TH EORY & PRACTICE

the British tele-

o I n an old episode of
=

e R vision series
Doczor Who , the Doctor and his compan-
ion Romana are off in a corner of the gal-
axy trying to keep peace between two
races of robots.

The Doctor observes that war among
perfectly rational and deterministic beings
can never end—or even properly get
started—because each side will always
avoid fighting unless it is sure of winning.
When a battle is imminent, each army will
assess the other’s strength, and the weaker
will withdraw before a shot is fired.

To illustrate his point, the Doctor sug-
gests a few rounds of scissors-paper-
stone. In this children’s game, as most
readers will remember, two players stand
face to face, each concealing one hand
behind his or her back. At a signal the
players bring their hands forward,
revealing either two fingers (scissors), an
open hand (paper), or a closed fist
(stone). The winner is determined by the
following circular relations: scissors cut
paper, paper wraps stone, stone dulls
scissors.

When the Doctor and Romana play,
they each win a few throws, and the lead is
traded back and forth. When two robots
try the game, the result is a scoreless tie:
on each throw both robots make the same
choice, playing scissors against scissors,
paper against paper, and stone against
stone. Finally the Doctor takes on one of
the robots and wins consistently, proving
yet again that logic must bow to intuition.

The notion that waging war requires a
measure of irrationality seems plausible
enough, but the robots’ sorry perfor-
mance in scissors-paper-stone leaves me
unconvinced. I suspect even a very dull
automaton could avoid the stalemate of
perpetual ties. And with only rudimentary
analytic skills a robot should be able to
hold its own against a human player.

In any case, there 1s no need to take the
Doctor’s word for it, or mine. One can
simply build a program to play the game,
and put it to the test directly.

The project provides an opportunity to

Scissors, paper, stone:

Canv:v_lJ‘a'r“

Dec.

e

sﬁn?\.ﬂf«?&

A tournament of Schemes
e a7 55 S R gmms s T O Rl

By Brian Hayes

explore PC Scheme, Texas Instruments’
new implementation of the Scheme pro-
gramming language. Scheme is a dialect
of LISP, and in my view a particularly
elegant one. A program for playing
scissors-paper-stone illustrates some of
Scheme’s most interesting features.

Playing at random
Scissors-paper-stone is an unusual game:
it has a perfect defensive strategy but no
reliable offense. In other words, you can
avoid losing but you cannot be sure of
winning. The unbeatable defense consists
in choosing your moves completely at ran-
dom, so that your oppenent cannot predict
what you will do next. On any given throw
you are equally likely to play scissors,
paper, or stone; in the long run, you can
expect {0 win a third of all the throws, lose
athird, and tie a third. No other strategy
can be guaranteed to do better against all
possible opponents.

The Doctor might well attribute his
easy victory over the robots to their
inability to play randomly. By definition,
a deterministic machine cannot do any-
thing at random. All the actions of a robot
or a computer are specified by an algo-
rithm, and in principle they can be pre-
dicted in full detail. The crucial phrase,
however, is *‘in principle’’; unless you
happen to know the machine’s algorithm
and its initial state, outguessing a com-
puter is exceedingly difficult. Perhaps a
Time Lord from the planet Galifrei can do
it, but few earthlings can.

Although a computer cannot act ran-
domly, it can readily produce a pseudo-
random sequence of moves—one that has
all the statistical properties of a truly ran-
dom sequence and hence appears to be
patternless. As a matter of fact, comput-
ers are 2 good deal better than people at
simulating randomness. Without
resorting to external aids such as dice to
roll or coins to flip, a human player has a
hard time excluding all traces of pattern
from a series of moves. People tend to
make the sequence ‘‘too random,”” avoid-
ing all repetition of the same move. A
computer has no such unconscious biases
(unless the programmer implants them).

A computer generating pseudorandom
moves for scissors-paper-stone should be
able to achieve a draw with a human

player, but can 2 machine go beyond this -
level of play and attempt to win a match?
This is a question best answered by
experiment, but before considering it in
detail some further analysis of the game
will be helpful.

