i o |
S M

COMPUTER
RECREATIONS

On the fnite-state machine, a minimal model

of mousetraps, ribosomes and the human soul

by Brian Hayes

The most powerful computers have
neither hardware nor software;
they are built out of pure thought
stuff,. Among these abstract machines
the most celebrated is the one invented
in 1936 by the British mathematician
Alan Mathison Turing. It can do more
than &ny computer madc of mere silicon
ever could; indeed, it can compute any-
thing that can be computed. A relat-
ed class of conceptual computers lack
the omnipotence of the Turing machine,
but they are no less interesting. They
are called finite-state machines or §-
nite-state automata, and they establish
the minimum specifications of a work-
ing digital computer.

Properly defining a finite-state ma-
chine calis for a degree of mathematical
rigor that is not appropriatc here. The
nature of the concept can be made clear,
however, by means of a few examples.
When I went out looking for finite-state
machines, I found an excellent specimen
in a station of the Lexington Avenue
subway in New York. It is a turnsiile, an
old one made not with the compact stecl
tripod of current practice but with four
oak crossarms, worn smooth by a river
of hands and hips.

The turnstile has two states: locked
and untocked. Suppose it is in the locked
state, so that the arms cannot be turned.
Putting a token into the slot alters the
internal mechanism in some way that
allows the arms to move; in other wotds,
the token induces a transition to the un-
locked state. Rotating the arms by 90
degrees causes another transition that
restores the turnstile to the locked state.
The transitions are shown schematical-
ly in the upper illustration on the next
page. The states of the system are repre-
sented by nodes (boxes) and the tran-
sitions by arcs (arrows) between them.

In the finite-state analysis of the turn-
stile, inserting a token and pushing on
the arms are the possible inputs to the
system. The response of the machine de-
pends both on the inpul and on the state
at the time of the input. Pushing on the
crossarm when the turnstile has not yet

received a token will not get you a ride
on the subway. Inserting a token when
the arms are already unlocked is also
futile, although n a slightly different
way. The second loken is accepled, but
it has no effect on the state of the ma-
chine; one person is admitted and then
the turnstile locks again. Three or four
tokens in sequence are likewise accept-
ed but buy only one ride. Skeptics may
want further evidence before aceepting
the generalization that all tokens after
the first have no effect, but they will
have to supply their own tokens.

The reason the turnstile cannot give
multiple rides for multiple tokens is that
it has no means of counting the tokens it
has received. Its only form of memory is
a rudimentary one: by changing (rom
one state o the other it *remembers”
whether the most recent input was a to-
ken or a push on the crossarms. All ear-
lier inputs are lost. It is worth noting that
this forgetfulness can never work to the
disadvantage of the city. It could be
worse: a turnsiile could be designed to
change state after every token, regard-
less of thc present state, in which case
two tokens in.a row would admit no one.

The turnstile illustrates most of the
essential properties of a finite-state
machine. Qbviously the machine must
have some states, and there can be only
a linite number of them. There can
be inputs and outputs associated with
any state. The states must be discrete,
or ¢learly distinguishable, and the tran-
sitions between them must be effectively
instantaneous. In these matters much
depends on the point of view: day and
night are discrete states if one is willing
to define sunrise and sunsel as instan-
taneous processes. The set of states, the
inputs and the outputs constitute the en-
tire machine; there can be no auxiliary
devices, and in particular no facilities
for the storage of information.

