
v;
- m

! ! -\^."ci£

-r.v- ' i
j

j»i

!

Part I: Language in man and machine

Good heavens! For more than 40 years J 've
been speaking prose and didn 't even know it.
—M. Jourdain in Moliere's Bourgeois
Gentleman

emock M.
Jourdain for
his belated

discovery, but
it seems to me his astonishment is entirely

appropriate. Speaking prose is indeed an
amazing feat. Like walking or dreaming
or digesting, it falls into the peculiar cate

gory of things we do without knowing
how we do them. A five-year-old can
frame perfectly lucid English sentences,
and yet no one has given a full and precise
account of what constitutes a sentence.
The algorithm for English is unknown,
even to those who know English.

It is for just this reason—the lack of an

algorithm—that we do not speak English
to computers. The languages devised for

communicating with machines are sim
pler and inevitably cruder; compared with
English, a programming language such as
Pascal has an extremely narrow expres
sive range. In one crucial respect, how
ever, Pascal is on an even footing with
English: both languages are infinite in
scope. There is no limit to the number of
English sentences, and so a reader or lis
tener must always be prepared to cope
with something new, with a combination
of words no one has put together before.
When you say, "Now I've heard every-

By Brian Hayes

thing," you are surely wrong. Likewise
there are infinitely many Pascal pro

grams, and the author of a compiler for
Pascal cannot possibly anticipate all of
them.

The key to taming these infinities is the
idea of a grammar: a finite set of rules that
describe an infinite set of sentences (or

programs). Through grammar a language
maintains an exquisite balance of novelty
and regularity. Phrases never heard before
can be instantly recognized as English;

programs never written before can be
compiled as efficiently as old standards.

In this series of articles I shall outline
what grammar has to contribute to the

understanding of language in man and
machine. In Part I the emphasis is on
properties common to all languages and
all grammars. Next month I shall discuss
a hierarchy of languages arranged accord

ing to the complexity of their grammars.
Part III will explore the uses—and the
limitations—of these ideas in com

pilers and other programs that deal with
linguistic information.

Elements of language
The gulf between English and Pascal is so
wide that it is fair to ask whether the term

"language" can contain them both. A nat
ural language has many voices and
moods; it can be used to order breakfast,
declare war, pray for peace, tell jokes,
sell used cars, curse the umpire, grieve,

rejoice, or describe the confused aspi
rations of a rich merchant in 17th-century
France.

Programming languages are far less
versatile. Many of them have only one
mode, namely, the imperative "Do this,
then this, then this." A program in such a

. > , :
! f ! !'!-

language is a list of instructions, and the
only form of natural language discourse it
much resembles is a recipe. Indeed, the

primary function of a programming lan
guage is not to communicate ideas
(although it might often be used for that)
but to elicit an action, to control a
machine. English says, Pascal does.
When the poet's work is done, we read the

poem, but when the programmer's work
is done, we do not read the source code;
we execute it. These distinctions are of
fundamental importance, but it does not
follow from them that natural and formal

languages have nothing whatever in com
mon. "Language" can indeed be
stretched around both English and Pascal

although only by giving the word an
extremely broad definition, one that
encompasses much else besides-
mathematical notation, numerals, bird
songs, everything from the nucleotide
triplets of DNA to Dante's terza rima.

The definition I have in mind is built
from the bottom up. The first step is to

specify an alphabet: a finite set of sym
bols. A sentence is defined as a string of

symbols drawn from the alphabet. A
grammar is a set of rules that determine
whether or not any given string of sym
bols is an acceptable sentence. The lan
guage is the set of all sentences, that is, all
strings of symbols accepted by the
grammar.

It should be noted that nothing in this
definition imputes any meaning to a sen
tence. The aim is to describe the syntax of
the language, not its semantics. "Color
less green ideas sleep furiously" is non-

sense, but it is a sentence all the same.
"Furiously sleep ideas green colorless"
fails at a deeper, grammatical level.

For English the alphabet can be identi
fied with the set of written characters or
with the phonemes of spoken language.

Alternatively, one can ignore this lowest
level of structure and assume that the
atomic units of language are words. Simi

larly, in a programming language the
alphabet can be taken to consist of charac
ters, or it can be the set of tokens, the
higher-level constructs analogous to
words, such as the keywords (/", then and
while.

