Thoughts on Mathematica

by Brian Hayes

Sometime in the 1850’ William
Shanks, a British schoolkeeper and
amateur mathematician, began cal-
culating the digits of the decimal
expansion of . Twenty years later,
when he published his results in the
Proceedings of the Royal Society,
hehad gottenasfaras707 digits. To-
day, with the aid of the com-
puter program Mathematica, per-
forming the same calculation re-
quires no more effort than typing the
expression:

N[Pi, 707].

In response to thiscommand, the la-
bor that occupied Shanks for two
decades is completed in less than
eightseconds. Furthermore, Mathe-
matica produces the correct 707 dig-
its. Shanks made an error in the
528th decimal place that spoiled all
the rest of his work.

Mathematica does many other
impressive tricks. Perhaps you have
some urgent need to know the value
of the hundred-millionth prime
number. Evaluating the expression

Prime[100000000]

generates the answer—which hap-
pens to be 2,038,074,743—in well
underasecond. The program shows
equal facility in identifying non-
primes. According to legend, when
Leonhard Euler heard of Pierre
de Fermat’s conjecture that all
numbers of the form 2%+1 are prime,
he pondered a moment and then
snapped back: “No, 2%+1 is equal to
4,294,967,297, which has the prime
factors 6,700,417 and 641.7
Equipped with Mathematica, you
could go Euler one better. The calcu-
lation invoked by the expression

28

FactorInteger[27276 +1]

reveals that 2°+1, which is equal to
18,446,744,073,709,551,617, has
the prime factors 274,177 and
67,280,421,310,721.

And Mathematica’s skillsare not
limited to numerical computations.
The program can factor a polyno-
mial as readily as it can an integer.
When you type in the command

Factor[x”4 -10x"*2+ 9],

what comes back is a list of four bi-
nomial factors: (x+ 3), (x=3), (x+1)
and (x—1). This ability to manipu-
late symbolic expressions as well as
numericonesiscentral to the design
and operation of the program.

Mathemarica is by no means the
first or the only computer software
tosolve problems like these. Twenty
years ago Joel Moses and his col-
leagues at M.I.T. undertook to cre-
ate a program that would automate
various aspects of algebraand calcu-
lusand also perform exact numerical
calculations; the result, called
MACSYMA, isstill in use today and
has recently been made available
for microcomputers. A number of
other programs with similar aims
have been developed. For example,
REDUCE was started by Anthony
C. Hearn when he was at Stanford
University in the early 1970’s,
SCRATCHPAD is an IBM prod-
uct, and Maple is the creation of
agroup at the University of Water-
loo in Canada. Still another system,
called SMP, was written a decade
ago by Stephen Wolfram, when he
was at Caltech. For more on Wolf-
ram, see below.
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Out of all these programs, how-
ever, itis Mathematica thathasbeen
gettingmostof the attention lately. It
is the subject of numerous magazine
articles (including this one). A
Mathematica Conference is sched-
uled to be held January 11-13. Soon
there will even be a Mathematica
Journal. Why has the program at-
tracted so much interest? Part of the
answer is vigorous and effective pro-
motion. For example, issuing the
user manual as a hard-cover book
(published by Addison-Wesley) has
helped to elevate Mathematica out
of the category of mere commercial
product. And the shrewdest maneu-
Ver was agreeing to supply Mathe'
matica bundled with the NeXT
computer, anarrangement in which
both the hardware and the software
have the benefit of reflected glam-
our.

An added measure of luster ema-
nates from the presence of Stephen
Wolfram, the principal architect of
Mathematica, who is full of honors
at an early age. With both SMP and
Mathematica to his credit, Wolfram
qualifies as a major software devel-
oper, and yetwriting softwareisonly
asideline for him; in real life he isa
physicist and mathematician. He
earned a Ph.D. in physics at age 20;
he hasheld appointmentsat Caltech
and at the Institute for Advanced
Study; he is now professor of physics,
mathematics and computer science
atthe University of Illinois as well as
director of the Center for Complex
Systems Research. In 1981 he was
awarded a MacArthur Prize Fellow-
ship. He has just turned 30.

Butapart fromall these factorsex-
ternal to the program itself, thereare



also some deeper reasons for
Mathematica’ssudden prominence.
The program is simply a marvel—a
vastand impressive piece of work. It
is clearly a useful tool for the profes-
sional in mathematics or the quanti-
tative sciences, as well as being great
fun for the dilettante (which is my
ownstatus). And, in the competition
with other computer-mathematics
systems, ithas one special attraction:
It produces the most engaging pic-
tures. Solvingasystem of differential
equations is quite a feat for a com-
puter program, but it takes a degree
of mathematical sophistication to
appreciate it. A picture of the solu-
tion, on the other hand, is accessible
to everyone. (Figure 1, for example,
shows part of a solution of the
Schrodinger wave equation; the
surface outlines a component of an
orbital of the hydrogen atom.) This
discussion of Mathematica will focus
on the program’s graphics facilities.