The rules for building a finite-state
machine allow some scope for variation.
There are deterministic and nondeter-
ministic machines, Moore machines and
Mealy machines. In a determintstic ma-
chine a given input in a given state invar-

Dec. &3

iably has the same result; in a nondeter-
ministic machine there can be scveral
possible transitions. In the Moore ma-
chine (named for Edward F. Moore)
each state has & unique output. In the
Mealy machine (named for G. H1. Mea-
Iy} the oulputs are associated with the
transitions rather than Lhe states. It turns
oui, however, that the variety of archi-
lectures is something of an illusion. Any
task that can be done by one kind of
finite-state machine can be done by
the other kinds as well, although the
number of stales needed may vary.
Here I shall discuss mainly determinis-
tic Moore machines, which have the sim-
plest structure.

ben vou start looking for finite-

state machines, you find them ev-
erywhere. Coin-operated devices arc fa-
vorite textbook examples. Some vend-
ing machines arc less rapacious than
the subway turnstile: once they have re-
ceived the proper amount of money
they enter a state in which all addition-
al coins are rejected. The coin-operated
device with the largest number of pos-
sible states is surely the Las Vegas slot
machine. In principle it is deterministic,
but finding an input {a coin and a pul
on the handle) that will cause a lransi-
tion to a particular final state is none-
thefess challenging.

Many household appliances can be
regarded as finite-slate machines, al-
though they tend to be rather dull ones.
A clothes washer goes through an in-
flexible sequence of states—filling, agi-
tating, rinsing, spinning-—and the few
meaningful inputs, such as puilling the
plug out of the eleciric outlet, generally
have the same effect in all the states.
Similarly, a traffic light has a small rep-
ertory of states, which repeat indefinite-
ly. To me the most boring of all finite-
state machines is a digital clock. If it
displays the month, the date and the pas-
sage of hours, minutes and seconds, it
has some 31 million states; in the course
of a year it visits each state exactly once.

A mousetrap is a finite-state machine;
the mouse, ‘usually to its misfortune,
triggers a transition from the cocked
state to the sprung state. A conmibination
lock is a finite-state machine with many
possible inputs, only one of which caus-
es a state transition. A telephone has
states that might be labeled on hook, off
hook, waiting, dial tone, dialing, ringing,
connected and out of order. An automo-
bile can demonstrate vividly Lhat the ef-
fcet of an input varies according to the
present state of the system. What hap-
pens when you press the accelerator
pedal to the floor? 1t depends. Is the en-
gine running? Is the clutch engaged? Is
the parking brake off? Is the transmis-
sion in gear? Is it in forward or reverse?
Is the garage door open?

In the living cell the molecular system
made up of the ribosome and the vari-

19

START ——|
PUSH
| LOCKED UNLOCKED
TOKEN |
PUSH TOKEN
A state-transition diggram for a subway (nrnstile
START——>
1
EVEN oDD
1
! 0 0

R

N

The parity-testing machine

ous species of transfer RNA operates
as a finite-stule machine. The inputs are
the four nucleolide bases of messenger
RNA, designated by the abbreviations
. A, G and C. The outputs are the 20
amino acid components of proteins. A
chain of nucleotides is rccognized as a
valid input to the machine only if it be-
zins with the “start™ signal AUG. There-
alter the machine reads the input stream
continuously, changing state as cach co-
don, or triplet of nucleortides, is recog-
nized. The three special codons UdA,
UAG and UGA ave “'stop” signals: when
one ol them is encounfcred, the machine
halts. Many other biological systems
can usefully be reprcsented as finite-
stale machines; cxamples that come to
mind arc the hemoglohin molecule and
the prometer and repressor prolcing of
bacteria.

In the theology of Thomas Aquinas
the soul is a finite-state machine, a won-
derfully elaborate and fully determinis-
tic one. It is created in a state of jeopar-
dy, as a consequence of originalsin, On
baptism it enters a state of grace, but
certain acts (idolatry, blasphemy, adul-
tery and so forth) induce a {ransition to a
state of sin. Confession, repenlance and
absolution are Lhen needed to restore the
soul to grace. The effect of a final input,
deaih, depends critically on the state of
the soul at the mornent of death: in a
state of grace death leads to salvation
but in a stale of sin it leads to damna-
tion. The soul machine is actually more
complicated than this description sug-
gests. A full account would have to dis-
tinguish among the various grades of sin
{venial and mortal, actual and habitual)
and would have to include other possi-
ble states of the soul {such as those asso-
ciated with limbo and purgatory) and
other possible inputs (such as the Last
Judgment).