What concept in a programming lan

guage corresponds to the English notion
of a sentence? In Pascal one might be

tempted to choose the individual state
ment, which seems to have roughly the
same scale as a sentence, but I suspect the
closest equivalent is a larger unit: the pro
cedure or function definition. I shall not

attempt to justify this choice, largely
because it is of little consequence. In fact,
no harm is done if an English sentence is
made to correspond to an entire Pascal

program. Ultimately, a sentence is what
ever the grammar defines it to be.

And what is the nature of the grammar?
Exploring that question is the purpose of
this article, but before getting on with it
one small warning must be posted. The
grammars under discussion here have
very little to do with the subject taught in
grammar school. Lessons about dangling
participles and parallel construction offer
important guidance on the precise and
graceful use of a language, but they can

not possibly capture its fundamental
structure.

Generators and recognizers
The study of language has a long if some
what sporadic history, going back to the
first grammars written in Sanskrit before
300 B.C. It is an interesting history and is
too little known, but I must pass over all
of it, skipping directly to the 20th century,
when the aims and methods of linguistic

inquiry changed dramatically.
The change came about in part through

the influence of work in other fields of

inquiry: mathematics, logic, information
theory and the study of automata. For
example, in the 1930s and 1940s Alan M.
Turing, Emil L. Post, Stephen C. Kleene
and others investigated the properties of
various abstract systems that qualify as

languages under the definition given pre
viously. Many of these loose threads were
gathered up in the 1950s by Noam
Chomsky of the Massachusetts Institute of
Technology, who adapted the earlier work
on formal systems to the study of natural

language and added novel ideas of his
own.

The goal of Chomsky's original pro

gram of research was a generative gram
mar. In its most abstraefform the gram
mar is nothing more than a set of rules,
but one can imagine it being embodied in
a machine. The grammar machine for lan

guage L generates all the strings of sym
bols that are sentences of L and only those

strings. The same set of rules can be
incorporated into another machine, a rec
ognizer rather than a generator. Given any

S::= NPVP
NP::=Noun | DetNP | Adj NP | NPPP
VP::=Verb | Verb NP | Verb PP | Verb Adv

PP::= PrepNP

dimentary grammar could account for the structure of many simple English sente
~"e with only a single clause). Each rule states that the symbol on the left of the ::

be expanded into the sequence of symbols on the right. The | symbol, rea

Figure 1.

string of symbols, the recognizer answers
a yes-or-no question: Is the string a sen
tence of L?

For English any native speaker of the

language can serve as a recognizer. To
determine whether or not a string of

English words is a sentence, merely
present it to a native speaker of English
and ask for an intuitive judgment. For a

programming language a recognizer is
also ready at hand: it is a component of

any compiler or interpreter for the lan
guage. To find out whether a given string
of Pascal tokens is a Pascal program, sub
mit it to a Pascal compiler. If no error

message is issued, the string passes the
test.

Note that the compiler, in its role as

recognizer, tests only the grammatical
form of the program, not its semantic con
tent. Nonsense programs, which give
erroneous results or do nothing at all, are

accepted without complaint as long as
they have no syntactic errors.

For any finite language there is a trivial

recognizer. It is a machine with a stored
list of all the genuine sentences of the lan
guage. Whenever a new candidate string
is proposed, the machine attempts to
match it with each recorded sentence and

reports its success or failure. This strat
egy cannot work for an infinite language.
(In practice it is useless even for a lan
guage that is finite but large.)

The assertion that a language is infinite
deserves careful scrutiny. If the alphabet
of symbols is finite, the language can be
infinite only if there is no limit on the

length of a sentence. For English this is
evidently the case. In the sentence "Neu
trinos arc very, very, very . . . very
small" no limit can be put on the repeti
tions of "very." The sentence may grow

absurdly cumbersome, so that you forget
the beginning before you come to the end,
but there is no definite boundary where
the sequence of words ceases to be a
sentence.

