3, ..., 10050 pairs+50          
Sartorius(HWG)1966en1, 2, 3, ..., 100           
Boyer1968en1, 2, 3, ..., 100 n(n+1)/2         
Eves1969en1, 2, 3, ..., 10050 pairs          
Hall1970en1, 2, 3, ..., 100two rows          
May1972en1, 2, 3, ..., 100           
Burton1976en1, 2, 3, ..., 100two rows(n (n+1))/2         
Hollingdale1977en            
Reich1977en1, 2, 3, ..., 10050 pairs          
Stewart1977en1, 2, 3, ..., 100           
Bos1978en1, 2, 3, ..., 100           
Gowar1979en two rows(n (n+1))/2         
Goldstein1984en11, 14, 17, ..., 26 n((a+b)2)         
Fadiman1985en            
Friendly1988en1, 2, 3, ..., 20           
Zimmer1988de1, 2, 3, ..., 10050 pairs          
Graham p.61989en1, 2, 3, ..., ntwo rowsn(n+1)/2         
Graham p.301989ena, ... bkaverage(a + 1/2bn)(n+1)         
Wußing1989de1, 2, 3, ..., 10050 pairs          
Dunham1990en1, 2, 3, ..., 100two rows          
Maor1991en1, 2, 3, ..., 100two rows          
Rassias1991en1, 2, 3, ..., 100           
Jacobs1992en1, 2, 3, ..., 100two rowsn(n+1)/2         
King1992en1, 2, 3, ..., 10050 pairs          
Noreña1992es1, 2, 3, ..., 10050 pairs          
Choi1993en1, 2, 3, ..., 104 pairs+10+5          
Bruce-Purdy1994en1, 2, 3, ..., 10050 pairs          
Pappas1994en1, 2, 3, ..., 10050 pairs          
Swetz1994en1, 2, 3, ..., 100two rows          
Anton1995en1, 2, 3, ..., 100           
Ross1995en81297, 81495,...,100899average          
Körner1996en81297, 81495,...,100899pairsna+1/2n(n-1)d         
Lozansky1996ena, a+1, ..., baveragen((a+b)/2)         
MacTutor1996en1, 2, 3, ..., 10050 pairs          
Vakil1996en1, 2, 3, ..., 100folding          
Dehaene1997en1, 2, 3, ..., 100folding          
Devlin1997en1, 2, 3, ..., 100two rowsn(n+1)/2         
Hartmann1997de1, 2, 3, ..., 10050 pairs          
Johns1997en5192, 5229, 5266, ..., 8792           
Loy1997en1, 2, 3, ..., 10050 pairs          
Burrell1998en1, 2, 3, ..., 10050 pairsn(a+b)/2         
Hoffman1998en1, 2, 3, ..., 100two rowsn(n+1)/2         
IBM Research1998en1, 2, 3, ..., 100two rowsn(n+1)/2         
Katz1998en1, 2, 3, ..., 10050 pairs          
Mann1998en1, 2, 3, ..., 100           
Sherman1998en1, 2, 3, ..., 100           
Gindikin1999en1, 2, 3, ..., 100           
Glassner1999en1, 2, 3, ..., 100; also 500           
Langevin1999fr1, 2, 3, ..., 100           
Mollin1999en1, 2, 3, ..., 10050 pairs          
NRICH1999en1, 2, 3, ..., 10050 pairs          
Omnes1999en1, 2, 3, ..., 10050 pairsn(n+1)/2         
Park1999en1, 2, 3, ..., 100two rowsn(n+1)/2         
Zimmermann1999en81297, 81495,...,100899           
Dartmouth2000en1, 2, 3, ..., 100 n(n+1)/2         
Falbo2000en            
Giancoli2000en1, 2, 3, ..., 10050 pairs          
Gosselin2000fr1, 2, 3, ..., 10050 pairsn(n+1)/2         
Kritzman2000en1, 2, 3, ..., 100two rowsn(n+1)/2         
Shoaff2000en1, 2, 3, ..., 100 n(n+1)/2         
Simmons2000en1, 2, 3, ..., 100           
Kilpatrick2001en1, 2, 3, ..., 100two rows          
Pettit2001en1, 2, 3, ..., 100 (n (n+1))/2         
Posamentier2001en1, 2, 3, ..., 10050 pairsn/2(2a+(n-1)d)         
Ryan et al.2001en1, 2, 3, ..., 10050 pairs          
Torvalds2001en1, 2, 3, ..., 10050 pairs          
Estep2002en1, 2, 3, ..., 9949 pairs+50n(n+1)/2         
Gaudet2002en1, 2, 3, ..., 10050 pairsn(a+b)/2         
Geschwinde2002en1, 2, 3, ..., 10050 pairsn(n+1)/2         
Goldman2002en1, 2, 3, ..., 1000           
Hein2002en3, 7, 11, ..., 27two rowsn(a+b)/2         
Simon2002en1, 2, 3, ..., 10050 pairs          
Suzuki2002en1, 2, 3, ..., 100           
Daepp2003en1, 2, 3, ..., 100two rowsn(n+1)/2         
Derbyshire2003en1, 2, 3, ..., 100two rows          
Du Sautoy2003en1, 2, 3, ..., 100triangles1/2 n (n+1)         
