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Thoughts on Mathematica
by Brian Hayes

Oometime in the 1850's William
Shanks, a British schoolkeeperand
amateur mathematician, began cal
culating the digits of the decimal
expansion of 7C. Twenty years later,
when he published his results in the
Proceedings of the Royal Society,
he had gotten as far as 707 digits. To
day, with the aid of the com
puter program Mathematica, per
forming the same calculation re
quires no more effort than typing the
expression:

N[Pi, 707] .

In response to this command, the la
bor that occupied Shanks for two
decades is completed in less than
eight seconds. Furthermore, Mathe
matica produces the correct 707 dig
its. Shanks made an error in the
528th decimal place that spoiled all
the rest of his work.

Mathematica does many other
impressive tricks. Perhaps you have
some urgent need to know the value
of the hundred-millionth prime
number. Evaluating the expression

Prime[100000000]

generates the answer—which hap
pens to be 2,038,074,743—in well
under a second. The program shows
equal facility in identifying non-
primes. According to legend, when
Leonhard Euler heard of Pierre
de Fermat's conjecture that all
numbers of the form 22+1 are prime,
he pondered a moment and then
snapped back: "No, 22+l is equal to
4,294,967,297, which has the prime
factors 6,700,417 and 641."
Equipped with Mathematica, you
could go Euler one better. The calcu
lation invoked by the expression

Factor-Integer [2A2A6 +1]
reveals that 2 +1, which is equal to
18,446,744,073,709,551,617, has
the prime factors 274,177 and
67,280,421,310,721.

And Mathematica's skills are not
limited to numerical computations.
The program can factor a polyno
mial as readily as it can an integer.
When you type in the command

Factor [xA4 - 10 xA2 + 9] ,
what comes back is a list of four bi
nomial factors: (x+3), (x—3),(x+l)
and (x-1). This ability to manipu
late symbolic expressions as well as
numeric ones is central to the design
and operation of the program.

iVlathematica is by no means the
first or the only computer software
to solve problems like these. Twenty
years ago Joel Moses and his col
leagues at M.I.T. undertook to cre
ate a program that would automate
various aspects of algebra and calcu
lus and also perform exact numerical
calculations; the result, called
MACSYMA, is still in use today and
has recently been made available
for microcomputers. A number of
other programs with similar aims
have been developed. For example,
REDUCE was started by Anthony
C. Hearn when he was at Stanford
University in the early 1970's,
SCRATCHPAD is an IBM prod
uct, and Maple is the creation of
a group at the University of Water
loo in Canada. Still another system,
called SMP, was written a decade
ago by Stephen Wolfram, when he
was at Caltech. For more on Wolf
ram, see below.

Out of all these programs, how
ever, it is Mathematica that has been
getting most of the attention lately. It
is the subject of numerous magazine
articles (including this one). A
Mathematica Conference is sched
uled to be held January 11-13. Soon
there will even be a Mathematica
Journal. Why has the program at
tracted so much interest? Part of the
answer is vigorous and effective pro
motion. For example, issuing the
user manual as a hard-cover book
(published by Addison-Wesley)has
helped to elevate Mathematica out
of the category of mere commercial
product. And the shrewdest maneu
ver was agreeing to supply Mathe
matica bundled with the NeXT
computer, an arrangement in which
both the hardware and the software
have the benefit of reflected glam
our.

An added measure of luster ema
nates from the presence of Stephen
Wolfram, the principal architect of
Mathematica, who is full of honors
at an early age. With both SMP and
Mathematica to his credit, Wolfram
qualifies as a major software devel
oper, and yet writingsoftware is only
a sideline for him; in real life he is a
physicist and mathematician. He
earned a Ph.D. in physics at age 20;
he has held appointments at Caltech
and at the Institute for Advanced
Study; he is now professor of physics,
mathematics and computer science
at the University of Illinois as well as
director of the Center for Complex
Systems Research. In 1981 he was
awarded a MacArthur Prize Fellow
ship. He has just turned 30.

But apart from all these factors ex
ternal to the program itself, there are
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also some deeper reasons for
Mathematica's sudden prominence.
The program is simply a marvel—a
vast and impressive piece of work. It
is clearly a useful tool for the profes
sional in mathematics or the quanti
tative sciences, as well as being great
fun for the dilettante (which is my
own status). And, in the competition
with other computer-mathematics
systems, it has one special attraction:
It produces the most engaging pic
tures. Solving a system of differential
equations is quite a feat for a com
puter program, but it takes a degree
of mathematical sophistication to
appreciate it. A picture of the solu
tion, on the other hand, is accessible
to everyone. (Figure 1, for example,
shows part of a solution of the
Schrodinger wave equation; the
surface outlines a component of an
orbital of the hydrogen atom.) This
discussion of Mathematica will focus
on the program's graphics facilities.

