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On the bathtub algorithm
for dot-matrix holograms
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t all began with a

quick-and-dirty
program to draw a

contour map. I had an equation defining a

surface—giving the elevation, z, for any
combination of x and y coordinates—and I
needed to see what the surface looked
like. The best format for my immediate
needs was that of a topographic map,

showing contours of equal elevation.
The end of the story is that I got the map

I needed. It was reasonably clear and
accurate; it served its purpose; in short, it
was an utter bore and I have nothing more
to say about it. What I want to speak of
here is an unexpected discovery (other
wise known as a mistake) made along the
way. The illustrations that accompany this
column, which I have taken to calling dot-
matrix holograms, are the fruits of that

discovery.

Robot surveyor

The usual method of drawing a topo

graphic map calls for following individual
contour lines. In effect, you build a robot
equipped with a sensitive altimeter and
instruct it to wander over the landscape
while maintaining constant elevation. If
the robot is plotting the contour at
elevation z = 10, it first searches the ter
rain until it finds a point where the altime
ter reads 10. Then it moves in whatever
direction keeps the altimeter reading

steady. Meanwhile, you are tracing the
projection of the robot's motion onto a
plane.

A program based on this procedure is
likely to be messy. To follow a contour
line, the robot must measure the elevation
of various points near its current position
until it finds a point at the right altitude.
This seems straightforward until you

begin to think about some of the patho
logical cases that could confuse the poor
automaton. What happens if there is no

point at the right elevation? (The robot
might be at a peak, or it might be in the pit
of a depression.) What happens if there
are two points at the correct height? (The
robot might be near a saddle point, where
two contours at the same elevation
approach closely but do not touch.) What
happens if all the points are at the same
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height? (The robot might be on a level
plane.)

With care and ingenuity these problems
can be solved. The proof is that contour-

following programs do exist, and appar
ently they work well. Chris Johnston of
the NASA Lewis Research Center
described a particularly clever one in
"Contour Plots of Large Data Sets"

(COMPUTER LANGUAGE, May 1986,
pp. 63-67). Nevertheless, writing such a
program is not a job to be undertaken in
haste.

I had another reason for avoiding the

contour-tracing algorithm. The method is
ideally suited to driving anx-y pen
plotter—the points along a contour are
generated in the order they will be
drawn—but I did not have a pen plotter on
hand. My only graphic output device was
a dot-matrix printer, which expects to
receive data row by row; the printer is a
raster device, whereas a plotter is a vector
device. Of course one could convert from
vector to raster form, but this would add

yet another level of complexity to the pro
gram. It seemed there must be an easier
way.

Eureka

As Archimedes learned, when you come
up against a problem that seems harder
than it ought to be, the best course is to
take a long soak in the tub. That's where I
found a simpler approach to topographic

mapping.
Suppose you had a solid model of the

terrain to be mapped. You could put it in
the bathtub, taking care to level it, and
add half an inch of water every day or
two. Minerals deposited at the water line
would create a series of evenly spaced
bathtub rings on the surface of the model.

Photographing the rings from directly
overhead would then yield a contour plot.
All the tricky analysis needed to follow a
path of constant elevation is taken care of
by the infallible tendency ofa liquid to
seek its own level. No matter how many
pits, peaks, saddle points, or other pecu
liarities the surface has, the water is never
fooled.

Can this algorithm be adapted for use
with a computer rather than a bathtub? It
turns out the conversion is easy, at least
for a raster device such as a dot-matrix
printer. One can think of the printer as

having a two-dimensional array of pins—
a "bed of nails"—covering the entire

page. Any pin in the array can either be
fired, thereby printing a dot on the page,
or prevented from firing, so that a white

space is left. In the computer version of
the bathtub algorithm, a pin is fired only if
the corresponding position on the solid
model would lie at the water line during
one of the stages in the filling of the tub.

Consider a map of the function z =

f(x,y). Assume a contour line is to be
drawn at z = 10, z = 20, z = 30, and so
on. Each pin in the imaginary bed of nails
has a position defined by a particular pair
of* and v values. To determine whether or
not a pin should be fired, substitute its*
and y coordinates into the function and
solve for z. If the result is an even multiple
of 10 (or, in other words, if z modulo 10 is

equal to 0), the point lies on a contour line
and the pin is fired. If z has any other
value, the point is left blank. When this
calculation is repeated for every pin posi

tion, a complete topographic map
emerges, with a contour at every 10th unit
of elevation.