Wo[fram Research, Inc., has re-
leased versions of Mathematica for
more thana dozen computers. Most
of these machines are Unix worksta-
tions, such as those made by Apollo,
DEC, Hewlett-Packard, IBM,
MIPS, Sony, Silicon Graphics and
Sun, as well as the NeXT computer.
There are also versions for the DEC
VAX, for Cray supercomputers, for
the Apple Macintosh and for MS-
DOS computers based on the Intel
80386 chip. The experiments de-
scribed here were done with a Mac-
intosh SE/30.

The Mathematica system has two
main parts, called the kernel and the
frontend. The kernel, which iswhere
all the mathemarics is done, is essen-
tially the same in all versions of the
software. The front end, which
handles interactions with the user, is
adapted to the peculiarities of each
machine. In principle, any frontend
will work with any kernel, so thatyou
mightwell usea Macintosh frontend
to communicate with a kernel run-
ningonalarger computer.
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Figure 1. Parametric plot of a
spherical harmonic
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psi[x _,y 1 :=

radial[r ] :=
rho[r_] := (2 r)/(3 53)
distance[x ,y ] :=
harmonic[x ,y ] :=

Sqrt[15/4 Pi] radial[distance[x,y]]harmonic[x,y]
(1/53)~(3/2) 1/9 sqrt[30] rho[r]~2 E~(-rho[r]/2)

:= Sqrt[x*2 + y*2]
(x y)/(x*2 + y*2)

Figure 2. Equations for a 3d orbital of the hydrogen atom

The Macintosh frontend isorgan-
ized around the concept of a note-
book, which can hold ordinary textas
wellas calculationsand graphics; thus
one might prepare an entire manu-
script without ever leaving the
Mathematicasystem. Eachentryina
notebook is called a cell. Selecting a
cell with the mouse and pressing the
Enter key sends the cell to the kernel

for evaluation; the results are re-
turned in a new cell. This scheme
hides the command-driven kernel
behind a curtain of point-and-click
conveniences.

TheMacintosh frontend byitself
is a large and elaborate program, as
complex as, say, a word processor.
The entire system, when compared
with most other Macintosh soft-

Figure 3. Wave-function amplitude encoded as disk diameter
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ware, isenormous. [tcomeson eight
800-kilobyte floppy disks, and even
withoutthe dozen or so sample note-
bookssupplied, it fillsup threcanda
half megabytes of disk space. The
minimum RAM requirementis four
megabytes. Working with a five-
megabyte machine, [ have found it
all too easy to exhaustavailable mem-
ory. (The response to this condition
tends to be disagreeable. Sometimes
only the kernel dies, so that you have
achance to save any open notebooks,
but on other occasions the only re-
course isa cold boot.)

What would William Shanks
think of Mathematica? Nothing is
known of his personality or character
(exceptwhat can be guessed from his
preoccupation), but it would take a
man of extraordinary equanimity
not to resent the invention that trivi-
alizes a life’s work. I have a touch of
ambivalence on this score myself.
Although I have certainly not spent
anything close to 20 years churning
out numbers, [ have occasionally in-
vested a weekend in performing
some routine but lengthy calcula-
tion. For example, I was once called
upon to illustrate the physicist’s con-
ceptof a field, meaning a quantity
defined at every point throughout
some region of space. Thishappened
sometime between the age of the
slide rule and the age of the com-
puter, and so I worked out a few
hundred values of an example field
witha ten-key calculator, and had an
artist plot the results by hand.
Mathematica could now take over
both myworkand theartist’s,and do
itbetter aswell as faster. I am relieved
thac I shall never again have to grind
out those yards of adding-machine
tape, butwhen Ilook back on my nu-
merical labors, I also have a vague
sense of chagrin, as if [ had been
caughtinafoolish and self-indulgent
waste of time.

My hand-drawn illustration nec-
essarily showed a field with a very



simple structure; with Mathematica
we are free to choose a more intricate
example. Accordingly, I have ex-
plored several ways of showing the
field defined by the wave function of
theelectroninahydrogenatom. The
equations for the selected orbital are
shown in Figure 2, both in standard
mathematical notation and in stan-
dard Mathematica notation. The
total wave function \ is the product
of aradial-distance function R and a
spherical harmonic ¥. The equations
shown are those for the state of
hydrogen with quantum numbers
n=3,/=2and m=0, which is one of
the 34 states. For convenience in
constructing graphs, the wave func-
tion is defined in Cartesian
coordinates x, yand z, rather than in
the more usual polar coordinates
r,0and ¢.

