
The Information Act
Brian Hayes

Barry Castle, The Hare and the Tortoise, 1987

Paradox Lost

Zeno of Flea has a strange effect on
me. When I first learned of his

paradoxes, I understood about half
of what I read; a second look illuminated
half of what I had missed the first time;
with still another reading I began to grasp
half of the remainder. It has gone on like
that ever since. But now, after much
earnest study, I feel confident I shall soon
understand all of it.

In my latest reading of the commen
taries on Zeno I have been struggling to
divine the meaning of a certain mathe
matical function called zeno(x), which ac

cepts a number as its input and ought to
return another number as its output. The
output, or value, of zeno(x) is defined by-
two rules:

Rule 1. If .v is zero, return zero.
Rule 2. If .v is not zero, return the value

of ze;io(x/2).

The nature of the zeno function can be
made a little clearer if you work through a

couple of examples. The value of zeno(O)
is obviously zero; rule 1 says so explicitly.
The situation gets more interesting for
other values of .v. In the case of zeno(4), for
instance, rule 1 does not apply, and so you
must resort to rule 2; it instructs you to re
turn the value of zeno{4/2), or in other
words zeiio(2). What is the value of
zenoCiy. You can find out by consulting
the same two rules. Again rule I does not
apply, and rule 2 returns the new value of
zeno(\). Thus you are sent back to the
rules yet again, in a process that will con
tinue until you learn the final answer.

The zeno function illustrates a tech

nique known in mathematics and com
puter science as recursion. A recursive
function takes an intriguing approach to
problem-solving. Given a sufficiently
simple question such as What is the value

of zeno(,0): it answers directly. For any
other question, rather than trying to puz
zle out the entire problem in one go, it
asks itself an easier version of the same

question. If the problem is to find the val
ue of zeno(n), the recursive definition of
zeno reduces the problem to finding the
value of zeno(n/2). In specifying that n be
divided by 2, zeno is sure to be getting ev
er closer to the special value zero, where
the entire sequence of questions should
finally converge on a definite answer.

These days the hard mental exercise of

analyzing a recursive function is no longer
necessary. There is no need to think; you
can just write up the function as a com

puter program and let the machine an
swer all the questions. What happens
when zeno(x) is submitted to the silicon
oracle? If you encode the algorithm in a

particular programming language and
hand it over to a particular computer,

12 THE SCIENCES • SeptemberlOctober 1991

what value is returned? Given an ideal

language and an ideal computer, what
value sAou/dbe returned? Is the algorithm
a properly framed and well-behaved one?
If not, where does the fault lie, and how
can it be fixed?

In addressing these questions I suggest

adopting the following strategy: first let
us endeavor to get halfway to the answers;
then, having reached that goal, let us try
to advance half of the remaining distance,
and so on, until all uncertainties are re
solved. As a start, I propose setting aside
Zeno's perplexing function temporarily
and considering a simpler problem, one
that is roughly half as hard to figure out.

Consider another mathematical function, named divide(m,n), which is in
tended to define the operation of division
for the natural numbers (that is, the non-

negative integers 0, 1, 2,...). Given two
natural numbers m and n, dwide{m,n) is

supposed to return the quotient of/// and
//, the value of m divided by n. An algo
rithm for performing the division can be

expressed in terms of two rules:

Rule 1. If m is less than n, return zero.
Rule 2. If m is not less than n, return

the value of dhide[(m-n),n]+l.

Here again the procedure is a recursive
one, and it is noteworthy for sticking close
to the most primitive and trustworthy

concepts of arithmetic. Division is carried
out by repeated subtraction: The quo
tient of m and // is computed by counting
how many times n can be subtracted from
m before the result becomes less than ze
ro. If m is already less than n, no subtrac
tion is done, and an answer of zero is re
turned. Otherwise the answer is one more
than the result of invoking divide on .the

inputs (m-n) and n. For example, rule 2
indicates that the value of divide{5,2) is

equal to divide{3,2)+\; when the same
rule is reapplied, divided,!) evaluates to
divided,2)+l; finally, rule 1 states that di-
vide{\,2) has the value zero. When you
work back through the results, the initial

inputs 5 and 2 give the output 1+1+0, or 2.
As in the case of zeno, there are many

questions one might ask about divide. If it
were written up as a computer program,
could it be run efficiently? How does it

compare with other algorithms for divi
sion? How might it be extended to handle
other kinds of numbers, such as the neg
ative integers? These issues must wait
their turn, however, because a more ur

gent question has come up: What hap
pens if the divisor is zero? The question
is a troubling one in this case, for it ap
pears that the divide procedure has no pro
tection whatever against the taboo opera
tion of division by zero.