The bathtub algorithm has an appealing

simplicity. There is no need to trace indi
vidual contour lines. Indeed, lines and
curves do not exist in the program; they

appear in the finished map only because
the human eye and brain tend to connect

nearby points to form a continuum. There
is no need for a vector-to-raster con

version; the points can be calculated in the
same sequence they are sent to the printer.
Most important, the plotting routine

requires no intelligence to deduce where a
contour is going to go next; the program

merely evaluates an equation at each point
in the map and makes a binary decision
based on the result. It is a dumb program.

One small refinement is needed to make
the algorithm work reliably. The modulus
operation yields a value of 0 only if z is
exactly equal to a multiple of the contour
interval. Thus a dot is printed only when it
lies precisely on an infinitely thin bathtub

ring. For a printer with a finite number of
pins this criterion for selecting points is
too restrictive. Sections of the contour



lines will pass between the pin positions,
and the map will show only a sprinkling of
isolated dots rather than the illusion ofa
continuous curve.

The ideal solution to this problem is to
select from the array of possible dots all
those that lie closest to a contour line.
This is feasible, but it is almost as compli
cated as contour-following. A much sim

pler approach is to define an approximate
modulus function, which prints a dot
whenever z is within some specified range
of the contour elevation. For example, a
contour at z = 10 might be drawn by print

ing dots at all pin positions whose
elevation is between 9.5 and 10.5.

This change does have one untoward
effect. In a standard topographic map all
the contour lines have a uniform thick
ness. Allowing a contour to span a range
of elevations means it will be thicker
where the surface is nearly flat and thin
ner where it is steep. Whether this feature
of the map is regarded as a defect or as an
additional visual clue to the slope of the
surface is a matter of taste. In the illustra
tions reproduced here the contours are

adjusted to have the same thickness as the
spaces between them.
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When I stumbled onto the bathtub algo
rithm, the idea seemed so simple and
obvious that I was sure someone else had

thought of it before. I still suspect that the
method has been known for years, but I
have found no evidence of it. Sedgwick L.
Simons Jr. of the University of Houston in
Texas described a related technique in
BYTE in 1983, but his method is more

complex and is meant for use with a pen
plotter. (As this column was going to
press, related work was reported by John
E. Connett of the University of Minne
sota. See A.K. Dcwdney's "Computer
Recreations," Scientific American, Sept.
1986, pp. 14-23.)

Mapping an egg carton
I wrote the contour-plotting program for a
printer with a graphics resolution of 60
dots per inch. Hence the imaginary bed of
nails for a square map six inches on a side
has 3602 (or 129.000) pins. The equation

defining the surface must be evaluated at
each of these points.

Of course when it comes to writing a

program for a real machine one can no
longer pretend that the printer has a bed of
nails with 130,000 pins. It has just eight

pins, which are swept across the page to

m

print a line. Each byte received by the
printer specifies a pattern of eight dots. A
sequence of 360 bytes prints a horizontal
strip six inches wide and eight dots deep;
45 such strips create a square map.

It took a few hours to cobble together a

functioning program. (A version of this
program, called Hologram.pas, is avail
able from the COMPUTER LANGUAGE
Bulletin Board Service.) The equation I
chose for the initial test was z = .v2 + y2,
which defines a paraboloid, a surface that
curves upward like the inside ofa mixing
bowl, growing steeper with distance from
the origin. I asked the program to draw a
contour every 100 units over a range of*
and y values extending from —100 to
+100. What I expected to see was a series
of concentric circles getting closer

together toward the outer edges of the
map. The contour lines would be circular
because on a paraboloid all points at the
same distance from the center are at the
same elevation. They would crowd

together toward the edges because the
slope of the surface increases with radius.

What I did see, rolling out of the printer
one line at a time, was a pattern much like
the one in Figure I. There were circles, all

right, and lots of them, but they did not all
share a common center. Instead the pat
tern looked like a contour map of the
inside of an egg carton, with multiple

peaks and cavities arranged on a square
grid. On looking at the map more closely I
was able to discern shadowy evidence of
smaller circles, arranged on a grid one-
third as large as the main grid. And there
were faint and fuzzy hints of still smaller
circles, at one-sixth the main grid spac
ing. The egg carton appeared to have
dimples.