My manually prepared illustra-
tion employed the following graphic
scheme. I defined a square grid and
evaluated the magnitude of the field
at each grid point. Then the artist
drew a disk at each point, with the
disk diameter proportional to the
field value. What made this process
so tedious was the need to repeat the
entire exercise several times, until we
found a suitable range of xand y
coordinates and a suitable scaling
factor relating field magnitude to
disk diameter. The same iterative
process is needed in Mathematica;
the difference is that each iteration
takes only a few seconds.

A graph encoding field values as
disk diameters is not one of the stan-
dard graph types built into Mathe-
matica, but it is easy to constructit.
The program can be written as a
single command, made up of four
nested function calls:

Show [Graphics
[Table
[Disk[{x,¥y},
Abs [psi[x,y]] scale]
{x, xmin, xmax, dx},
{y, ymin, ymax, dy}]]

REVIE W

Disk is a function of two argu-
ments, namely a list whose two ele-
ments give the coordinates of the
disk center, and a number that
defines the disk radius. In this case
the expression supplying the latter
argument is the product of a scale
factor and the absolute value of the
wave function. Table constructsan
array of Disk objects, extending
from xmin to xmax and from ymin
to ymax, with disks distributed atin-
tervalsofdxand dy. Graphics in-
terprets the array as an object to be
rendered graphically, and Show dis-
plays theimage on thescreen. Figure
3 was created by substituting various
scale factors and coordinates in this
expression until the result “looked
right.” The pattern of disks shows
that the orbirtal has four lobes sym-
metrically distributed around the
origin.

chough Mathematica hasalready
made life a good deal easier, the sys-
tem offers still better and easier ways
to show the nature of the wave func-
tion. Figure 4 is a contour plot,
analogous in form to a topographic
map. Again the fourfold symmetry
of the wave function is apparent.
Writing a program that generates
high-quality contour plots s a fairly
tricky undertaking, because you
need to know (or approximate) the
inverse of the function being plotted.
That is, having selected a value of
f(xy),youneed to find correspond-
ing values of xand y. But the pro-
gramming chore is unnecessary in
Mathematica; the algorithm has al-
ready been implemented. The con-
tour plot of Figure 4 is generated by
substituting appropriate numerical
values in the expression:

ContourPlot [psi[x,y],

{x, xmin, xmax},

{y, ymin, ymax}] .

Something important gets lost in

both the disk plot and the contour
plot: thesign of the wave function. In
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Figure 4. Contour plot of the orbital

thedisk plot the sign was deliberately
suppressed (by taking the absolute
valueof y) in order toavoid trying to
drawadisk witha negative diameter.
In the contour plot thesign informa-
tion is present but invisible: two of
the lobes in the graph represent
hummocksand two are depressions,
but because the graph is so symmet-
rical there are no clues to depth or
orientation.

Another kind of plot presents the
sign information to good effect. The
ideais to encode theamplitudeof the
wave function as a gray level. In Fig-
ure 5 a field value of zero is repre-
sented by a medium gray; positive
amplitudes are lighter, and negative
amplitudes are darker. Now it be-
comes apparent that the northeast
and southwest lobes of the wave
function are positive, whereas the
northwest and southeast lobes are
negative.

Plots that use the gray-level en-
codingare also created by a built-in
Mathematica command:

DensityPlot [psi[x,y],
{x, xmin, xmax},
{y, ymin, ymax}].

With suitable hardware, the graph
than can be drawn in color rather
shades of gray.

The mosteffective style of presen-
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Figure 5. A gray-scale rendering shows the sign of the wave function

Figure 6. Amplitude represented by the undulations of a surface
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tation, however, requires a leap into
the third dimension. If the contour
plot of Figure 4 can be regarded as a
topographic map of a surface in
three-dimensional space, then why
notgivea perspective drawing of that
surface? Figure 6 is just such a draw-
ing. It shows the amplitude of the
wave function by means of surface
elevation; the peaks are the points of
greatest positive amplitude, and the
pits are where the function is most
negative. As with the contour plot
and the density plot, this image was
created merely by invokingabuilt-in
Mathematica function:

Plot3D[psi[x,y],
{x, xmin, xmax},
{y, ymin, ymax}].

The graph in Figure 1, discussed
above, employsyetanotherstandard
Mathematica drawing technique. It
isa parametric plot: Instead of show-
ing height along the z axis as a func-
tionof x and y coordinates, it records
alocusofx, y and z pointsasa func-
tion of two independent parameters,
0 and ¢, which can be interpreted as
angles swept out by planes rotating
around the origin. The graph shows
only the spherical-harmonic com-
ponent of a wave function, without
the contribution of the radial-dis-
tance function. It turns out that
spherical harmonics are among the
large collection of special functions
builtinto Mathemartica, and so creat-
ing the image was a simple matter of
applying ParametricPlot3D to
the function SphericalHar-
monicY, and supplying a few addi-
tional arguments. Calculating and
drawing the surfaces takes about 10
minutes.