An interesting property of the random-
play strategy is that the opponent’s
method of choosing moves has no bearing
at all on the outcome of a match. Even a
strategy that seems quite foolish, such as
always making the same move, works as
well as any other; on the average each
player will win a third of the throws and
the rest will be ties.

Random play, however, is the only
strategy that has this property. Once a
player abandons random choice, the situ-
ation grows more complicated.

Suppose you are making strictly ran-
dom moves when you notice that your
opponent is playing paper slightly more
often than either scissors or stone. You
could ignore this bias and still be con-
fident of a tie, or you could attempt to
exploit your knowledge. By giving scis-
sors a slightly higher weight in your own
choice of moves, you would skew the
probabilities in your favor and might hope
to win.

But making a bid for victory is a risky
business. If your opponent notices the
change in the statistics of your moves, he
or she can begin to play stone more often
and thereby turn your strategy against
you.

‘Whereas random choice makes all other
strategies irrelevant, any deviation from
randomness turns the game into a contest
of pattern recognition. A player aiming to
win must examine the history of the game,
hoping to find some pattern that offers a
clue to what the opponent will do next. If
you can predict the next move with cer-
tainty, you can win every throw. In gen-
eral, certainty is out of reach, but
detecting even a slight bias in the proba-
bilities can be helpful. For example, if all
you know is that paper is a little less likely
to be played next than either scissors or
stone, you can confidently choose stone as
your own move; the odds are it will win or
tie.

{78

19



20

The more interesting programs for
playing scissors-paper-stone make judg-
ments on the basis of a pattern analysis.
They accumulate information about their
opponent’s habits and tendencies, then put
this knowledge to work in choosing their
own moves. It turns out that some sur-
prisingly simple programs perform quite
well.

The scheme of things

A program to play scissors-paper-stone is
not the kind of software that begins with a
full specification and develops through
top-down design. The point of writing the
program is not simply to get answers but
also to find out what questions are worth
asking. Such a program must evelve
through experiment and exploration.

Scheme is a language well suited to the
exploratory style of programming. This is
not to say that you can begin without fore-
thought, charge ahead blindly, and never
have to revise a line. With care, however,
a Scheme program can be built out of
small and versatile elements that fit
together in many ways.

Scheme was devised in the 1970s by
Guy Lewis Steele Jr. and Gerald Jay
Sussman of the Massachusetts Institute of
Technology, Cambridge, Mass. At first
glance a Scheme program looks much like
code in any other LISP dialect: both data
structures and program statements are
represented as lists, which are often
nested to form lists of lists. As in other
varieties of LISP, there are lots of
parentheses.

WIZARO C

“The Best Compiler today”

“Wizard's is the best compiler today. What it does have is
library source for a very large library, good documentation.

excellent support, and lint.

“Qur choice if we could make our own? We would take

Wizard . .

Dr. Dobb's Journal
August. 1986

“ . .the compiler’s performance makes it very useful serious
software development.”

w

PC Tech Journal
January. 1986

. .written by someone who has been in the business a

while. This especially shows in the documentation.”

Computer Language
February, 1985

E———

you've Tricd The Rest
Nnow Try The Best

(617) 641-2379

only $450
= o 3]

g

V\/leRD

SYSTEMS SOFTWARE, INC.

11 Willow Court, Arlington, MA 02174

CIRCLE 96 ON READER SERVICE CARD

Under the skin, however, Scheme dif-
fers fundamentally from other LISPs.
Two unusual features of the language
deserve mention here: the use of block
structure, with lexical scope, and the idea
of first-class procedures.

Block structure and lexical scope
should hold no mysteries for anyone
familiar with Pascal, Ada, or one of the
other offspring of ALGOL-60. In these
languages the names of variables and pro-
cedures can be made local to a block of
code and thus invisible outside that block.
The rules that determine the scope of a
name are said to be lexical because the
name’s meaning can be deduced from
where it appears in the program text. In
most dialects of LISP (Scheme and Com-
mon LISP are the major exceptions)
names have dynamic scope, and their
meaning can be determined only at
run time.