In the case of an infinite programming

language other issues arise—or perhaps
they are the same issues seen more
clearly. Every real computer has only a
finite amount of storage, and compilers
too have limits on their capacity. These

COMPUTER LANGUAGE ! OCTOBER 1985

' i l ^ r v

constraints are important, and they will be
discussed in Part III of this series. For
now it is enough to point out that they lie
in the machinery of the recognizer, not in
the definition of the language. There is
nothing in the grammar of Pascal to forbid
a program of, say, 1025 lines. All that is

lacking is a floppy disk the size of the gal
axy to hold the source code.

Of course no one has ever uttered an
infinitely long sentence or written an
infinitely long program. Moreover, if
such a project should be undertaken, the

recognizer could not render a verdict
because it would never reach the end of
the input. This might seem to undermine
the notion of an infinite language, but it
does not. There is no need to actually gen
erate infinite sentences. It is enough to
state that no matter how long a particular
sentence is, we can always cite another
sentence one word longer. The sentences
of English are inexhaustible; all the fast-

talking salesmen in the world cannot use
them up.

Deep structure
A grammar for an infinite language

requires rules that operate by a more inge
nious mechanism than simple pattern-

matching. The key, it turns out, lies in
seeing a sentence as more than a string of
words; it has, in Chomsky's terminology,
a deep structure hidden beneath the one-
dimensional surface structure.

The deep structure can be represented
as a tree in which the leaf nodes are the
words of the sentence and the organiza
tion of the interior nodes defines how the
words are related to one another. The tree
is generated or analyzed by repeated
application of rules that have been vari
ously named phrase-structure rules,
rewrite rules and productions. The set of
rules makes up the grammar.

A bare-bones grammar for a subset of

English can be given in four phrase-
structure rules:

l .S::=NPVP
2. NP::= Noun
3. NP::= AdjNP
4.VP::=VerbAdv

Here the symbols S (for sentence), NP
(noun phrase) and VP (verb phrase) are
nonterminal symbols that correspond to
the interior nodes of the tree. S marks the
root node, although in complex sentences
it can appear elsewhere as well. Noun,
Verb, Adj and Adv stand for categories of
words, which are the terminal symbols
appended to the leaf nodes. Wherever the
symbol Adj appears, an adjective is
inserted, every instance of the symbol Adv
is replaced by an adverb, and so on. The

symbol .: = has the meaning "can consist
of" or "can be rewritten as." It should
not be confused with the assignment oper
ator := in Pascal.

Rule 1 states that a sentence can consist
of a noun phrase followed by a verb

phrase. More formally, it states that
whenever the symbol S is encountered in

/ I \ I / / \ / I \ / / | \
A d j A d j N o u n V e r b P r e p D e t A d j N o u n A d j A d j N o u n V e r b D e t A d j N o u n

I I I I I I . J \ \ \ \ \ I I I
T h r e e w h i t e l e o p a r d s s a t u n d e r a j u n i p e r t r e e . T h r e e w h i t e l e o p a r d s u n d e r s t o o d a j u n i p e r t r e e .

Tree diagrams for two English sentences reveal that they differ in deep structure despite similarities in surface structure.

Nonterminal symbols of the grammar appear only on interior nodes of the free, and terminal symbols only on the leaves.

B^^^^P^ -= ' ; ^ ;V :a f f ^ f ! p j ^^ j ! R^H .^H!•'•'! -: I. I • • iI ^^H I:II I ' *"I I 'I I !:*11 " 11 I H H •.," ! H H * V - 11 H tfr-v'-

j ^ *

t f * -
i « -

3 .£!•&,.

©•22" & !«

the structure of a sentence, it can be
rewritten as NP followed by VP. Simi

larly, Rule 2 provides that a noun phrase is
allowed to consist of a single noun. There
is a second rule for the noun phrase, how
ever; under Rule 3 NP might also be
expanded to yield an adjective followed by
a noun phrase. The verb phrase, accord

ing to Rule 4, produces a verb followed by
an adverb.

The process of generating a sentence
begins with the start symbol 5, which
appears only once in the grammar, on the
left side of Rule 1. Applying this rule to S

yields the structure NP VP. Expanding
the noun phrase by applying Rule 3 yields

Adj NP VP, and applying the same rule
again leads to Adj Adj NP VP. Suppose the
remaining NP symbol is then rewritten as
Noun by Rule 2, and the verb phrase is
converted into Verb Adv by Rule 4. The
result is the structure Adj Adj Noun Verb
Adv, which cannot be expanded further.
None of the symbols appear on the left
side of a rule.