20

In quantum mechanics even the atom
becomes a finilc-statc machine, and
hence so docs everything that is made up
of atoms. The states of the atom are the
allowed energy levels: the inputs and
outputs are photons, or quanta of clec-
tromagnetic radiation. In a precise de-
scription 1 think the atom would be
classified as a nondeterministic Meaty
machine wilh epsilon transitions. 1t is
nondeterministic because (he effect of
an inputl cannot be predicted with cer-
tainty. Tt is a Mealy machine becausc
the naturc of the output {(namcly the en-
ergy of the phoion) is determined by
the transition, not by thc state entered.
Epsilon transitions arc thosc that can
take place in the absence ol any input;
they must be incliuded in the model be-
cause an atom can emit a photon and
change its state spontaneously.

s the brain a finite-siate machine? As it

L happens, the modern study of finite-
state systems began with a model of
neural networks introduced in 1943 by
Warren 5. McCulloch and Walter Pilts.
The ncurons of McCulloch and Pitts
were simple cells with excitatory and in-
hibitory inputs; each cell had a single
output and two intcrnal states: firing and
not firing. The cells could be arranged
in networks to carry out various logic
functions, including the “and,” “or™ and
“not” functions that are now common-
place clements of electronic logic sys-
tems. The cquivalence of the idealized
neural networks to state-transition dia-
grams of the kind shown here was eslab-
lished m 1956 by Stephen C. Kleene of
the University of Wisconsin at Madison.
Forty years aftcr the work of McCul-
loch and Piits it is still subject to dis~

putc whether the brain can rcasonably

be clagsificd as a finite-state sysiem. Of
course the number of neurons is ncces-

sarily finite, but that is not the only issue.
A real neuron is far morc complical-
cd than a two-state cekll, and some of
its properties may vary over a continu-
ous range rather than being ¢onsirained
lo occupy discrete states. Furthermore,
the prohibition of auxiliary information
storage in a fnitc-state model of the
brain is awkward al best. Il mental life is
no more than & succession of instan-
lanecus states, withoul knowledge of its
own history, then what is memory?

The states of mind discussed in psy-
chology, such as boredorm, Tear, thirst,
ecstasy and grief, seem to At morc readi-
ly into the apparatus of a finite-state the-
ory. On the other hand, the states are
50 numerous and the transitions are so
poorly undersiood that the model is use-
less. Only for lower animals is it possible
to draw more than isolated [ragments
of the state-transition diagram, and in
those species the experimenier can have
no direct access {o lhe presumed mental
states. Indeed, much work of this kind
has been done by behaviorists who deny
the very cxistence of mental states.

The case of the digilal computer—
and herc I mean the tangibfe machine,
the hardware—is also probiematic. The
common mental model of a computer,
formulated by John von Neumann, di-
vides the machine into a central process-
ing unit and an array of memory cells.
There is no doubt that the finite-state
concept can be applied to the various
components of the central processor,
such as registers, adders and the control
mechanism that directs the internal op-
erations of the processor,

The trouble begins when the memory
is taken into accownt. Under the rules
for building a finitc-state machine no ex-
ternal memory is allowed, and so each
ccll must be viewed not as a storage fa-
cility separatc from the processor but as
a part of the ovcrall machine state, If
all the cells are blank, the computer is
in one state; if a single celt is filled, an-
other srate is entered, and so on. This
coneeption of the computer is singular-
ly unilluminating, in part becausc it
makes no connection between the state
of the machine and what it is doing.
Moreover, the number of staies is im-
mense. Even a computer of trivial sizc
(100 binary elements), running contin-
uously throughout the age of the uni-
verse, could nol possibly have worked
through ali its states.