In Pascal the scope of a local variable is
an entire procedure. Scheme allows
names to be confined to an even smaller
compass. A common way of introducing
local variables is the lef statement, as in:

{let ((var expr])) stmis .. .)

Here var is assigned the initial value
returned by expr and is accessible Lo any
statements within the parentheses that
delimit ler. Outside of those parentheses,
however, var does not exist.

The notion of first-class procedures is
perhaps the sweetest innovation in
Scheme, but to see its significance one
must first recognize that the procedures of
other languages are in fact second-class
citizens,

In standard Pascal, for example, a pro-
cedure can be passed as an argument to
another procedure, but it cannot be
returned as the value of a function or
stored as the value of a variable; there can
be no arrays of procedures. Even in LISP,
procedures require special treatment
under some circumstances.,

Scheme abolishes all restrictions on the
handling of procedures. Indeed, every
object in Scheme has first-class status:
anything that can be done with a simple
value such as a number can also be done
with a procedure, the environment in
which a procedure executes, or even the
default *““future” of a computation.

First-class procedures are not merely
theoretical niceties or tricks useful only in
cute, self-modifying programs. They add
much to the expressive power of Scheme,
and they promote a distinctive style of
program development. Procedures whose
returned values are other procedures are
at the heart of the scissors-paper-stone
program.


http:fundamental.ly

The referee

In an exploratory program, versatility is
ata premium. What is needed in the
scissors-paper-stone program is a con-
venient means for creating a variety of
robot players and staging games
between a robot and a human player or
between two robots.

One obvious decision is to make each
player an independent procedure. When
one of the player procedures is called, it is
expected to return a legal move: either
scissors, paper, or stone. The algorithm
the player uses to choose the move is an
internal matter and is hidden from the rest
of the system. The human player can be
represented by a procedure much like any
other, except that when it is polled for a
move it gets it by reading the keyboard.

Along with the players, a master pro-
cedure is also needed to act as a kind of
referee. It must call the two player pro-
cedures, collect the responses, determine
the winner of each throw, keep score, and
report the results. Because the referee has
a central role in the program, it is a logical
place to start in laying out the structure of

Figure 1.

22 COMPUTER LANGUAGE B DECEMBER 1986

the code.

In a quick first draft, the referee might
be a procedure that accepts two argu-
ments, namely the two player procedures
competing in a game. Each time the ref-
eree is called, it calls the two players in
turn, compares the moves to decide the
winner, and updates the total score. The
value returned by the referee is a list of
five items: the two moves, the winner of
the throw, and the two players’ current
scores.

This plan is on the right track, but it has
a few subtle problems. Consider the
matter of keeping score. If the variables
that hold the two scores were local to the
referee procedure, they would be reset to
zero at the start of each throw. The scores
could be made global variables, but that
also has certain drawbacks. In the first
place, it invites cheating: a player can eas-
ily win every game if it has free access to
the scoreboard. More seriously, with
global score variables ending one game
and starting a new one becomes awkward.
We then wanr the scores reset to zero, and
some separate signal or procedure would
be needed to do it.

Scheme offers a clever solution. Instead
of building the referee procedure directly,
we can write a procedure that creates a
new, independent referee for each game.

1 have named the referee-building pro-
cedure make-game. Each time it is
called, it creates and initializes a few local
variables —including variables for the two
scores—and then returns as its value a
procedure of no arguments. The latter
procedure is the actual referee. Because it
is within the lexical scope of make-game,
the referee can access the score variables,
but those variables retain their values
between calls to the referee.

Typically, make-game would be invoked
by a statement like the following:

(define game
(make-game player] player2)).

Here a new variable game is declared

and assigned the value that results from
evaluating (make-game player! player2).
As already noted, the value of this expres-
sion is a procedure of no arguments whose
lexical environment includes the two
score variables. Evaluating the statement
{game) now invokes the synthesized pro-
cedure, which calls player! and player2,
decides the winner, updates the scores,
and posts the results. Note that make-
game is called once for each game,
whereas game is called once for each
throw.