Words of the appropriate categories can
now be inserted in each position, giving
rise to any one of a great many sentences:
"Big, bad John wept bitterly." "Massless,
chargeless neutrinos tunnel industri
ously." "Colorless green ideas sleep furi
ously." Applying the rules in a different
order would give rise to sentences with a
different structure.

The same set of rules can be employed
to recognize a sentence. If you have found
that part of a candidate sentence can be
represented by the structure Adj Noun,
that part can be reduced to NP by applying
Rule 3 in reverse. If repeated invocation
of the rules (in any order) eventually
reduces the structure to the single symbol
S, the string of words is a sentence.

Rules of the same form can define the

grammar of a programming language
such as Pascal. In this case the start sym
bol is not S but Program, and the top-level
rule might be written as Program :: =
Header Block. The latter symbol could be

expanded by the rule Block:: = Declara-
tionPart Statement Part. Other productions
would expand these symbols in turn and

eventually would lead to the generation of

terminal symbols for the tokens of the

language.
I have expressed these rules in a variant

of the notation called BNF, which origi

nally meant Backus normal form. Here
normal signifies that the rules have been
written in a way that allows them to be
handled easily by a particular kind of

recognizer. John Backus of IBM, the
leader of the group that created FOR
TRAN in the early 1950s, introduced the
notation during the development of
ALGOL-60. It is now generally called
Backus-Naur form to recognize the con
tributions of Peter Naur of the University
of Copenhagen, Denmark, editor of the
ALGOL-60 report.

Extensions to BNF and certain short
hand conventions can make a grammar

specification more concise. In particular,
the symbol | , meaning "or," allows vari
ous alternative productions to be included
within a single rule. Thus Rules 2 and 3
can be condensed into NP:: = Noun | Adj
NP

The rules of a grammar written in BNF
look rather like the statements of a pro

gramming language. The resemblance is
misleading, at least if one has in mind an
ordinary, imperative programming lan
guage such as Pascal. The list of gram
matical rules is not like a Pascal program
because the grammar defines no sequence
of operations. The rules can be written
down and applied in any order.

In the generation or analysis of a sen
tence, a particular rule might be used once
or many times or not at all. On one occa
sion the symbol NP might be rewritten as
Adj NP and on the next as Noun. Choosing
which rule to apply in a given situation is
the major challenge in designing a pro

gram for linguistic recognition.
Although grammar rules cannot be

compared to Pascal statements, they do
resemble constructs of a few other lan

guages, namely, nonprocedural program
ming languages such as PROLOG. Like a
grammar, a PROLOG program consists of
statements that can be invoked in any
order. The statements are not instructions
to be executed but declarations of facts or
relations. Because of this correspondence
it is particularly easy to write a program
for a recognizer in PROLOG; the pro

gram is little more than a specification of
the grammar. SNOBOL provides similar
facilities.

Recursion
How can a grammar made up of a finite
number of production rules generate an
infinite language? The source of this

power is recursion. The potentially end
less series of adjectives generated by Rule
3 represents one form of recursion. A
more elaborate recursive scheme is at
work in the pair of rules:

NP::= Noun | Noun PP
PP::= PrepNP

Here a noun phrase is defined so that it
can include an optional prepositional

phrase (PP), and the prepositional phrase
in turn includes a noun phrase. Each time
NP is expanded into Noun PP, the subse

quent expansion of PP gives rise to
another instance of NP. The interaction of
the two rules can create an infinite cas
cade of prepositional phrases, as in "the
hair of the dog in the lap of the man under
the table in the house on the cliff by the
sea ..." Recursive rules also appear in
the grammar of any nontrivial program

ming language. One entry in a set of rules
defining arithmetic expressions might
read:

Expr :: = Expr Op Expr

where Op is expanded by other rules into
one of the operators +, —, *, and /, and

Expr ultimately yields a variable or a con
stant. A rule of this form accommodates
arbitrarily long expressions because the
generator or recognizer can pass through
it repeatedly, without limit.