Computer programmers have devel
oped a standard remedy for problems of
this kind: They insert a "guard clause" in

to the procedure. The guard checks the
value of the divisor // and refuses to at

tempt the division if n is zero. The idea
can be expressed by adding a new rule to
the divide function:

Rule 0. If n is zero, return some value

signaling an error.

Now the question becomes: What is the
value best suited for signaling an error?
What sort of thing should divide return if
it is asked to perform an impossible act?

The one crucial requirement is that an
error value be chosen that cannot be mis
taken for the legitimate result of a divi
sion. The choices available depend in

part on what programming language the
divide procedure is written in. For exam

ple, in Lisp—a flexible and rather free
wheeling language—the value that cus
tomarily signals any out-of-the-ordinary
condition is a special object called nil, or
(). A7/cannot be the result ofa valid divi
sion, and so it serves as an unambiguous
error signal. All one need do is make sure
that every program that invokes the divide
routine knows to check for a nil "result."

Unfortunately, the nil tactic offers little help if the divide routine must be
written in one of the more finicky pro

gramming languages. A case in point is
the language called Pascal: therein, every
function must be declared as returning a
particular type of value such as an integer
or an alphabetic character; once the dec
laration is made, the function is never al
lowed to return a value of any other type.
A Pascal version of divide would be de
clared as an integer-valued function, but
then it cannot be made to return a non-
numeric value in the event of an error.
About the best one can do is choose -1 as
the error signal, since the quotient of two
natural numbers can never be negative.
Even that choice is ruled out if the algo
rithm for divide is made to accommodate

negative integers. Then every legal value
of the function (that is, every value al
lowed by the earlier declaration of type) is
a possible outcome of a division, and no
values are left over to signal an error.

The problem that arises here is not pe
culiar to divide. Consider the two main

procedures for handling a data structure
called a pushdown stack (the metaphor
can be envisioned as a stack of plates rest

ing on a spring-loaded shelf of the kind
often seen in cafeterias): push adds an
item to the stack, and pop removes and re
turns whatever item is currently at the top
of the stack. The pop routine is the main
troublemaker: it must somehow signal an
error if it is asked to pop an empty stack.

Suppose the programmer chooses the
character string empty as the error signal.
Then a pop operation that returns empty
has two interpretations: perhaps there
was an error, or perhaps the top location

in the stack held the string empty. The lat
ter interpretation may be unlikely—and

by choosing a sufficiently weird error val
ue one can make it even more unlikely—
but computers, churning along at a mil
lion operations a second, have a way of

discovering the unlikely.
Another example comes from comput

er operating systems that reserve a certain
character code as an end-of-file marker.

Any program that reads the file will know
to stop when it comes to the marker. But
no matter what character is chosen, soon
er or later someone will want to create a
file that includes it. (The first such file

may well be the one holding the program
that checks for the presence of the end-
of-file marker.) Similarly, in programming

languages that mark the end ofa character
string with a special code, it is awkward to
deal with a string that has that code em
bedded somewhere in the middle.

Even having a value set aside for such

special uses, as with nil in Lisp, is no
panacea. Most dialects of Lisp provide a
feature called a property list, in which the

programmer can make note of various at
tributes of an object. For example, an ob

ject representing a computer might have
properties such as speed, memory capac
ity and disk size. But suppose you inquire
about the disk size of a certain computer,
and the answer comes back nil? Does that
mean disk size has not been defined for
this computer, or does it mean the prop

erty is defined but it has the value nil?
There is no direct way of telling, and that

ambiguity is a classic source of bugs in
Lisp programs.