The players

Problems similar to those encountered in
make-game arise in building the player
procedures.

Suppose a player named Ivan chooses
moves by consulting a history of all the
moves its opponent has made so farina
game. The history cannot be stored in a
local variable, because the record would
be started fresh on each throw. Global
storage is also unacceptable. Again it
would make the player vulnerable to a
cheating opponent (which could alter
Ivan’s memory!) and would require spe-
cial measures for initialization. In addi-
tion, the procedure might interfere with
its own operation. Consider what would
happen if Ivan were playing two games
simultaneously, or if Ivan were pitted
against Ivan in a single match.

The answer is again 1o write a pro-
cedure that creates a procedure. The top-
level procedure, which is the one named
Ivan, is called once at the beginning of a
game. It sets up the necessary variables
and then returns another procedure,
which does the actual playing. When the
latter procedure is called (once for each
throw), it selects and returns a move.

The relations between the referee and
player procedures are diagramed in Fig-
ures | and 2. Organizing the program in
this way makes each game and each player
a completely isolated entity. The modules
can communicate only through arguments
passed to a procedure and values returned



by it. When Ivan takes part in a game, it is
not the globally defined Ivan that plays
but rather an instance of the Ivan algo-
rithm, which lives in an environment sep-

~ arate from any other instances of Ivan that
might be present in the system. The
sequence of statements:

define gl (make-game Ivan Ivan))
define g2 (make-game lvan Fred))

would set up two games, named g/ and g2,
played by three instances of Ivan and one
instance of a player called Fred. Even if
gl and g2 are executed alternately, there
can be no interference between the games
or between the players.

One other issue in the construction of
the player procedures requires comment.
If a player is to keep track of a game’s his-
tory, it must somehow be given access to
that history. There are several ways this
might be accomplished. The possibility of

storing the sequence of moves in a global
variable can be dismissed immediately,
for reasons that should already be appar-
ent. Another approach would be to make
two calls on each player for each throw:
the first call would request a move and the
second would report the outcome of the
throw. Or a player might consist of two
linked procedures, one to generate a move
and the other to accept a report.

The method I have adopted is to make
each player a single procedure that
receives a single call for each throw.
Arguments passed during the call supply
information about the results of the pre-
vious throw. The one disadvantage of this
arrangement is that special provisions
must be made for the first throw in a
game, but the burden of extra code is not
great.

Five arguments accompany each call to
aplayer. They tell the player its own pre-
vious move; its opponent’s previous




move; whether it won, lost, or tied; its
own score; and its opponent’s score. Nat-
urally, the player does not have to make
use of all this information; indeed, some
players ignore all of it.

Strategies

Of the dozen players I have developed and
tested, the two simplest are named Adam
and Boris.

Adam is the proxy procedure for the
human player; when it is asked to select a
move, it simply awaits instructions from
the keyboard.

Boris chooses its moves randomly. To
do so it makes use of the built-in Scheme

procedure (random n), which generates a
pseudorandom integer between 0 and

n — |. Thus (random 3) yields one of the
three integers 0, 1, and 2, and these values
can be associated with the legal moves
scissors, paper, and stone.

From our analysis of random play, one
would expect Boris to have indifferent
success against all comers. Experiment
seems Lo confirm this prediction. Ina
series of 55 games against 11 opponents,
Boris won 25 games and lost 30; in
another series of 60 games against four
opponents, it won 29 and lost 31.
Although I have not attempted a statistical
analysis, the record of wins and losses has

the look of a random distribution. On
occasion Boris defeated some of the stron-
gest players and lost to some of the
weakest.

In my own games against Boris, [ some-
times relieved the tedium of thinking up
new moves by repeating Boris's own pre-
vious move. [t was a simple matter to cre-
ate a robot player that turned this lazy
habit into an algorithm; I called the player
Claude. It turns out the copycat strategy
works well enough against Boris— but
then any strategy has an equal chance
against Boris. Against most other players
Claude failed miserably; in the 55-game
tournament it scored 17 victories.