Recursion gives a grammar infinite

generative power, but it can also introduce
infinities of a less welcome kind. Con
sider the task of a recognizer attempting
to apply the rule for expressions given

previously. We can personify the "thought
process" of the machine as follows: "I
know I have found an instance of Expr,
the symbol on the left side of the rule, if I
can find in the input string a sequence of

symbols that matches what is on the right
side of the rule. The right side begins with

Expr, and so the first step is to find a sym
bol that could be an expansion of Expr. To

30 COMPUTER LANGUAGE ! OCTOBER 198
t V I i

! I

II

ree wni re leoparas sar |uniper tree.

A d j w h i t e l e o p a r d s s a t u n d e r a j u n i p e r t r e e .

A d j A d j l e o p a r d s s a t u n d e r a j u n i p e r t r e e .

d j A d j N o u n t s a t u n d e r a j u n i p e r t r e e .

N P s a t u n d e r a j u n i p e r t r e e .

N P s a t u n d e r a j u n i p e r t r e e .

\
N P V e r b u n d e r a j u n i p e r t r e e .

N P V e r b P r e p a j u n i p e r t r e e .

N P V e r b P r e p D e t j u n i p e r t r e e .

I
N P V e r b P r e p D e t A d j t r e e .

\
N P V e r b P r e p D e t A d j N o u n .

1 1

N P V e r b P r e p D e t N P
1 1 '

N P V e r b . P r e p N P ,

Recognition procedure employs the grammar given in Figure 1 to
confirm that a string of words is indeed a sentence. First each word,

reading from left to right, is replaced by its syntactic category, such
as adjective or noun. Whenever a sequence of symbols matches a

pattern on the right side of a rule, the sequence is replaced by the

symbol from the left side. Ultimately the entire structure is reduced
5 symbol S. The order in which the rules have

is not the only one that leads to successful rec krifitera

Figure 3.

U i t ' i lH i iTO i ?!mtf9!Ef!{!f£!tt!fl&n\n

a j u n i p e r t r e e .

i d j w h i t e l e o p a r d s u n d e r s a t a j u n i p e r t r e e .

v d j A d j l e o p a r d s u n d e r s a t a j u n i p e r t r e e .

I
I j N o u n u n d e r s a t a j u n i p e r t r e e .

N P u n d e r s a t a j u n i p e r t r e e .

u n d e r s a t a j u n i p e r t r e e .

! ' ! ! ! -

P r e p V e r b a j u n i p e r t r e e .

P r e p Ve r b D e t j u n i p e r t r e e .

P r e p V e r b D e t A d j t r e e .

P r e p V e r b D e t A d j N o u n
1

P r e p V e r b D e t N P1 1 '

P r e p V e r b N P ,

applies.

onsentence is rejected as ungrammatical by the recognition pro-

. The analysis begins as in Figure 3 but gives rise to the stru

P Prep VP; no part of this pattern matches the right side of c

, and so the attempt at recognition ends in failure.

Figure 4.

| . . - J

! ! -. !'_--JI ! I ! • • ! -••'. !

mam mmm

vKl

do that, I can apply the same rule again. I
know I have found an instance of Expr if I
can find. . . ." The machine is in a loop
that has no exit.

Infinite loops in a grammar can be
avoided, but only at the cost of intro
ducing additional nonterminal symbols or
additional rules or both. Various kinds of
recursion may have to be dealt with. The
rule VP:: = VP PP is said to be left-
recursive, and a recognizer employing it
would enter an infinite loop when reading
the input from left to right. NP ::= Adj
NP is right-recursive and would cause
similar trouble for a recognizer reading
from right to left. In general a grammar
can be handled efficiently if it has either
left or right recursion but not both.

Center embedding, in which the recur

sively defined symbol appears in the mid
dle of the production, makes life harder
still. Programming languages avoid such
constructions, but they do turn up in natu
ral languages. For example, "The suspect
the detective followed vanished" might be
taken as evidence for the rule S:: = NP S
VP. (Most linguists, however, would sug

gest a different analysis.)
Having a grammar for an infinite lan

guage is well and good, but what is the
size of the grammar itself? If hundreds of
thousands of rules are needed, the gram-

Stmt:: = Variable : = Expr

Expr ::= Term | Term AddOp Term
Term::= Factor | Factor MultOp Term

Factor ::= Variable | Constant | (Expr)

AddOp : := + | -

MultOp ::= ' | /

sgramming language can also be
fined by a grammar made up of produc-
n rules. The fragment shown here

scribes assignment statements and arith-

itic expressions in a syntax like that of
seal. The rules could be expressed more

ncisely and with fewer nonterminal sym-
ils if it were not for the need to avoid

inite loops in the recognizer. Additional

les are needed to expand Variable and
1 into terminal symbols.