Wolfram Research, Inc., has re
leased versions of Mathematica for
more than a dozen computers. Most
of these machines are Unix worksta
tions, such as those made by Apollo,
DEC, Hewlett-Packard, IBM,
MIPS, Sony, Silicon Graphics and
Sun, as well as the NeXT computer.
There are also versions for the DEC
VAX, for Cray supercomputers, for
the Apple Macintosh and for MS-
DOS computers based on the Intel
80386 chip. The experiments de
scribed here were done with a Mac
intosh SE/30.

The Mathematica system has two
main parts, called the kernel and the
front end. The kernel, which is where
all the mathematics is done, is essen
tially the same in all versions of the
software. The front end, which
handles interactions with the user, is
adapted to the peculiarities of each
machine. In principle, any front end
will work with any kernel, so that you
might well use a Macintosh front end
to communicate with a kernel run
ning on a larger computer.

Figure 1. Parametric plot
spherical harmonic
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wherep = 3*J3

= 2LY(x,y)

psi[x_,y_] : =
Sqrt [15/4 Pi ] radial [d istance[x, y] ]harmonic[x, y]

r a d i a l [ r _ ] : =
(1/53)A(3/2) 1 /9 Sqr t [30] rho[ r ]A2 EA(- rho[ r ] /2)

rho[ r_ ] := (2 r ) / (3 53)
distance[x_,y_] := Sqrt[xA2 + yA2]
harmonic[x ,y ] := (x y)/(xA2 + yA2)

Figure 2. Equations for a 3d orbital of the hydrogen atom
The Macintosh front end is organ- for evaluation; the results are re-

ized around the concept of a note
book, which can hold ordinary text as
well as calculations and graphics; thus
one might prepare an entire manu
script without ever leaving the

turned in a new cell. This scheme
hides the command-driven kernel
behind a curtain of point-and-click
conveniences.

The Macintosh front end by itself
Mathematica system. Each entry in a is a large and elaborate program, as
notebook is called a cell. Selecting a complex as, say, a word processor,
cell with the mouse and pressing the The entire system, when compared
Enter key sends the cell to the kernel with most other Macintosh soft-
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Figure 3. Wave-function amplitude encoded as disk diameter

ware, is enormous. It comes on eight
800-kilobyte floppy disks, and even
wi thout the dozen or so sample note
books supplied, it fills up three and a
half megabytes of disk space. The
minimum RAM requirement is four
megabytes. Working with a five-
megabyte machine, I have found it
all too easy to exhaust available mem
ory. (The response to this condition
tends to be disagreeable. Sometimes
only the kernel dies, so that you have
a chance to save any open notebooks,
but on other occasions the only re
course is a cold boot.)

What would William Shanks
think of Mathematica? Nothing is
known of his personality or character
(except what can be guessed from his
preoccupation), but it would take a
man of extraordinary equanimity
not to resent the invention that trivi
alizes a life's work. I have a touch of
ambivalence on this score myself.
Although I have certainly not spent
anything close to 20 years churning
out numbers, I have occasionally in
vested a weekend in performing
some routine but lengthy calcula
tion. For example, I was once called
upon to illustrate the physicist's con
cept of a field, meaning a quantity
defined at every point throughout
some region of space. This happened
sometime between the age of the
slide rule and the age of the com
puter, and so I worked out a few
hundred values of an example field
with a ten-key calculator, and had an
artist plot the results by hand.
Mathematica could now take over
both my work and the artist's, and do
it better as well as faster. I am relieved
that I shall never again have to grind
out those yards of adding-machine
tape, but when I look back on my nu
merical labors, I also have a vague
sense of chagrin, as if I had been
caught in a foolish and self-indulgent
waste of time.

My hand-drawn illustration nec
essarily showed a field with a very

30
P I X E L

J a n u a r y / F e b r u a r y . 1 9 9 0



simple structure; with Mathematica
we are free to choose a more intricate
example. Accordingly, I have ex
plored several ways of showing the
field defined by the wave function of
the electron in a hydrogen atom. The
equations for the selected orbital are
shown in Figure 2, both in standard
mathematical notation and in stan
dard Mathematica notation. The
total wave function \\f is the product
of a radial-distance function R and a
spherical harmonic Y. The equations
shown are those for the state of
hydrogen with quantum numbers
n=3, /=2and w=0, which is one of
the 3^/states. For convenience in
constructing graphs, the wave func
tion is defined in Cartesian
coordinates x,yand z, rather than in
the more usual polar coordinates
r, 0 and (j).