It looked like an interesting bug. Most

programs that run amok produce less than
what you want, not more; this one seemed
to be inventing elaborate ornamentation
for a simple geometric map. The com

plexity of the pattern was particularly
puzzling. A quadratic equation such as
z = a2 + y2 simply cannot convey enough
information to create a surface with multi

ple hills and valleys. An equation for the
surface of an egg carton—even without
dimples—would have to be much more
complex, with dozens of terms and with
higher powers of* and y.

Making waves
At this point I was ready for another soak
in the tub, but a shower would have been
more appropriate. Looking at the pattern

again, I began to see it as ripples formed
by raindrops falling on the surface ofa
pond. There were even suggestions of
interference where waves from adjacent
drops overlapped. The map also looked
vaguely like the interference pattern cre-

ion. The surface being mapped is defined by the equation z = x2 + y2, or (in polar

inates) z = r2. Only the rings of the central bull's-eye are real contour lines; the rest
tifads of the sampling process.

Figure 1.



ated when light passes through an array of

pinholes. Some X-ray diffraction pat
terns, which are used in the study of large
molecules, have a similar texture. So do
holograms: interference patterns
(recorded with laser light) that yield a
three-dimensional image of an object.

What do waves and interference pat
terns have to do with contour lines and
bathtub rings? In point of fact, the con
tours are waves: the alternating dark and

light bands are analogous to the peaks and
troughs of a water wave or the varying
electromagnetic potentials of a light
wave. A dark band followed by a light
band constitutes one cycle of the wave
form. The wavelength is the distance from
the leading edge of one dark band to the

leading edge of the next. The spatial fre
quency of the wave is the number of
cycles per inch.

Thinking of the contours as waves soon
led to an understanding of what went
wrong with the paraboloid map. There
was nothing the matter with the algorithm
or the program; the problem lay with the
test case I had chosen.

Along the* axis of the map the
elevation of the surface ranged from 0 at
the center to 10,000 at each edge (where *
has values of +100 and -100). I had
asked for a contour line every 100 units of
elevation, and so the map would have 100
dark and light bands from center to edge.
Near the corners of the square the contour

density would be more than 100 per in.
The minimum distance in which the

printer can represent a dark-and-light
cycle is two dot positions: one dot must be
on and the next must be off. At 60 dots per
inch there are 30 such pairs per inch. I
was trying to draw a 100-cycles-pcr-inch

pattern with a blunt, 30-cycles-per-inch
crayon.

The fix was obvious. When I increased
the contour interval from 100 units to 500
units, the expected pattern of concentric
circles emerged from the printer.
Decreasing the range of* and y values
from ±100 to ±20 had the same effect. In
a few minutes I had my map.

The Nyquist limit
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Beyond the Nyquist limit
It is always gratifying to get a program

working correctly, but in this case the fin
ished map could not compete in visual
interest with the bizarre array of raindrop

ripples I had glimpsed along the way.
Moreover, knowing why the original test
case failed did not explain how the failure
created such an elaborately embellished

pattern.
The key to understanding where all the

ripples come from is the Nyquist sampling
theorem, formulated in 1928 by Harry
Nyquist of the AT&T Dept. of Develop
ment and Research (a predecessor of Bell
Laboratories). The theorem states that for
a waveform to be accurately digitized, the

sampling frequency must be at least twice
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Sampling of a waveform yields an accurate digital representation only if the sampling f
quency is at least twice the signal frequency (the Nyquist limit). The alternating dark am
light bands of a contour map can be viewed as a square-wave signal; a dot-matrix prir
digitizes the bands at a fixed sampling rate determined by the printer's pin spacing. A;
signal frequency increases beyond the Nyquist limit, the frequency of the digitized output
declines, reaching 0 at twice the limit; the output frequency then climbs again. The spurious
low-frequency signals are aliases.

Figure 2.



the highest frequency in the signal. For

example, a musical passage with fre
quencies of up to 20,000 Hz requires at
least 40,000 samples per second.

The Nyquist limit makes intuitive
sense: it ensures that at least one sample
will be taken during each half-cycle of the
waveform. An interesting corollary of the
theorem is that nothing is gained by sam

pling the signal at a higher rate. The ques
tion of interest here, however, is what

happens when the sampling rate is too
low.