The primary role of the finite-state
machine in computer science is at
a higher level of abstraction than the
clockwork mechanisms of the hard-
ware. A computer running under the di-
rection of a program is no longer an
assemblage of logic gates, regislers,
memory cells and other efectronic par-
aphernalia; if is a “virtual” machine
whose working parts are defined by the
program and can be redefined as neces-

sary. Whereas the hardware knows only
binary integers and simple commands
for moving and manipulating them, the
virtual compulter deals with far more
expressive symbol systems: words, cqua-
tions, arrays, functions, vectors, codons,
lists, images, perhaps even ideas. Finite-
statc techniques can be valuable In
creating the virtuat computer, and some-
times the virtwal computer is a finite-
state machine.

Consider a program whose object is to
read a series of binary digits (1's and 0°s)
and report whether the number of 1's
received is even or odd. (The task has
practical significance; for example, such
parily-checkitig programs are cmployed
o detect errors when digital data are
transmilted by telephonc.) The program
can be constructed as a fintle-state ma-
chine with two states, as Is shown in the
lower illustration on the opposite page.
Operation begins in the even state, be-
cause initially no 1's have been received
and O is considered an even number.
Each 1 in the input stream causes a
change of state, whereas a 0 reccived in
either state leaves the state unchanged.
Even though the machipne cannot *“rc-
member” any inputs before the most re-
¢ent one and certainly cannot count the
I's or O, its output always reflects the
- parity of the input stream.

The finite-state model of computation

s commonest in programs thal deal in
some way with text or other information
that takes a linguistic form. The preemi-
nent example is found in compilers: pro-
grams thal translate programming state-
ments in a source language into equiv-
alent statemcnts in a larget language,
most often the “machine language” of
a particular computer. Compilers and
other translating programs are essential
to the notion of the virtual maching;
they mediate between symbols with hu-
man meaning and thosc recognized by
the computer.

The part of a compiler that can be
designed as a finite-statc machine is
called the lexical scanner. Like the sub-
way lurnstile, it is a token-gobbling de-
vice. In this case, however, the tokens
are the words, or fundamentai lexical
units, of the language. The scanner ex-
amines each group of characters and de-
termines whether it is a genuine token,
such as a command or a number; if 1t is
not, the scanner ,rejects it s nonsense,
just as the turnstile would reject a slug.

The operation of a lexical scanner can
be illustratcd by a finite-state machine
designed to recognizc the tokens of a
simple language, albeit one of limited
expressive range: the tokens consist ex-
clusively of Roman numerals. Indeed,
only Roman numerals of a special form
are accepicd; they must be given in strict

addilive nolation, so that 9 is represent-
ed by VEHII rather than by [X. {There is
evidence that the Romans themselves
employed the additive notation; the sub-
tractive form is thought to have been a
German innovation.)

A state-transition diagram for the Ro-
man-numeral machine is shown in the
illustration on the next page. Its alpha-
bet of input symbols includes the let-
ters M, D, C, L, X, V and T as well as
the space symbol, or blank. Any ini-
tial blanks are simply ignored, butl once
the first letter s received the program
makes an immediate transition to a state
identified {for convemence) by the name
of the letter. If the first letter is an M, it
can be followed by any character from
the allowed set, inc/uding another M, If
the next character is a I, however, the
situation is different. From the D state
no transition back to the M state is de-
fined, becausc any series of symbols that
includes DM cannoi be™a well-formed
token in the language of additive Ro-
man numerals. Furthermore, there 1s no
transition from the D state to the D siate
itself, so that DD is also an excluded
sequence. (The reason is that the “half
value” symbols D), L and V cannot be
repeated in proper Roman numerats.)