The crudest sort of pattern recognition
is frequency analysis. A player keeps
track of the number of times its opponent
has played scissors, paper, and stone,
assumes the same frequency distribution
will be maintained in the future, and choo-
ses its move accordingly.

For example, if the opponent has
favored scissors, then stone is the recom-
mended move. The player David relies on
this strategy. In the tournament it gener-
ally either shut out its opponent 5-0 or lost
0-5; overall it had 31 victories.

The strangest pair of players is Edgar
and Fred. The rationale for Edgar’'s algo-
rithm is the observation that when people
try to play randomly, they tend to avoid
making the same move twice in a row.
They create a sequence of moves that has
fewer and shorter runs than a truly ran-
dom sequence would. Edgar exploits this
tendency in choosing its own moves. If
the opponent has just played scissors,
Edgar assumes that scissors is the least
likely next move.

Out of curiosity, I also wrote a converse
procedure, Fred, whose working assump-
tions are the opposite of Edgar’s. If scis-
sors has just been played, Fred bets it will
appear again. I could see no argument in
favor of this strategy, and I fully expected
Fred to be the whipping boy of all the
players. The results came as a surprise.
Both Edgar and Fred scored three wins
against Boris, which of course is a matter
of chance. Edgar also defeated Claude
5-0, but lost all 45 games against the other
players. Fred, in contrast, finished a
strong fourth in the tournament, with 38
wins overall.

George is a trick player. It makes an
initial run, repeatedly playing the same
move, in an attempt to establish a lead; if
it succeeds, it switches to random play.
The rationale for this strategy is similar to
the one for Edgar: just as people tend to
avoid long runs in their own play, they
tend to doubt that an opponent’s run will
be continued. The results were similar to
Edgar's: George won only 14 games.

Herman's strategy is to reward success.
Each time a move wins a throw, that move
is give%a higher weight in the choice of
subsequént moves. Curiously, Herman's
tournament record is closely correlated
with that of David, the player whose
moves are based on frequency analysis.
For the most part they won and lost the
same matches and by the same 5-0 or 0-5
margin.

Ivan has already been mentioned as a
procedure that maintains a historical
record of each game. It uses the record to
count how many times in the past 10
throws the opponent played each of the
three legal moves; it then chooses a move
on the assumption that the opponent will
tend to equalize the distribution. For
example, if scissors has been played three
times, paper twice, and stone five times,
Ivan will expect to see paper or scissors



next. This is another variation of the
Edgar strategy. and like Edgar it per-
formed dismally: lvan won seven games
out of 55.

Pattern analysis

The players introduced so far all rely on
simple rules of thumb to pick a move. At
best they are clever rather than smart.
Players that attempt a deeper analysis of
the game should be able to do better.

The procedure Jim chooses a move on
the basis of a first-order correlation anal-
ysis. On each throw the opponent’s move
is appended to a list of past moves, which
thus grows continuously throughout the
game. This archive is then consulted to
predict the opponent’s next move.

Suppose the most recent move is paper.

Jim looks through the archive in chrono-
logical order, taking note of each time
paper was played and of what move fol-
lowed paper. The probabilities for the
next move are assumed to match the his-
torical distribution. In other words, if the
opponent has shown a tendency to play
stone following paper, then stone is the

Table 1.

26 COMPUTER LANGUAGE B DECEMBER 1986

move to expect,

The idea behind correlation analysis is
to detect the patterns that infect human
players’ moves no matter how hard they
try to suppress them. The algorithm
seems 1o work well against both machines
and people. Jim defeated all but two of the
other robot players and had a total of 44
wins.

A first-order correlation analysis looks
for a connection between consecutive
moves. There could also be a correlation
between a given move and the move made
two, three, or more throws later. In other
words, the fact that move 0 is scissors
might be a strong indication that move 2
will be stone or move 3 will be scissors
again. The player Kurt searches for such
correlations to a depth of eight throws.