Problems of the same kind occasional

ly turn up outside computer science. For
some years I lived in a midwestern town
that tested its tornado-warning sirens at
1:00 P.M. on the first Wednesday of every
month. Whenever I heard the sirens wail,
I would look at my watch and check the
calendar—and then I would wonder how
the town would alert the people if a tor
nado were spotted at 1:00 P.M. on the first

Wednesday of the month.

Every one of these problems can besolved, given enough effort and inge
nuity. But the usual solution to the end-
of-file and end-of-string puzzles suggests

just how convoluted and awkward the is
sues can become. Suppose the character
"§" is chosen as the end-of-file marker
and you want to create a file that incorpo
rates "§" as an ordinary character. One an
swer is to designate another character, say
"\", as an escape code, signaling that the
next character in the file is not to be as
signed any special meaning but treated
instead as a normal character. Thus the
two-character sequence "\§" is to be rec

ognized as a plain "§". Giving "V a spe
cial meaning, however, creates another

problem: How can you include a back-

SeptemberlOctober 1991 • THE SCIENCES 13

slash in a file as an ordinary character
rather than as an escape code? The usual

strategy is to decree that "\\" is to be tak
en as a single, normal backslash. Such a
scheme might seem entirely too baroque
to be taken seriously by practical people,
but in fact millions of computers rely on a

system just like it.
The problem of selecting an unam

biguous error value has at least one gen
eral solution. The idea is to let the pro
gram that invokes an error-prone routine
choose the most suitable error value. The
divide function, for instance, can be re
written to accept an extra argument—

namely, the value to be returned in the
event of a divide-by-zero error. Thus di
vide takes the form divide(m,n,e), where
the third argument e is the specified error
value. Now the rules that decide the val
ue of divide{m,n,e) can be given as follows:

Rule 0. If n is zero, return e.
Rule 1. If m is less than //, return zero.
Rule 2. If m is not less than //, return

the value of divide[(m-n),n,e]+1.

The revision has the added benefit that
there is no need to make every program
that calls divide as a subroutine recognize
a universal error signal. Each caller can
define its own error-reporting signal.

Of course it is still possible for a caller
to choose an inappropriate error signal, if
only through perversity. If the expression
divide(x,y,1729) returns the value 1,729,
the result could mean either that y is zero
or that x/y is 1,729. Selecting a nonnumer-
ic error value such as ////would eliminate
this source of ambiguity.

In Pascal and other languages with
strict type checking, //// is not an option,
and so a slightly different approach is
needed. The best plan I have been able
to devise entails some wasted motion.

Again the function divide gets redefined
to accept an error signal as a third argu

ment, though now the signal must be an
integer. When divide is called as a subrou
tine, the main program supplies an arbi
trary integer as the error indicator, as in di-
vide\x,y,\37). If the value returned by the
expression is anything other than 137,
there is no need to worry about a divide-

by-zero error. If the value is 137, on the
other hand, a further step is needed to es
tablish the meaning of the result: divide

gets called again, with the same values for
the first two arguments but with a differ
ent error signal. If, say, dhide(x,y,\\) still
returns 137, you know that 137 is the quo
tient of x and y. If it returns 11, you know

that_y is zero. (If it returns anything else,
you know you're in trouble.)

Finding a suitable value to serve as anerror signal can be viewed as a prob
lem in information theory. At issue is the
bandwidth, or information-carrying ca
pacity, of the communications channel

through which a function returns values
to its caller. For example, a Pascal func
tion declared to return a boolean result—
that is, a result whose only possible values
are true and false—communicates over a
narrow channel; with just two possible re
turn values, the channel capacity is exact

ly one bit. An integer-valued function has
a much broader channel, typically with a
range of 216 or 2iZ possible values. Never
theless, if all 2'" or 231 integer values are le
gal results of the function, the channel is
saturated; it is carrying as much informa
tion as it can. Only if some integers are
not proper function results is there spare

capacity for error signals.
Some of the error-reporting methods I

mentioned earlier work by increasing the

capacity of a saturated channel. Allowing
a Lisp version of divide to return ///'/ ex

pands the range of possible function val
ues and so increases the communications
bandwidth. Confirming an error signal by

making a second call toa Pascal procedure
enlarges the channel in a different way; it
is a kind of time multiplexing, squeezing
more information through the channel by

sending two signals in succession.