In the D state the only recognized let-
ters are the [ower-valued ones C, L, X,V
and 1. The same set is accepted in the C

SALVATION
3
CAET LAST
JUDGMENT JUDGMENT
LIMBO PURGATORY
EXPIATION
I DEATH DEATH DEATH |
| MURDER, ETC. -
SLOTH. ETC. MURDER, ETC. MORTAL SIN
START———3 ORIGINAL SIN GRACE VENIAL SIN) c
< |ABSOLUTICN MsLoth, £16|
BAPTISM : SLOTH. ABSOLUTION
. ETC. DEATH
DAMNATION
LAST
JUDGMENT

Stetes of the soul in the theology of Thomas Aguings

AL

START—=

T T o
D {
Clt— v
L ——— [) X
% p— L
vii— c
I - O

BLANK

22

BLANK
|
v
T it Sl
G
— A
BLANK
| ———
L =l C Vv —_
. X
SR
; BLANK
S .
X []
o v,
-
BLANK
——2 X | e,
. X Vo
| Yo A
A v
'7.,3?_
e uly BLANK
i

N

A lexical scanner for @ lunguage of Romaen numerals

5 BLANKL —

eND

state {because C can be repeated), but in
the L state only the letters X, V and Lare
recognized. The rule governing the tran-
sitions should be clear. The states arc
arranged in a hierarchy, and onee a giv-
en level has been reached the machine
can never return 1o a higher level; in the
hali-value levels it cannot even remain
at the samc level, By the time the 1 state
is reached only an additionall or a2 blank
is allowed. The blank. entered at this
point or at any other time afrter the first
letter, indicates the end ol the token
and sends the machine back fo its start-
ing state, ready to receive the next Ro-
man numeral.

No programming language known to
me allows numbers to be cntered in
Roman [orm, but virtualiy all such lan-
guages have faciliiies for handling Ara-
bic numbers. The techniques for recos-
nition are similar, although there is a
greater variety of formats. Simple in-
tegers such as 137 can be handied in
principle by a one-state machine, but
the several parts of a number such as
+6.625 X 10-27 require & more ¢labo-
rate lexical analysis.

The ribosome-transfer-RINA system
can be regarded as & lexical scanner that
recognizes biologically meaningful nu-
cleotide sequences in a molecule of mes-
senger RNA. To be accepted a sequence
must begin with a start codon and end
with one of the thre¢ stop codons; be-
iween these houndaries any combina-
tion of the tnput symbols U 4, Gand C,
taken three at a time, is allowed.

Lexical analysis is only the first step in
the process of compilation.. The compo-
nents of the compiler that are called into
action after the lexical scanner are the
parser and the code generator. The pars-
er takes as its input the tokens identified
by the scanner and analyzes their syn-
tactic relations; this is the closest the
compiler comes to understanding the
meaning of the program statements it
translates. The code generator writes a
program in the larget [anguage thaf car-
ries out the functions specified by the
parsed statements.

For the toy languages consideréd here
the tasks of the parser and the code gen-
erator are {rivial. The compiled form of
a statement in the Roman-numeral lan-
guage might be simplv the Arabic equiv-
alent of the number. It could be gen-
erated by the following strategy. Be-
tore a token is scanned a storage cell is
specified and 15 set equal to zero. Then
each time the scanner enters the M state
1,000 is added to the valuz in the cell;
for the D state 500 is added, and so
on. When the scanning is complete, the
memory cell holds the value of the Ro-
man numeral, Note that the toy compil-
er 15 no longer a pure finite-statc ma-
chine, because it has auxiliary storage.

A compiler for the genetic code is
even simpler and can be realized enture-

http:progr.am

ly within the context of a finite-state sys-
temy. The compiled “program™ i5 a se-
guence of the standard three-letter sym-
bols for amino acitds; the symibols can be
generated as the ourput of the states of
the scanner that recognize codons. The
three "states corresponding to stop co-
dons have no output.

Creating a compiler for a language
large enough to be of general utility is
not a casual underiaking, but the under-
lying architecture of the finite-state ma-
chine cap at least provide an organizing
principle. If the syntax of the langiage is
specified with sufficient precision, part
of the work can even be mechanized: it
can be done hy a compiler compiler, a
program whose input is a formal de-
scription of a language and whose out-
put is another program thatl translates
statements in the language. As far as |
know no one has yet written a compiler
compiler compiler.

he identification of tokens by a lexi-

cal scanner is in itself a kind of pars-
ing, and the set of all possible seguences
of symbols in a token is a kind of lan-
guage. Indeed, it is an infinite language:
unless some.artificial fimit is put on the
length of individual sequences, an infi-
nite variely of recognizable tokens can
be formed. How can & machine with
only a finite number of parts recognize
an infinity of well-formed statements
and exclude an infinity of ill-formed
ones? The key is in 1the structure of the
language itself. if the statements of an
infinite language are to be recognized
by a finite-state machine, they must be
formed according to strict rules.