The analysis is made much easier by

reducing the problem to one dimension
and considering only the points along the
positive* axis. The sequence of bathtub
rings then becomes a square wave, a sig
nal that is on for each dark band and off
for each light one. The frequency of the
square wave increases steadily with dis
tance from the origin. In a similar way the

sampling interval can be represented as a
series of narrow pulses, or pips, at a con
stant frequency of 60 per inch. A dot is

printed wherever a sampling pip falls
within the "on" half of a square-wave

cycle.

Near the center of the map the sampling
works as it should. Each "on" period

spans several pips and accordingly is
printed as a block of consecutive dots. As
* increases, however, the square waves
become narrower, and eventually the
width of an on-off cycle falls to l/30th of
an inch. This is the Nyquist limit, where
there is exactly one sampling pip per
"on" period and one per "off" period.
Each dark band is printed as a single black
dot and each light band appears as a one-
dot space.

Beyond the Nyquist limit the sampling

Contour maps of a paraboloid exhibit progressively more severe aliasing. The surface is the same one mapped in Figure 1, where the

maximum spatial frequency is about three times the Nyquist limit. In Figure 3A the maximum frequency exceeds the limit by about 30 times,
in Figure 3B by 100 times, and in Figure 3C by 1,000 times. At this point the shape of the surface is completely obscured, and yet circuit

forms appear again in Figure 3D, where the frequency is roughly 1012 times the Nyquist limit.



e general f

sandellips
igure4B).

cannot keep up with the undulations of the
waveform. Figure 2 shows what happens.
At first, when the signal frequency is just

slightly beyond the Nyquist limit, a few
"on" periods are missed because they

happen to fall between two sampling pips.
As a result an extra space is inserted.
"Off" periods are overlooked in the same

way, causing two adjacent pins to be fired.
As the signal frequency increases further,
such missing samples become more com
mon and dots are printed in larger and
more widely spaced blocks. In other
words, as the input frequency goes up the
frequency of the digitized output goes
down.

At twice the Nyquist limit, where the

signal frequency is equal to the sampling
rate, the output frequency falls to 0. Each
sampling pip comes at the same relative
position in the signal waveform, so that
the signal appears to be either constantly
on or constantly off. The dots are cither
all black or all white. The sampling mech
anism cannot know that the signal goes

through a complete cycle between
samples.

At three times the Nyquist limit, alter
nating dots and spaces are again printed.
The signal goes through one-and-a-half

cycles in each sampling interval, so that
every other pip falls in an "on" period. At
four times the limit another solid band of
either black or white appears. The peri
odic variation in the frequency of the digi
tized pattern continues indefinitely. Wher
ever the signal frequency is an odd

multiple of the Nyquist limit, every sec
ond dot is turned on. Where the frequency
is an even multiple of the limit, all the dots
are either on or off, depending on the rela
tive phase of the sampling interval and the

signal waveform.
An analysis of this kind can explain the

pattern of dots along any radius of the
paraboloid map. Examining the pattern
along the* axis, for example, shows that
the spatial frequency repeatedly goes
from 0 to the maximum resolution of 30

cycles per inch and then back to 0.
What is harder to fathom is how a vio

lation of the Nyquist limit gives rise to the

specific two-dimensional pattern seen in
Figure 1. Only the rings of the central
bull's-eye are real contours, marking
curves of equal elevation; all the other cir
cles are artifacts of the sampling process.
If you tried to follow one of the phony
contours on foot, you would find that the

path is far from level. Nevertheless, all
the bull's-eyes are perfect replicas of the
central one.

The regularity of the pattern can be
attributed to two factors. First is the sym

metry of the paraboloid itself. Every
where on a paraboloidal surface the slope
increases in direct proportion to the
radius; this is just the rate of change

H
Figure 4.



C & PASCAL
PROGRAMMERS

Blaise Computing provides a broad range of pro
gramming tools for Pascal and C programmers,
with libraries designed for serious software
development. You get carefully crafted code
that can be easily modified to grow with your

changing needs. Our packages are shipped com
plete with comprehensive manuals, sample pro
grams and source code.

C TOOLS PLUS
$175.00

NEW! Full spectrum of general-purpose utility
functions; windows that can be stacked, re
moved, and accept user input; interrupt serv
ice routines for resident applications; screen
handling including EGA 43-line text mode sup
port and direct screen access; string functions;
and DOS file handling.

Ti»i t)Kf i i i [ t i i
S 175.00

Expanded string and screen handling; graphics
routines; easy creation of program interfaces;
memory management; general program con
trol; and DOS file support.

