System Review

The HP-41C: A Literate Calculator?

Brian P Hayes

Scientific American

415 Madison Ave

New York NY 10017

Calculator vs Computer

The computer and the programmable calculator seem to be following paths of convergent evolution. As the one is made smaller while the other gains in capability, the line of demarcation between them becomes more and more arbitrary. For now at least, the programmable calculator remains a distinct and lesser species, but it shares many of the attributes of the computer. Moreover, the shared attributes are chiefly the ones that make the computer an interesting machine. Both devices offer an intimate acquaintance with the powers and pleasures of algorithms. Both exhibit an enigmatic unpredictability: the response of the machine to any given stimulus is wholly deterministic, yet the behavior of a large program can be full of surprises, often to the frustration of the programmer.

The HP-41C, which was introduced by the Hewlett-Packard Company about a year ago, is among the programmable calculators that lie closest to the computer borderline. It comes close enough for the jargon of computers to be useful in describing it. At the Corvallis Division of Hewlett-Packard, where the HP-41C is made, they refer to the calculator itself as the "mainframe" and to its accessory devices as the "peripherals." The calculator comes equipped with four input/output (I/O) ports, through which the various elements of the system are interconnected. Because the peripherals do some data processing internally, the system might even be said to have "distributed intelligence."

When compared with a computer, most programmable calculators have a rich instruction set, but they are deficient in memory capacity and in facilities for communication with the user. A calculator comes with such amenities as trigonometric, logarithmic, and statistical functions built in; with a computer, even floating-point arithmetic must usually be constructed out of software. On the other hand, no calculator has the memory needed to store large tables or other data structures. And it is the communication problem that most seriously limits the utility of the calculator. A display that can represent only the 10 digits, a decimal point, and a minus sign does not have much range of expression. Even for problems that have entirely numerical results, such a display is not always adequate, since without labeling of any kind it is easy to become confused about what a number means.

The HP-41C

In the HP-41C, the instruction set is at least the equal of that in any other calculator and the potential memory space is large (although it can never be large enough). The most conspicuous distinguishing features, however, have to do with communications and "human factors" (or, in other words, those things that aid in writing programs and in interpreting their results).

All three of the peripheral units now available serve to get information into or out of the HP-41C; they are a printer, a magnetic-card reader, and a wand for reading bar codes. But perhaps the most significant innovation of all is in the calculator itself: a liquid-crystal display that can represent not only numerals but also the complete uppercase alphabet and a few lowercase letters and other
symbols. The letterforms are crude but perfectly legible; what they bring to the calculator is literacy, and it makes all the difference in man-machine relations.

The architecture of the HP-41C is not fundamentally different from that of its predecessors in the Hewlett-Packard line. There is a four-level stack of registers where pending operands are generally held; other registers are identified by a 2- or 3-digit address. The internal memory consists of 63 registers, but this number can be increased by plugging memory modules into the ports. Each module adds 64 registers, so that a full complement of four modules yields a total capacity of 319 registers; with all the ports occupied, however, no peripheral devices can be connected.

The memory available can be divided in any way desired between data storage and program storage. When allocated to data memory, a register holds a single floating-point number (10-digit mantissa and 2-digit exponent). Program capacity is more difficult to measure because instructions have varying space requirements. Without extra memory and with a reasonable allowance for data storage, the maximum for an unassisted HP-41C usually falls between 150 and 200 program lines. By adding three modules and keeping the same data space, the program capacity is expanded to about 1200 lines.

An additional wider register is dedicated to alphabetic operations. Up to 24 characters can be accumulated in the alpha register, although only 12 at a time fit in the liquid-crystal display; the extra characters scroll in to the left, marquee-style. The alphabetic capability is not a mere frill. The extent to which it is called upon in the everyday operation of the calculator can be illustrated by considering one of the curious challenges of calculator design.

Mnemonic Functions

The problem is that most scientific calculators have more instructions than they have keys; in the case of the HP-41C, there are more than 130 instructions and only thirty-five keys. A *shift* function doubles the number of distinguishable key sequences, but that still leaves almost half the instruction set without a home on the keyboard. Rather than further increase the number of keys or the number of shifted modes, Hewlett-Packard has adopted a solution familiar in larger systems: all instructions, whether or not they appear on the keyboard, can be executed by spelling out their mnemonic in the display. Programs resident in memory and instructions associated with peripheral devices can be executed in the same way.