My manually prepared illustra
tion employed the followinggraphic
scheme. I defined a square grid and
evaluated the magnitude of the field
at each grid point. Then the artist
drew a disk at each point, with the
disk diameter proportional to the
field value. What made this process
so tedious was the need to repeat the
entire exercise several times, until we
found a suitable range of x andy
coordinates and a suitable scaling
factor relating field magnitude to
disk diameter. The same iterative
process is needed in Mathematica;
the difference is that each iteration
takes only a few seconds.

A graph encoding field values as
disk diameters is not one of the stan
dard graph types built into Mathe
matica, but it is easy to construct it.
The program can be written as a
single command, made up of four
nested function calls:

Show[Graphics
[Table

[ D i s k [ { x , y } ,
Abs[psi [x,y] ] scale]
{x, xmin, xmax, dx},
{y, ymin, ymax, dy}]]

R E V I E W

Disk is a function of two argu
ments, namely a list whose two ele
ments give the coordinates of the
disk center, and a number that
defines the disk radius. In this case
the expression supplying the latter
argument is the product of a scale
factor and the absolute value of the
wave function. Table constructs an
array of Disk objects, extending
from xmin to xmax and from ymin
to ymax, with disks distributed at in
tervals of dx and dy. Graphics in
terprets the array as an object to be
rendered graphically, and Show dis
plays the image on the screen. Figure
3 was created by substituting various
scale factors and coordinates in this
expression until the result "looked
right." The pattern of disks shows
that the orbital has four lobes sym
metrically distributed around the
origin.

/Although Mathematica has already
made life a good deal easier, the sys
tem offers still better and easier ways
to show the nature of the wave func
tion. Figure 4 is a contour plot,
analogous in form to a topographic
map. Again the fourfold symmetry
of the wave function is apparent.
Writing a program that generates
high-quality contour plots is a fairly
tricky undertaking, because you
need to know (or approximate) the
inverse of the function being plotted.
That is, having selected a value of
f{x>y)> you need to find correspond-
ing values of xandy. But the pro
gramming chore is unnecessary in
Mathematica; the algorithm has al
ready been implemented. The con
tour plot of Figure 4 is generated by
substituting appropriate numerical
values in the expression:

ContourPlot [ps i [x ,y ] ,
{x, xmin, xmax},
{y, ymin, ymax}] .

Something important gets lost in
both the disk plot and the contour
plot: the sign of the wave function. In

Figure 4. Contour plot of the orbital

the disk plot the sign was deliberately
suppressed (by taking the absolute
value of y) in order to avoid trying to
draw a disk with a negative diameter.
In the contour plot the sign informa
tion is present but invisible: two of
the lobes in the graph represent
hummocks and two are depressions,
but because the graph is so symmet
rical there are no clues to depth or
orientation.

Another kind of plot presents the
sign information to good effect. The
idea is to encode the amplitude of the
wave function as a gray level. In Fig
ure 5 a field value of zero is repre
sented by a medium gray; positive
amplitudes are lighter, and negative
amplitudes are darker. Now it be
comes apparent that the northeast
and southwest lobes of the wave
function are positive, whereas the
northwest and southeast lobes are
negative.

Plots that use the gray-level en
coding are also created by a built-in
Mathematica command:

DensityPlot[psi[x,y],
{x, xmin, xmax},
{y, ymin, ymax}] .

With suitable hardware, the graph
than can be drawn in color rather
shades of gray.

The most effective style of presen-
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Figure 5. A gray-scale rendering shows the sign of the wave fiinction

Figure 6. Amplitude represented by the undulations of a surface

tation, however, requires a leap into
the third dimension. If the contour
plot of Figure 4 can be regarded as a
topographic map of a surface in
three-dimensional space, then why
not give a perspective drawing of that
surface? Figure 6 is just such a draw
ing. It shows the amplitude of the
wave function by means of surface
elevation; the peaks are the points of
greatest positive amplitude, and the
pits are where the function is most
negative. As with the contour plot
and the density plot, this image was
created merely by invoking a built-in
Mathematica function:

Plot3D[psi[x,y],
{x, xmin, xmax},
{y, ymin, ymax}].

The graph in Figure 1, discussed
above, employs yet another standard
Mathematica drawing technique. It
is a parametric plot: Instead of show
ing height along the z axis as a func
tion of x andj/ coordinates, it records
a locus of .̂ jy andz points as a func
tion of two independent parameters,
0 and ((), which can be interpreted as
angles swept out by planes rotating
around the origin. The graph shows
only the spherical-harmonic com
ponent of a wave function, without
the contribution of the radial-dis
tance function. It turns out that
spherical harmonics are among the
large collection of special functions
built into Mathematica, and so creat
ing the image was a simple matter of
applying ParametricPlot3D to
the funct ion SphericalHar-
monicY, and supplying a few addi
tional arguments. Calculating and
drawing the surfaces takes about 10
minutes.