VIEW MANAGER
$275.00

Complete screen management; paint data entry
screens; screens can be managed by your appli
cation program; block mode data entry or field-
by-field control. Specify C or LBM/MS-Pascal.

SYNCH MANAGER
$175.00

Full featured asynchronous communications

library providing interrupt driven support for
the COM ports; I/O buffers up to 64K; XON/
XOFF protocol; baud rates up to 9600; modem
control and XMODEM file transfer. Specify C or
IBM/MS-Pascal.

una ssi gtwj a im ictm ki a mm
$99.95

NEW! Expanded string support; extended
screen and window management including EGA
support; pop-up menus; memory management;
execute any program from within Turbo Pascal;
interrupt service routine support allowing you
to write memory resident programs; schedul-
able intervention code.

bo ASYNCH PLUS
S99.95

Complete asynchronous communications
library providing interrupt driven support for
the COM ports; I/O buffers up to 64K; XON/
XOFF protocol; and baud rates up to 9600.

iiuiccusai
$49.95

NEW! Text formatter written especially for pro
grammers; flexible printer control; user-defined
variables; index generation; and general macro
facility. Crafted in Turbo Pascal.

I W J M

$95.00
Program chaining executive. Chain one pro
gram from another even if the programs are in
different languages. Shared data areas can be
specified.

ORDER TOLL-FREE 800-227-8087!

BLAISE COMPUTING INC.
2560 Ninth Street, Suite 316 Berkeley, CA 9471(1 (415) 54(1-5441

23 CIRCLE 3 ON READER SERVICE CARD

Four-pointed stars are a common feature of aliased topographic maps whose genuine con
ies are hyperbolas. In Figure 5A the defining equation isz = x2-y2; the surface has
bes that bend upward and two that bend downward, meeting in a saddle point at the
In Figure 5B the equation is z = x3y2, and there are four upward-sweeping lobes.

Figure 5.
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rfaces that approach infinity at the origin compress the entire spectrum of aliased te
tures into a single map. The equation in Figure 6A is z = 1 Ir, defining a surface that ri:

steeply near the center and is undefined at the origin itself. In Figure 6B the equation is
1 Ixy, and the surface forms cusps along both axes. Note that although Figure 6A has circu
lar contours, the figures in the alias pattern are hyperbolic; likewise, Figure 6B has hyper
bolic contours but an alias pattern made up of ellipses.

Figure 6.

needed to create a uniform lattice of rain

drop ripples. The second factor is the
geometry of the printer pins, which are
laid out on a square grid. If someone made
a printer with pins in a honeycomb

arrangement, the bull's-eyes would form
a hexagonal lattice rather than a recti
linear one.

The faint gray circles interspersed

among the larger and more conspicuous
ones are also sampling artifacts. Note that
as the signal frequency increases beyond
the Nyquist limit, the sampled output does
not change smoothly from on/off to on-
on/off-off, and so forth. Instead there are
unbalanced intermediate states such as on-
on/off and on/off-off. It is these
unbalanced dot sequences that create the
shadow patterns.

A l ias ing
The spurious low-frequency signals that

appear when a waveform is undersampled
are called aliases. In computer graphics
the most familiar manifestation of aliasing
is the jagged, stair-step edge that appears
when a diagonal line is displayed on a
low-resolution raster device. The stair

step effect has a number of similarities to
the patterns seen in aliased contour maps.
For example, the spatial frequency of the
stair steps, like that of the false contours,
varies periodically as a function of slope.
The stair-step frequency is 0 when the line
is horizontal; it rises to a maximum at 45
degrees and returns to 0 when the line is
vertical.

When aliasing turns a line into a stair
case it is a nuisance. But as the illustra
tions reproduced here suggest, aliasing
can also create some intriguing and rather
decorative patterns. Figure 3 shows the

development of progressively more severe
aliasing in a contour plot of a paraboloid.
As the contour interval is reduced, the lat
tice of intersecting ripples becomes a
mosaic of dark and light tiles. When the
spatial frequency of the contour lines is
hundreds of times greater than the

Nyquist limit, the map degenerates into a
texture that seems to bear no relation to
the form of the surface. The underlying

pattern is still present, however. Indeed,
the characteristic overlapping rings sud

denly reappear at a much higher multiple
of the Nyquist limit, where the waveform

goes through some 1012 cycles between
sample points.