There are many other ways of increasing the carrying capacity ofa channel.
For example, in Lisp the divide procedure
could be made to return a list instead ofa
number: the list would include both the
result of the division and a boolean flag

indicating whether or not the result is
valid. The flag constitutes one additional
bit of information that is being transferred
from callee back to caller. In Pascal a da
ta structure called a record could be used
for the same purpose.

With these and other stratagems for

overloading or circumventing communi
cations channels, it might appear that the

problem of finding a suitable error value
is essentially solved. The only issues left
to be settled would seem to be those of

syntactic form: how best to express an er
ror-handling strategy in the program text.
But I am not convinced that all the fun
damental difficulties have been resolved,
at least for languages such as Lisp that
have no strong type checking. There is
one circumstance in which expanding the
capacity of the channel cannot work.
Consider a function whose range of legal
returned values includes everything that
could conceivably be expressed in the

language. Since the communications
channel already has the maximum possi
ble bandwidth, there is no way of opening
it further to accommodate error signals.

A function that can return anything at
all? Is it possible to write such an om

nipotent monster? As a matter of fact, it is
easy. A simple example is the identity
function, which accepts a single argu
ment and returns that argument un

changed. Such a function might be writ

ten identity(x), and the single rule deter

mining its value would be

Rule 0. Return x.

In Lisp, x can stand for almost anything—
a number, a list of numbers, a boolean val
ue, a string of characters—and in every
case identity will return the value of x.
There is nothing that can be written in

Lisp that cannot appear among the out
puts. One might argue that here the error-
signaling problem simply does not arise:
because every conceivable object is a le

gitimate value of the function, there can
never be any need for an error signal. But
then what value should be returned by
the expression identity[divide(\,0)]?

Even apart from all the entanglementsof interprocedural communications,
there is something troubling about di
vide's use of specially distinguished re
turned values to signal an error. Consider
the transaction from the point of view of
the program that invokes divide. You ask
for the quotient of 1 divided by 0, and the
answer comes back ////or-1 or 1,729. But
those values are all patent falsehoods; 1/0
is not equal to any of them.

At this point it might be helpful to take
another look at the original, unadorned
definition of divide(m,n):

Rule 1. If/// is less than //, return zero.
Rule 2. If /// is not less than //, return

the value of divide[(m-n),n)+\.

I have been suggesting extraordinary
measures for protecting that algorithm
from the error of division by zero, and yet
in an important sense the algorithm is al

ready immune to error. It has the pleasant
property that it will never give a wrong
answer! If m>Q and n>0, divide returns the

quotient of m and n. On the other hand, if
///>0 and //=0, divide never returns. It goes
on forever subtracting zero from m. In
other words, there is no need to tell the

procedure that division by zero is
undefined; it is the procedure itself that
tells you. The properties of division can
be inferred from the action of the pro
cedure rather than being imposed on it
from the outside.

Thus it could well be argued that the
entire effort to "fix" divide is misguided,
on the grounds that the procedure was
never broken in the first place. According
to that view, what began as a simple and
lucid procedure, which cannot give a

wrong answer, has been encumbered
with all manner of error-handling ma

chinery. The outcome is a series of "cor
rected" versions, many of which give re
sults that are at best subject to
misinterpretation. The final state of the
procedure hardly seems an improvement
over the original one.

What is the practical consequence of
such a view? Should all computer pro-

14 THE SCIENCES • SepttmberlOctober 1991

grams ignore error conditions, trusting
them to work themselves out? Well, not
in any software I'm going to use, please.
(There is a big difference—an infinite
difference—between "never a wrong an
swer" and "always a right answer.") On
the other hand, it would be dull-witted to
dismiss all nonterminating programs as
mere blunders, unworthy of serious inter
est. The question of whether or not a pro

gram terminates is the deepest question
in computer science. Indeed, if there
were no nonterminating computations,
and thus no problem of determining
whether a given program would halt or
not, computing would be a humdrum af
fair, rather like mathematics in a universe
with a finite number of primes. It is the
endless loops and the bottomless recur
sions that supply the indispensable

glimpse of eternity.