Mathematica producesits graphic
output not as a bitmap oras a vector
drawing butas code in the Postscript
page-description language. The
Postscript code must then be inter-
preted for display. Each Mathe-
matica front end has a Postscript in-
terpreter for rendering graphics on



Figure 7. Three views of a torn sheet

thescreen. The same code canalsobe
processed by any other device or pro-
gram that understands Postscript.
For example, Mathematica images
can be imported into Postscript
drawing programs such as Adobe
Illustrator.

The use of Postscript has two im-
portant advantages over most other
rendering schemes. First, Postscript
imagesare device-independent. The
illustrations that accompany this ar-
ticle began as 72-dot-per-inch im-
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ages on the Macintosh screen. Initial
proofs were printed out at 300 dots
per inch on a laser printer, and final
copies were made at 1,693 dots per
inch ona phototypesetter. The same
Postscript code was used without al-
teration in all three cases.

Second, Postscriptimagesarealso
independentofscaleand viewpoint.
In Mathematica’s Macintosh front
end you can change the size or the
proportions of an image merely by
pulling on “handles” attached to the
image frame. For three-dimensional
graphicsaviewpointisselected by us-
ing the mouse to rotate a small wire-
frame cube. Figure 7 shows three
views of a three-dimensional graph,
which together give a better sense of
the shape of the surface than any one
view could.

Figure 7 demonstrates another
pleasant property of Mathematica’s
graphics routines. The three images
are graphs of the function z= (x+ y)/
(x—y), which hasaline of singulari-
ties along the diagonal x = y. In pre-
paring the graphs, I took no precau-
tions toavoid points where the func-
tion is undefined. Mathematica is-
sued a series of warning messages
when itwasasked to plot points with
valuessuch as 1/0, butitdid not give
up on drawing the graphs. More-
over, the program chose anappropri-
ate scale for the zaxis; it did not dis-
tort the graph by attempting to in-
clude the very large values of zfound
near the x= y diagonal.

Still another example of “good
judgment” is on exhibit in Figure 8,
which isa printout ofasmall Mathe-
matica notebook. Here the calcula-
tions begin with the definition of a
cubic function; then, using the D[]
operator, Mathematica calculates
the firstand second derivatives of the
function. When the original func-
tion and its derivatives are plotted,
Mathematica chooses a suitable ver-
tical scale for each separate graph;
when the three plots are superim-
posed, the curves are automatically
rescaled.
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fn0 == x*"3 - x*"2 + x -1
fnl = D[£n0, x]

1 -2x+ 3 x?

fn2 = D[£fnl, x]

=2 + 6. X%

Plot[£n0, {x,-5,5}]
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Figure 8. Graphs of derivatives

There is probably no need to
point out that fooling around with
derivatives in this way would be an
excellent way to learn the rudiments
of calculus. The graphs make plain
the connection between the slope of
acurveand the value ofits derivative.
Moreover, determining quantities
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such asintercepts, minimaand max-
ima is almost effortless. Issuing the
command

Solve[fn0==0]

quickly confirms what the graphs
suggest: that the cubic equation has
one real root, at x=1. (Mathematica
also finds the two imaginary roots, at
*:.) Turning to the second deriva-
tive, the command

Solve[fn3==0]

yields the result x=1/3, which must
therefore be the position of the in-
flection point in the cubic curve. A
numerical calculation of the mini-
mum of the first derivative provides
confirmation:

FindMinimm[fnl, {x, 0}]
{0.666667, {x —>0.333333}}.

In the two-element list recurned by
FindMinimum, 0.666667 is the
minimum value of the £n1 curve,
and 0.333333 is the position where

that minimum value is attained.

mtend tothinkof the computeras
being naturally suited to doing
mathematics. It is, after all, a ma-
chine whose most basic operations
include + and —, x and +. The fact is,
however, acomputerrightoutofthe
boxis not much use in mathematics.
An elaborate layer of software is
needed tointroduceall the necessary
conceptsand apparatus—functions,
equations, points and lines, vectors
and matrices, series and limits, de-
rivatives and integrals, not to men-
tion graphs. Just how elaborate the
layer of software needs to be is sug-
gested by the size and complexity of
Mathematica.

To put the same idea another
way: Itis no easier to erect the struc-
ture of modern mathemarics when
starting with the instruction set of
a microprocessor than it is when
startingwith theaxioms of set theory.
And hence Mathematica is compa-
rable in size and complexity to
Principia Mathematica.
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