IVlathematica produces its graphic
output not as a bitmap or as a vector
drawing but as code in the Postscript
page-description language. The
Postscript code must then be inter
preted for display. Each Mathe
matica front end has a Postscript in
terpreter for rendering graphics on
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Figure 7. Three views of a torn sheet
the screen. The same code can also be
processed by any other device or pro
gram that understands Postscript.
For example, Mathematica images
can be imported into Postscript
drawing programs such as Adobe
Illustrator.

The use of Postscript has two im
portant advantages over most other
rendering schemes. First, Postscript
images are device-independent. The
illustrations that accompany this ar
ticle began as 72-dot-per-inch im

ages on the Macintosh screen. Initial
proofs were printed out at 300 dots
per inch on a laser printer, and final
copies were made at 1,693 dots per
inch on a phototypesetter. The same
Postscript code was used without al
teration in all three cases.

Second, Postscript images are also
independent of scale and viewpoint.
In Mathematica's Macintosh front
end you can change the size or the
proportions of an image merely by
pulling on "handles" attached to the
image frame. For three-dimensional
graphics a viewpoint is selected by us
ing the mouse to rotate a small wire
frame cube. Figure 7 shows three
views of a three-dimensional graph,
which together give a better sense of
the shape of the surface than any one
view could.

Figure 7 demonstrates another
pleasant property of Mathematica's
graphics routines. The three images
are graphs of the function z={x+y)l
(x—y), which has a line of singulari
ties along the diagonal x=y. In pre
paring the graphs, I took no precau
tions to avoid points where the func
tion is undefined. Mathematica is
sued a series of warning messages
when it was asked to plot points with
values such as 1 /0, but it did not give
up on drawing the graphs. More
over, the program chose an appropri
ate scale for the zaxis; it did not dis
tort the graph by attempting to in
clude the very large values of zfound
near the x=y diagonal.

Still another example of "good
judgment" is on exhibit in Figure 8,
which is a printout of a small Mathe
matica notebook. Here the calcula
tions begin with the definition of a
cubic function; then, using the D [ ]
operator, Mathematica calculates
the first and second derivatives of the
function. When the original func
tion and its derivatives are plotted,
Mathematica chooses a suitable ver
tical scale for each separate graph;
when the three plots are superim
posed, the curves are automatically
rescaled.

fnO := xA3 - xA2 + x - 1
fnl = D[fn0,x]
1 - 2 x + 3 x2
fn2 = D[fnl,x]
-2 + 6 x

Plot [ fn0,{x, -5,5} ]
40

20

- 4

Plot[fnl,{x,-5,5}]

Plot[{fn0,fnl,fn2},{x,-5,5}]

Figure 8. Graphs of derivatives
There is probably no need to

point out that fooling around with
derivatives in this way would be an
excellent way to learn the rudiments
of calculus. The graphs make plain
the connection between the slope of
a curve and the value of its derivative.
Moreover, determining quantities
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such as intercepts, minima and max
ima is almost effortless. Issuing the
command

Solve [fnO = = 0]

quickly confirms what the graphs
suggest: that the cubic equation has
one real root, at x= 1. (Mathematica
also finds the two imaginary roots, at
±z.) Turning to the second deriva
tive, the command

Solve [fn3 = = 0]

yields the result x= 1/3, which must
therefore be the position of the in
flection point in the cubic curve. A
numerical calculation of the mini
mum of the first derivative provides
confirmation:

FindMinimum[fnl, {x, 0}]
{0.666667, {x->0.333333}} .

In the two-element list returned by
FindMinimum, 0.666667 is the
minimum value of the fnl curve,
and 0.333333 is the position where
that minimum value is attained.

Vve tend to think of the computer as
being naturally suited to doing
mathematics. It is, after all, a ma
chine whose most basic operations
include + and -, x and ■*-. The fact is,
however, a computer right out of the
box is not much use in mathematics.
An elaborate layer of software is
needed to introduce all the necessary
concepts and apparatus—functions,
equations, points and lines, vectors
and matrices, series and limits, de
rivatives and integrals, not to men
tion graphs. Just how elaborate the
layer of software needs to be is sug
gested by the size and complexity of
Mathematica.

To put the same idea another
way: It is no easier to erect the struc
ture of modern mathematics when
starting with the instruction set of
a microprocessor than it is when
starting with the axioms of set theory.
And hence Mathematica is compa
rable in size and complexity to
Principia Mathematica.

CAN YOUR GRAPHICS SOFTWARE
DO ALL THIS?
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