Figure 5.

mar is no more accessible to human com

prehension than the language it describes.
It is like Lewis Carroll's map, drawn on a
scale of a mile to the mile.

For formal languages quite compact

grammars have all the expressive power
needed. The 1974 standard for Pascal

syntax has only 107 rules. Of course Pas
cal is considered a spare language, but
even Ada, with all its chrome trim and tail
fins, is defined by a grammar of roughly
150 rules.

The size of natural language grammars
is harder to assess. A dozen phrase-
structure rules can account for an

impressive variety of English sentences,
but attempts to capture the "last few"
sentences lead to an explosive prolif
eration of rules. (And of course there will

always be a last few yet to be captured.)
One computer grammar of English,

developed by members of the Linguistic
String Project at New York University,
has about 230 phrase-structure rules. At
first this seems quite moderate— after all,

English is at least twice as complicated as
Pascal— but it does not tell the whole
story. The phrase-structure rules are only
part of a grammar that has several other,
larger components. Moreover, the gram
mar is by no means complete; there are
grammatical sentences it could not recog
nize and grammatical ones it would reject.

Transformat ions

It is at this point that formal and natural

languages part company. Phrase-structure
grammars seem to be entirely adequate
for programming languages and other
invented notations, but something more is
needed to describe the sentences people

speak. Conceivably a comprehensive list
of production rules could be compiled for

English—as far as I know, there is no
proof one way or the other—but at best it
would be a long, clumsy, and unillumi-

nating document.
One notable deficiency of a phrase-

structure grammar is that it offers no natu
ral explanation of sentences that appear to
be related even though they differ in both

deep and surface structure. Consider the
following series of sentences:

Miss Lucy called the doctor.

The doctor was called by Miss Lucy.

What Miss Lucy did was call the

doctor.

Calling the doctor is what Miss Lucy
did.

It was Miss Lucy who called the doctor.

It was the doctor who was called by

Miss Lucy.

The one who called the doctor was

Miss Lucy.

The one whom Miss Lucy called was

the doctor.

The one who was called by Miss Lucy

was the doctor.

The one by whom the doctor was

called was Miss Lucy.

At some fundamental level all the sen
tences are synonymous. Even if they have

varying shades of meaning and would be
appropriate in different conversational
circumstances, they all seem to refer to
the same event. In a phrase-structure
grammar, however, each one would be
generated independently and would have
no relation to the others.

To account for regularities of this kind

Chomsky proposed a two-phase grammar.
First conventional phrase-structure rules
would generate a sentence in some basic
form, perhaps akin to the simple declar
ative "Miss Lucy called the doctor." Then

syntactic transformations would rear
range the tree structure, generating the
variations. For example, the passive voice
transformation would exchange the sub

ject and the object to create "The doctor
was called by Miss Lucy."

Syntactic transformations can be
defined in terms of the tree structure,
without reference to the meaning of words.
In this case the subject can be. identified

unambiguously as the noun phrase imme
diately dominated by the root node 5, and
the object is the noun phrase immediately
dominated by a verb phrase that in turn is
immediately dominated by S.

Transformational grammar has not
turned out to be the ultimate and eternal
theory of language, but that has surprised
no one. Newtonian mechanics is not the
ultimate theory of physics, and yet it is not

disparaged on that account. In both cases,

32 COMPUTER LANGUAGE*OCTOBER 1985

where the theory works, it works well.
Within a limited domain trans

formational grammars offer an appealing

parsimony: a vast corpus of sentences can
be generated by a few dozen phrase-
structure rules and an equal number of
transformations. The question is whether
the theory can be extended to take in those
last few sentences without losing its

elegance. Chomsky himself and many of
his colleagues have lately advocated dras
tic revisions, putting less emphasis on
transformations and more on phrase
structure. There is certainly no shortage

-̂ *!'.<!'!:« !+:''!'}.;!•:!;

of problem sentences that do not fit into
the scheme.