Fong2003en1, 2, 3, ..., 100two rowsn(n+1)/2         
Ford2003en1, 2, 3, ..., 10050 pairs          
Hu2003en1, 2, 3, ..., 100(50×100)+50          
Kaplan2003en1, 2, 3, ..., 10pairsn(n+1)/2         
Leonardo.it2003it1, 2, 3, ..., 100           
Weisstein2003en1, 2, 3, ..., 100average1/2 n (a + b)         
Borwein-Bailey2004en1, 2, 3, ..., 10050×101          
Nordgreen2004en1, 2, 3, ..., 100           
Olson2004en1, 2, 3, ..., 100           
Alamo2005es1, 2, 3, ..., 100two rows          
Boutiche2005fr1, 2, 3, ..., 10049 pairs+100+50          
Garcia2005en1, 2, 3, ..., 10050 pairs          
Gauss20052005de1, 2, 3, ..., 10050 pairs          
Grégory2005fr1, 2, 3, ..., 5025 pairs          
Hawking2005en1, 2, 3, ..., 10050 pairs          
Kehlmann2005de1, 2, 3, ..., 10050 pairs          
Krantz2005en81297, 81495,...,100899average          
McElroy2005en1, 2, 3, ..., n           
Ohm2005de1, 2, 3, ..., 10050 pairs          
Pascual i Gainza2005ca1, 2, 3, ..., 10050 pairs          
Rebolledo2005es1, 2, 3, ..., 10050 pairs          
Ullrich2005de1, 2, 3, ..., 10050 pairs          
Vokey & Allen2005en176, 195, 214, ..., 2057two rowsn(a+b)/2         
Bradley2006en1, 2, 3, ..., 10050 pairsn(n+1)/2         
Scolnik2006es1, 2, 3, ..., 10050 pairs          
Tent2006en1, 2, 3, ..., 10050 pairs          
Marymount2007en1, 2, 3, ..., 10050 pairs          
Stewart2007en1, 2, 3, ..., 10050 pairs          
Rice2009en1, 2, 3, ..., 10050 pairs          
D. Termpapers en1, 2, 3, ..., 100           
Elta ro1, 2, 3, ..., 4020 pairs          
Hannover de1, 2, 3, ..., 100 n(n+1)/2         
Maxint it1, 2, 3, ..., 80two rows          
Owens en1, 2, 3, ..., 10050 pairs(n/2)(n+1)         
Pereira pt1, 2, 3, ..., 100           
Perez Sanz es1, 2, 3, ..., 10050 pairs          
Perplex City en1, 2, 3, ..., 100           
Planetmath en1, 2, 3, ..., 100           
Rubinstein en1, 2, 3, ..., 10050 pairsn(n+1)/2         
Weisstein en1, 2, 3, ..., 100           
Wikipedia en1, 2, 3, ..., 10050 pairs          
Wikipedia.de de1, 2, 3, ..., 100triangles; two rowsn(n+1)/2         

A catalog of stories records features of some of the tellings of the Gauss anecdote. The rightmost columns of the table indicate the following features that may or may not be present in a given version: whether Gauss is identified as the youngest member of his class, whether the assignment is assigned as busywork, whether Büttner's whip is mentioned, whether Gauss declares "Ligget se!" ("There it lies!"), whether the classroom procedure of piling up slates is described, whether Gauss is said to be the only student who got the right answer, whether Büttner is assumed to know a method for summing the series, and finally whether two other items of Gauss lore are mentioned—that he learned to count before he learned to talk, and that at age three he corrected his father's arithmetic. Some of these features, such as the busy-work theme, were not present in the original version but are now commonplace. Clicking on any of the sources in the left column will show an excerpt from that source.

Color key for the checkbox columns at right: Green indicates that a telling follows the canonical version of the specified story element; red signifies that the telling definitely departs from the canonical version; a blank means that the story element is absent or unclear. For example, a green box in the "Youngest?" column indicates that the telling claims Gauss was the youngest member of the arithmetic class at the time of the incident; a red box means that some statement in the telling implies that Gauss was not the youngest; the box is left blank if the telling takes no position on the issue one way or the other.