The rules were set forth hy Kleene in
1956: they define a class of languages
called regular languages or regular sets.
Kleene proved that a finite-state ma-
chine can recognize a language only if 1t
is regular, and further that every regulay
language can be recognized by some
finite-state machine. What is meant
by regular can be indicated briefly {al-
though not rigorously) by two rules.
First, any finite language is regular and
therefore can be recognized by a finite-
state machine; after all, one could build
a machine with a state for each possible
expression of the language. Second, if a
language is infinite, it must be possible
to parse all its statements by reading one
symbol at a time {rom leit to right, or
beginning to end, without backtracking
or looking ahead. 1f the acceptability of
any symbol is contingent on the pres-
ence of another symbol. the governing
symbol must be the one immediately to
the lelt

The second rule is a direct conse-
quence of the limitations of a finite-state
machine, which can neither {oresee its
future states nor keep a record of ils
past ones, it must choose a state transi-
tion based only on the current slate and
the currenl input symbol. It is {or this

START

L g ?’hegw
A
GD‘"‘
H > f‘q > et I
C_J ,_GJ:F
| vl “ r
A | ‘C_ID“ 1 Ty
] ape 1)
G_—] | {5;}_
| L S iong
A o Tip)
¢
¢ Leu
A
f G |
I ;s e g%—- Pro
3 A i
>
| A U
M
| 91 A
u
Ur C‘] %
A - > Arg —J
C G |’
e
B = 8]
Y, C'_hi 3].1 g f—
| A
Gj ; G ‘{M&l!—~
UJ Q_F
S i -}iThfs-‘\
b] H

G)ZDOCJ iG‘.'}OC

j- > ASH |
B O
U

¢

A

sl

-U_

&

G

U

C

A

E

)

U Asp

(%]

3 C

STOP

o

A finite-state machitte franslates the genetic code inde protein

reason that the subtractive notalion for
Roman numerals cannot be handled
by a finite-stale machine. I thec expres-
sion X1)s read and the machine inter-
prees it as 41, it cannot go back to revise
the value when the next character turns
out to be V. Many other functions are
ruled out by the samc limitation. For
example, it Is not possible to build a
finite-state machine that reads a sc-
quence of binary digits and determines
whether the number of 1's is equal to
the number of 0’s: Similarly, although
a finite-state machinc can add binary
numbers, it cannot multiply them; 1
leave it 10 the reader to deduce why.

Beyond finite-state machines and reg-
ular languages there extends a hier-
archy of more powerful machines and
more general languages. It is called the
Chomsky hierarchy, after the linguist
Noam Chomsky, who investigated the
various formal languages as possible
models of natural language. The more
general languages are created by relax-
ng constraints on the grammatical rules
of regular scts; the machines are built by
adding memory elements to the basic
finite-state modci.

The next machine in ihe series is
called the pushdown automaton. It con-
ststs of a finite-state machine with the
addition of 2 memory array that has an
infinite capacity but a peculiar organiza-
fion. The memory takes the form of a
stack, like a counterweighted stack of
cafeteria trays. An item of information
can be stored only by putting it on top of
the stack; when the information is re-
trieved, any overlying items must first be
removed. Thus the last item 1n is the first
one oul.