Circles and ellipses are a recurring
motif of aliased maps whose basic contour
lines are circles. Figure 4 shows maps of
the cubic and quartic analogues ofa
paraboloid (surfaces on which elevation is
proportional to the third or fourth power
of the radius). They can be interpreted as
distorted versions of the paraboloidal

map.
Surfaces that have a saddle point or a



cusp tend to yield a different repeating
figure: a four-pointed star, marking the
convergence of four sets of hyperbolic
contour lines. The equation z = x2 —y2 is

obviously similar to the paraboloid equa
tion, and yet the surface it defines is very
different. There are upward-sweeping
lobes along the* axis and downward-

sweeping ones along the y axis, which
meet in a saddle point at the origin. The
contour plot (Figure 5A) has the same

symmetries as the paraboloid map, but all
the circular forms are replaced by stars.
The same stars, somewhat distorted, turn

up again in the map of z = x2y2, a surface
with four lobes oriented along the diago
nals (Figure 5B).

Although the false contours generally
mimic the form of the real ones, there are
exceptions. Figure 6A maps a surface that
is essentially the inverse of a deep bowl;
far from the origin it is nearly flat, but
near the center it rises to form a steep

pole. The contours arc circular, crowding
together toward the center, but the alias
patterns are hyperbolic stars. Figure 6B,
on the other hand, has hyperbolic con
tours that converge on cusps, or asymp

totes, along both axes; nevertheless,
aliasing covers the surface with ellipses.

One sign of an interesting program is
that you cannot readily predict its output.
The contour-mapping program would
appear to qualify under this criterion.
Even for the very simple and symmetrical

equations discussed so far, it is difficult to
guess what a highly aliased map will look
like; when the equations become more
complicated, prediction is all but impos
sible. The surface defined by z —

lOOxy —x—y slopes smoothly toward
negative infinity along the x and y axes but
has four humps a little ways from the ori

gin on the diagonals. What does the
aliased map look like? If you guessed a

bakery tray of cinnamon buns (Figure 7),
you have better geometric intuition than I
do.

Dot-matrix laser
The resemblance of aliased contour maps
to interference patterns is not mere coin
cidence. An interference pattern forms
when two waves are superimposed or
added. Where the two component waves
are in phase, the sum has a large ampli
tude; where the waves are out of phase,

they cancel and the sum is 0. The digi
tizing process effectively adds waves at

the sampling frequency and at the fre
quency representing the slope of the sur
face. The resulting contour map can be

regarded as a product of interference.
A hologram is a special kind of inter

ference pattern made with the coherent

light emitted by a laser. (Light is said to be
coherent when all of its waves are in
phase.) In making a hologram, laser light
is split into two parts. One beam goes

directly to a piece of photographic film,
while the other beam first strikes the

object being recorded and is then reflected
onto the film. At the plane of the film the
two beams interfere, exposing the photo

graphic emulsion wherever the waves are
in phase. The phase at the emulsion

depends on the length of the path followed
by the reflected beam.

Under a microscope a hologram is seen
to be a maze of fine interference fringes.
It does not look like the object recorded,
but if laser light is shone through the film,
the stored interference pattern acts on the
waves to reconstruct the original reflected
waveform. The result is a three-
dimensional image of the object.

Aliased contour maps are crude holo

grams made with a long-wavelength laser
and coarse-grained photographic film.

Suppose a source of coherent light has
been set up at a great height above a

paraboloid. Parallel rays of light fall on
the surface, and those reflected straight
back along their original path are inter

cepted by a piece of film. Meanwhile,
another beam from the same source goes

directly to the film. A grain of the photo
graphic emulsion is exposed if the two
waves striking it interfere constructively.
Whether the interference is constructive
depends on the phase of the reflected
beam and hence on the elevation of the
surface. To be more precise, the phase

depends on the elevation modulo the
wavelength of the light.

This procedure for making a hologram
is exactly equivalent to the bathtub algo
rithm for plotting a topographic map. The

wavelength of the laser light corresponds
to the contour interval; the grain size of
the film is the pin spacing. Although the
dot-matrix hologram does not look like a
map of the paraboloidal surface, it
encodes all the information needed to
reconstruct that surface. If only we had a
laser of the appropriate wavelength, we
could shine it through the hologram and
create an image of the paraboloid. ~~
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