One problem common to many gram

mars, transformational and otherwise, has
to do with lexical insertion. I mentioned

previously that when a tree has been gen
erated, words from the appropriate lexical
categories are hung on the leaf nodes.
This description of the process is far too
vague to serve as the basis of a mech
anistic theory. Exactly how are the words
to be selected?

Trying to create an algorithm for lexi
cal insertion quickly reveals that the stan-

A .-4

dard categories of noun, verb, adjective,
and so on are not nearly precise enough.
Cookie and bread are both classified as
nouns, but whereas "I want a cookie" is
perfectly good English, there is some
thing the matter with "I want a bread."

To keep track of such distinctions lin

guists posit a mental lexicon, where each
word is entered along with a list of attri
butes that determine where it can appear
in a sentence structure. (The distinction

operating here is that cookie is a countable
noun and bread an uncountable one.) As
the categories of words proliferate, how-

WimiT^ECj' iit*HC*(»l l*Tn ! i'iT^I* 111111» I [-I-'j-'y-'i f»i f^j ij

Mm Variable

WX333

Variable

Constant

AddOp

MultOp-

yntax diagram, or recursive transition network, expresses the
ame information as the set of rules in Figure 5. Each nonterminal

- '!! ' ' ' ' " t h t h r o u g h t h e d i a g r a

d loops provide fo

Variable

Mu l tOp Te rm

Term AddOp Term

F a c t o r F a c t o r

Variable Variable Constant

|ij iT;f i f I §3 if d I '('-J i it;) <1 i it? (° |rf'» 111 liTl* 1 it'i ° I

î reKt'frt*i;i>a«'S°lfefe« '°tKMWf<.i. lov,

Figure 7.

a complex syntactic structure. Note
even though it is meaningless.

0$-.ir\ii ivi iy ij ty i nm m iy ii.;i_-)«11 v-.i:I;i

PROGRAMMERS'
DBMS
k A \ clbj/ISTA

PREFERRED
over ISAM

t and file utili

ties, POWER
like a mainframe

DBMS, PRICE like a

microcomputer utility,
PORTABILITY like only

C provides.

MS-DOS/UNIX

Clbj/ISTA FEATURES
1 Written in C for C.

Fast BMree indexing method.
Maximum data efficiency using
the network database model.

! Multiple key records—any or all
data fields may be keys.
Multi-user capability.
Transaction processing.
Interactive database access utility.

Ability to import and export
dBASE ll/lll and ASCII files.

! 90 day extended application

development support.

NO ROYALTIES
SOURCE CODE INCLUDED

clbj/ISTA price
Single user without source $195
Single user with source $495
Multi-user without source $495
Multi-user with source $990

MC/VISA/COD

Available for the Lattice, Microsoft,

Computer Innovations, DeSmet,
Mark Williams, and Aztec C compilers

under MS-DOS, and most UNIX systems.

DISCOUNTS ON ALL
LATTICE PRODUCTS

B4IMK
C O R P O R AT I O N

11717 Rainier Avenue South

Seattle, WA 98178, USA

(206) 772-1515 Telex 9103330300

CALL TOLL-FREE
1-800-843-3313

At the tone, touch 700-992.

CIRCLE 60 ON READER SERVICE CARD

a,
s.a«ir>

« * *

ever, one begins to wonder if the elegance
of the basic grammar is not being main
tained simply by pushing all the complex

ity into the lexicon.

Cross currents

Thirty years ago Chomsky brought
together ideas from the study of formal
and natural languages, but the two lines of
work diverged again almost immediately.

Linguists dismissed the formal grammars
as inadequate to account for the structure
of natural language. By the same token,

computer scientists designing program
ming languages or writing compilers have
found little use for transformational gram
mars. Even work on computer inter

pretation of natural language has rarely
drawn on the transformational principles
introduced by linguists.

The two streams may yet converge

again. In linguistics there is currently
much interest in the interplay of syntax
and semantics, in how the perceived struc
ture of a sentence is influenced by the

meanings of words, and in how those mean
ings are governed in turn by sentence
structure. These are issues explored in
some depth by the natural language pro

grams of the artificial intelligence com
munity, and they arise on a more prosaic
level in work with ordinary programming

languages. It requires only a small specu
lative leap to suppose the techniques
developed in the computational approach
might have some bearing on the problems
linguists now face.