Kurt could employ the same method for
detecting correlations as Jim, but Kurt
would have to make eight passes through
the entire history of moves on every throw
and would therefore take at least eight
times as long. A more efficient approach
is to record the correlations in a table as
each new move is reported. For each
depth, or correlation distance, the table
has nine entries, which correspond to the

nine possible combinations of antecedent
and predicted moves. The way the tables
are compiled and used for prediction is
illustrated in Figure 3.

Kurt proved to be a highly successful—
indeed, formidable—player. Apart froma
chance defeat by Boris, it lost against only
one other player, namely Jim. Possible
reasons for this one loss will be discussed
later,

Both Jim and Kurt treat a series of
moves as if it were a stream of symbols
generated in isolation, not in the give-and-
take of a two-player game. In practice a
player’s moves might depend not only on
his or her own past actions but also on
what the opponent has done.

Thus a logical extension to Kurt’s cor-
relation analysis is to include both sides’
moves in the history. Lars makes this
extension. Like Kurt, it searches for cor-
relations to a depth of eight throws, but
because each throw includes two moves
the depth of search is 16 moves.

Lars was a great disappointment. It is a
ponderous and elaborate procedure that
does a great deal of careful analytic work




(and spends a fair amount of time) in
choosing each move, Nevertheless, it
failed to improve on Kurt and also fell
behind four other players. The full expla-
nation is not clear, but part of the answer
may be that the correlations Lars looks for
simply do not exist. As a result the signal
detected by Kurt is obscured by the noise
of random coincidences.

The final player in this catalog has no
strategy of its own. It is Murray the meta-
player, which draws on the collective wis-
dom of several other players in choosing
its moves. First-class procedures are
essential to Murray's operation. [t works
like this: when Murray is first called, it
places calls in turn to all the procedures
on a list of consultant players. For each
throw thereafier, Murray passes on the
information supplied by the referee and
collects the moves suggested by the con-
sultants. The move submitted by the con-
sultant with the best winning percentage is
returned to the referee as Murray’s move.

In the 12-player tournament Murray’s
list of consultants included the nine play-
ers from Boris through Jim. (Kurt and
Lars were kept off the list because they
are too slow. Murray itself was also
excluded, and the reason is worth a
moment’s thought: what would happen if
Murray were on the list of procedures
called by Murray?) With all this talent on
call, the metaplayer did quite well, win-
ning 45 games and tying with Kurt for
first place.

Match point

The results of the tournament are sum-
marized in Table |. Wheo takes the grand
prize? It is difficult to say. Kurt and Mur-
ray won the most games, but Kurt was
beaten by Jim, and Murray was beaten by
both Kurt and Fred. Kurt and Jim lost to
Boris. There is a tangle of nontransitive
relations here: just as scissors beats paper
beats stone beats scissors, Kurt beats
Murray beats Jim beats Kurt.

To settle the question I organized a
playoff tournament for the four leaders—
Kurt, Murray, Jim, and Fred—with Boris
included as a kind of mindiess ballast. I
also changed the playing conditions. In
the main tournament each match consisted
of five games, and a game was won by the
first player to reach 50 points. Games of
this length are probably adequate to test
most of the strategies, but Kurt and Lars,
searching for long-range correlations,
may have had too little chance to show
their prowess. In particular, the short
games may explain why Kurt and Lars
lost to Jim, the player with the similar but
simpler strategy of examining only first-
order correlations. In the playoff a match
lasted for 15 games of 150 points each.

The longer games made a difference.
Kurt emerged the clear victor, winning 51
of 60 games. The scores are given in
Table 2.

In roughly 150 matches among a

dozen robot players the kind of stalemate
envisioned by the Doctor occurred just
once. George and Claude had a tour-
nament record against each other of 0-0;
neither of them was able to win more than
one throw, and their games would have
gone on indefinitely if the referee had not
intervened. Recall that George makes the
same move repeatedly unless it gets the
lead, and Claude copies its opponent’s last
move. [ should have foreseen how these
strategies would interact; no doubt the
Doctor would have.