Such considerations bring us back toZeno's procedure, zeno(x). The recur
sive structure of the procedure, which at
first looked sound enough, now appears

suspect. On successive invocations the
value of x gets progressively closer to ze
ro, the terminating case; except for a re
cursion to come to an end, it not only
must approach the terminating condition
but must actually get there. Zeno's
method of dichotomy—dividing .v in half,
then in half again, and so on—shows no
prospect of ever reaching its goal.

It seems to be the odd fate of Zeno's

propositions, however, that although they
resist the subtlest arguments, they yield
to the bluntest facts. Philosophers and
physicists have kept up a debate on the
paradoxes for 2,500 years, but in the
meantime Achilles long ago passed the
tortoise. Here, too, rude experience inter
venes. If the zeno algorithm is written in a
real programming language, and the pro
gram is run on a real computer, it turns out
the program does terminate after all.

The outcome depends on how num
bers are represented in the machine and
on the semantics of the "/" operation. If.v
is confined to the natural numbers and if
"/" is a synonym for the procedure
defined here as divide, zeno(\) comes
to a halt after just one full cycle,
since divide(\,2) is equal to zero. Even
zeno(],\024) terminates after just eleven
stages of recursion.

But surely the use of natural numbers
violates the spirit of the puzzle. Zeno
would urge that the problem be solved
with values on the real number line. In
digital computations real-numbered val
ues are commonly approximated by float
ing-point numbers. If.v is represented in
floating-point notation, it takes on the
successive values 1.0, 0.5, 0.25, 0.125,....
In the ideal world of mathematics these
numbers certainly form a nonterminating
series. In the world of computers, howev

er, the dichotomy procedure stops and re
ports a value of zero after at most a few
thousand iterations. The reason is that

only a finite number of bits are allotted to
the representation of floating-point num
bers, and so sufficiently small magnitudes
cannot be distinguished from zero.

There is something perverse about
these results. With divide it was hard to
guarantee that the program will always
terminate, as one might like it to do. With
zeno it was impossible to make the pro

gram run on indefinitely, as mathematics
says it ought to do. Which of the pro
grams, then, is the more seriously flawed?

Even when Zeno's ancient sophistrieshave been put to rest, there is more to
be done with paradox and the computer.
Consider a procedure even simpler in
structure than zeno(x) or dividdni.n). The

procedure, called russellip), has only one
rule, no looping constructs and no overt
signs of recursion. It would appear to have
a straight-through path of execution, with
a rule that is evaluated only once. The
rule for russellip) is:

Rule 1. Return notipip)).

Russell is a special kind of procedure
called a predicate: a procedure whose re
sult is always a boolean value, either true

orfalse. The argument of russellis also as
sumed to be a predicate. According to the
definition, russellip) returns the value tnte
if and only if/; is a predicate that has the

property that it is not true of itself. For ex
ample, suppose there is a predicate called
number, which yields true whenever it is
applied to a number but yields false when
given any other kind of object. Then rus-
sellinumber) will return a value of true, be
cause the procedure number is not itself
a number. In contrast, one might have a
predicate named procedure, which returns
true when it is applied to any procedure
but yields false otherwise; the expression

russelliprocedure) is false, because the
predicate procedure is a procedure.

The question is: What value is re
turned when russellis invoked on itself, as
in russell(rusself)} Logic says the answer is
trite only if the answer is false. What
should a computer say when it is asked
such a question? •

Brian Hayes is the editor of American
Scientist. He acknowledges the work

of Joseph E. Stoy, R. D. Tcnnent, Philip
Wadler, Robert ~S. Boycr and J Strother
Moore, Daniel P. Friedman and David S.
Wise, Robin Milner, C. S. Wetherill, Bar
bara Liskov,and Shaula Yeminiand Daniel
M. Berry.

Steven Campbell, This Is the Final Warning These Sentences Are Not the Same, 1988

September!October 1991 • THE SCIENCES 15