Information could also flow in the

opposite direction, although here I launch
into giant bounds of speculation. In com

puter science a hot topic of the moment is
program transformation. The techniques
discussed under this term include both

high-level optimization (replacing a clear
but inefficient algorithm with an opaque
but fast one) and schemes for proving a

program's correctness (for example, by
generating the program automatically
from a specification). The trans
formations studied so far come from logic
and algebra.

Linguists have invested much effort in
building a complex web of interdependent
transformations and deducing the fixed
order in which they must be applied. An

interesting subset of those trans
formations are guaranteed to preserve the

meaning of the underlying sentence,
which is just the property demanded of

program transformations. We are a long
way from having a programming lan
guage defined by a transformational
grammar, but the idea seems worth
exploring.

Whether or not linguists and computer
scientists can be of any use to each other,
natural and formal languages remain cou

pled like shadow and light. The quandary
in trying to understand how the mind rec

ognizes natural language is that the recog
nizer itself is a machine of daunting com

plexity. If a feature of language seems
mysterious, one can always appeal to
some unknown process in the dark cor
ners of the mind. With a language recog
nized by a computer there can be no
recourse to mental hocus-pocus. What

happens in the CPU is certain to be mech
anistic, and in principle it can be under
stood fully. Parts II and III of this series
will examine the basis of that

understanding.

References

Chomsky, Noam. Syntactic Structures. The
Hague: Mouton & Co., 1957. Aspects of the
Theory of Syntax. Cambridge, Mass.: MIT
Press, 1965. [Chomsky's disciples refer to
these books as the Old and the New
Testaments.]

Akmajian, Adrian, and Frank Heny. An Intro
duction to the Principles of Transformational
Syntax. Cambridge, Mass.: MIT Press,
1975. [An entertaining textbook, which
introduces not only the ideas of trans
formational grammar but also the style of
argumentation by which they have
evolved.]

Winograd, Terry. Language as a Cognitive
Process. Vol.I: Syntax. Reading, Mass.:
Addision-Wesley Publishing Co., 1983.
[A thorough account of attempts to make
computers understand natural language.]

Brian Hayes is a writer who works in both
natural and formal languages. Until 1984
he was an editor o/Scientific American,
where he launched the Computer Recre
ations department.

.;•->•/

: ^ V

! ! ! 1 1

! !! i I I

Kl III I I l-

a r i a b l e : = (Y ^ L m

a r i a b l e : = (Y

I
l e : = (V a r i a b l e

, a r i a b l e : = (V a r i a b l e A d d O p

b l e : = (F a c t o r A d d O p

a r i a b l e : = (F a c t o r

/ a r i a b l e : =

Va r i a b l e : =

Va r i a b l e : =

Va r i a b l e : =

Va r i a b l e : =

Var iab le : =

Va r i a b l e : =

Va r i a b l e : =

(F a c t o r

(T e r m

A d d O p V a r i a b l e

A d d O p F a c t o r

A d d O p F a c t o r

A d d O p T e r m

M u l t O p 0
\

Mul tOp Constant

I R i
Mu l tOp Fac to r

* R <

Mul tOp Term

malysis of a program statement succeeds by reducing it to the single symbol Stmt. Th

input is read from left to right and a production rule is applied as soon as any pattern

matching its right-hand side is encountered.

! ! ! ! M m

J o u n V e r b D e t N o u n

I \ 1 1 1
s s L u c y c a l l e '

EH

OBJECT

Verb NP2 *- NP2 [be] Verb [by]

N o u n [b e] V e r b [b y] N o u n

1 1 I 1 M
d o c t o r w a s c a l l e d b y M i s s L u

tactic transformation converts a sen-

nce from the active to the passive voice

while preserving its meaning. The trans

formation can be applied only to a sentence

S matches the pattern NPi Verb NP2

re the two noun phrases can be identi-

with the traditional syntactic categorie

Figure 9.

uHilJ I-Ti»1'M«|iI«1iiL^^«i*

HBHD

- a.- ... t? .
I !

!

• ^ *