So much for robot wars. Where does

The championship playoff

Boris Fred
Boris — 7
Fred 8 —
Jim 9 6
Kurt 8 15
Murray 6 4
Losses 31 32

the human player fit into the ranking? 1
cannot give a firm answer, for two rea-
sons. In the first place, [ doubt my own
qualifications to carry the standard for all
humanity in this competition, (I tried to
recruit an Intergalactic Grandmaster, but
the Doctor was not in.) Second, although
writing programs to play scissors-paper-
stone is moderately diverting, actually
playing the game is not a whole lot of fun.
After the first few hundred throws it
wears thin. I have not played enough
games to have much confidence in my
judgment.

Jim Kurt Murray Wins
6 74 9 29
9 0 1 28

— 0 n 26

15 — 13 51
4 2 e 16
34 9 44

Boris and the four leaders of the tournament played 15 games of 150 points against each
opponent. The longer gomes evidently favored the correlation analysis done by Kurt.

Table 2.

from GUIDELINES

Here Is what you get for $195:

+ The complete C++ language translator,
including libraries for stream I/O and
complex math.

« "The C++ Programming Language"

« Sample programs written in C++.
« Installation guide and documentation.

by Bjarpe Stroustrup, designer of C++.

C++

for the IBM PC: $195

C++, the successor o C, was developed over the past six years at AT&T Bell Labs.
As an object-oriented language, C++ includes: classes, inheritance, member functions,
constructors and destructors, data hiding, and data abstraction. 'Object-oriented’ means
that C++ code is more readable, more reliable and more reusable. And that means faster
development, easier maintenance, and the ability 1o handle more complex projects.
C++'s enhancements to C include inline functions, default function arguments, symbolic
constants, overloaded function names, argument type checking, and much more.

Requires IBM PC/XT/AT or compatible with 640K and a hard disk.
Note: C++ is a translalor, and requires the use of Microsoft C 3.0 or later,

To order:

send check or money order to:
GUIDELINES SOFTWARE
P.O. Box 749

Orinda, CA 94563

To order with Visa or MC,
phone (415) 254-9353.

(CA residents add 6% sales Lax.)

"The C++ Programming Language” book is also available separately for $22.95.
C++ is ported to the PC by GUIDELINES under license from AT&T.

CIRCLE 17 ON READER SERVICE CARD

27



Nevertheless, I have at least tried my
hand against all the players, and the fol-
lowing observations seem worth report-
ing. As might be expected, Boris remains
imperturbable, no matter who or what it
plays: it cannot be beaten, but it never
wins decisively either.

A few of the players, notably Claude
and George, are absurdly easy to defeat;
their strategies are too transparent. For
some other players there is a counter-
strategy that always works, but it is not
quite as easy to discover (unless you hap-
pen 1o be the creator of the program).
Edgar and Ivan, for example, are vulner-

Listing 2. (Continved on following page)
28 COMPUTER LANGUAGE m DECEMBER 1986

able to a player who makes the same move
on every throw, but they perform reason-
ably well against a person trying to play
randomly. Fred and Herman can also be
beaten if you know the trick.

There 1s not much glory, however, in
defeating robot players that have aiready
been thoroughly trounced by their own
kind. Sportsmanship demanded that [ take
on the best of the programs. Feeling that
the honor and pride of my species were at
stake, I issued a challenge to Kurt: 10
games of 100 points each. Kurt bowed
from the waist and accepted the challenge.
‘We met at dawn. There is no need to dwell

on the score. It is a silly game anyway,
and it has nothing to do with real

intelligence. [fij

The listings that accompany this column
include the core procedures of a scissors-
paper-stone program: the referee, some of
the players, and a few esseniial auxiliary
functions. A more complete listing is avail-
able on the COMPUTER LANGUAGE
Bulletin Board Service and CompuServe
forum. It includes rwo shell procedures
that make it more convenient 1o play indi-
vidual games and run a multiplayer
tournament.




Listing 2. (Continved on following page)


http:cor:[-b!.m1
http:cot"t-.ef

Listing 2. (Continved from preceding page)

Listing 3.

30 COMPUTER LANGUAGE m DECEMBER 1986