The language recognized by a push-
down automaton is called a contcxt-free
language. In parsing its statements thc
acceptability of a symbol can depend
both on the symbol immediately to the
left and on the one immediately to the
right. This bidirectional dependency is
permissihle because any symbols whose
interpretation cannot be decided imme-

PUSHDOWN
AUTOMATON
!VFINITE-STATE
‘MACHINE
L 3
T SEMIMNFINITE

i STACK

28

diately can be stored on the stack un-
il the ambiguity is rcsolved. Hence a
pushdown automaton can work with
subtractive Roman numerals, and it can
identify expressions with equal numbers
of 1’s and 0’s {or other symbols, such as
left and right parentheses). On the oth-
cr hand, it cannot detect sentences with
cqual numbers of three symbols, such as
(s, 1I's and 2's. Most programming lan-
guages are conlexi-free, and the parser
of a compiler js generally a pushdown
automaton. Many computers include
hardware facilities for organizing a part
of the memory capacity as a pushdown
stack. One programming language,
Forth, makes a stack the primary mem-
ory structure. Of course, the stack inany
real machine cannot have infinite depth.

The context-free languages meril
their name becausc the patsing of any
symbol can be influenced directly only
by the symbol's two immediate neigh-
bors, not by the wider context in which it
is found. Removing this ¢onstraint gives
risc to a context-sensitive language and
once again increases the difficulty of
interpretation. Now widely separated
symbeols can interact; in the worst case it
is not possible to interpret the first sym-
bol in an expression until the last one
has becn read. Incxchange far the added
complexity somewhat greater capabilily
is gained. A machinc based on a context-
sensitive language can determinc wheth-
er an expression includes equal numbers
of three symbols.

The machine that can recognize a
context-sensitive language is a linear-
bounded automaton. In addition to the
usual finite-state apparatus it has a
memory organized in such a way that
any storage location can be reached at
any time; it is a random-access machine.
The memory is only finite in capacity,
but it is assumed to be large enough to
hold any input the machine receives.
The linear-bounded automalon scems a
good approximation of the von Neu-
mann model of a digital comnputer. Odd-
Iy, though, the corresponding context-
sensilive programming languages seem

LINEAR-BOUNDED

AUTOMATON
i | FINITE-STATE
- MACHINE
] FINITE
L |MEMORY ARRAY

The Chomsky hievarchy of finite and infinite mochines

to be rarg; evidently the simpler context-
free structure almost always has suffi-
cient.expressive power.

All the languages described above
have a property in commeon: they are
said to be recursive. What this designa-
tion amounts to is that one can imagine
a procedure for generating all possible
“ulterances” in the tanguage in order of
increasing length. It {ollows that tbere is
a guaranteed method of deciding wheth-
er any given statement of finitc length is
a member of the.languagessimply gen-
crate all the stutements:up to that length
and compare them:

There are languages that cannot meel
even this minima) standard of tractabili-
ty. For them there is only one possible
recognizing machine: it is the computer
of last resort, the Turing machine, a fi-
nite-stale automaton allowed to roam
frecly through an unboundcd memory.
In the description given by Turing the
memory is a tape, infinite in both diree-
tions and marked off into cells, which
the finite-statle apparatus can write on,
read or crasc.

Looking down from the clevated per-
spective of the Turing machine, the re-
lations of the lesser computing devices
become clearer. The linear-bounded
automaton is simply & Turing machine
with a finite tape. The pushdown autom-
aton has a tape that is infinite in one
direction, but the “head” for rcading
and writing on the tape always rewnains
fixed over the last nonblank ccll. The
finite-state machine is a Turing machinc
with no tape at all.

Brand-name-conscious readers, eager
to parse nonrecursive languages, may
already be outl shopping for a Turing
machine. They should be warned that
the ultimate coraputer also has its weak-
nesses. There are languages with gram-
murs so preposterous that even a Turing
machine cannot be counted on to recog-
mize their statements in a finitc amount
of tfimec. So far such languages havc

found Tittle use in the world of com-

puting machines, but people somehow
manage 1o speak them.

TURING

MACHINE
l - |
{ . |

_| FINITE-STATE
MACHINE
] | INFINITE
: i i MEMORY ARRAY
-