Execution of a mnemonic label has the significant advantage of eliminating all dependence of the instruction set on the layout of the keyboard. It also has certain potential drawbacks that the designers of the HP-41C have gone to some lengths to remedy, largely by exploiting the alphabetic display. For example, if the spelling of a mnemonic is forgotten, a complete listing of the instruction set can be called up by the CATALOG function.

Another objection is that repeatedly spelling out a function can be tiresome on a keyboard smaller than the human hand. This burden has been relieved by the radical strategy of allowing all the keys to be redefined by the user. Any instruction (with the exception of a few program-editing pseudoinstructions) and any program can be assigned to any key.

The fluid indeterminacy of the keyboard leads to a further possible complaint: the user may lose track of what function has been assigned to a particular key. Two devices come to the aid of the forgetful. A keyboard overlay slides into place to relabel the keys according to the chosen assignments; if several programs require different key assignments, a separate overlay can be made up for each one. The second aid is more elegant: the current function of any key can be verified merely by pressing the key and holding it down a moment. The mnemonic of the function appears in the display. If the key is released, the function is executed; otherwise, the word "null" appears and the command is canceled.

[A third aid to the use of the HP-41C keyboard is the selection of the user/standard mode. The key redefinitions are valid only when the calculator is in the user mode. To use a key that has been redefined for its original function, the user has only to press the USER key to toggle the calculator back to its standard mode. In the standard mode, the HP-41C behaves as it would before any keys were assigned, thus giving the user the best of both worlds. . . . GW]

Further Features for the Programmer

The versatility of the liquid-crystal display is exploited in several other ways to make the HP-41C friendly and fool-resistant. A row of indicators below the main display provides various indications of mode and status. Error messages can be reasonably explicit: an attempt to divide by 0 elicits "data error," and a number greater than 10^9 is flagged as "out of range." When a conditional

REMOTE I/O

Control AND monitor remote devices
Real time clock/calendar included

- An AC carrier communications I/O interface for the APPLE II* computer. Output communications operate up to 256 BSR System X-10* control modules. Input communications come from the X-10 command console, and temperature and security input modules, soon to be available from Intelligent Control Systems, Inc.
- Software routines are provided to handle the AC I/O, to set, read, and display the real time clock, and a background schedule control program. 4 selectable interrupt rates allow machine language programs to run simultaneously with other programs.
- Real time clock provides sec, min, hour, date, day of week, mo, and year. Rechargeable battery runs clock when APPLE is off.
- Intelligent Control Systems, Inc.
- PO BOX 14571•MPLS, MN 55414•(612) 699-4342

* Trademarks-APPLE II: Apple Computer Inc., System X-10: BSR Ltd.
* See your APPLE dealer for a demonstration...$185 sugg. retail

January 1981 © BYTE Publications Inc

Circle 71 on inquiry card.
test, such as "X = 0?", is executed from the keyboard, the display answers the question "yes" or "no."

Alphabetic text can also have a valuable role within a program. How it is employed is largely up to the programmer, but two obvious uses are prompting for inputs and labeling outputs.

Even with the best of keyboard technologies, entering a long program is inevitably tedious. A feature of the HP-41C that helps in avoiding needless repetition of effort is a continuous memory, which maintains all data and programs even when the calculator is turned off. Key assignments, the settings of flags, and other status information (such as the angular mode) are also preserved. A program that is run frequently can be kept in the calculator. Memory resources are finite, however, and on occasion a program must be cleared to make room for another and later reloaded. It is for such purposes that the magnetic-card reader and the bar-code reader are intended.

Using Cards

The magnetic-card reader, which occupies one port, is a small unit that clips onto the top of the calculator and can be left in place. The cards are the standard 1 by 7 cm magnetic strips (slightly smaller than a stick of chewing gum) that are also employed by the HP-67 and HP-97 and by some Texas Instruments calculators. They are inserted in a slot at the side of the reader and pulled through by a motor for retrieval on the other side. Each card has two tracks and each track holds the contents of 16 registers, which can be either data or programs. A long program requires several cards, and a routine that saves the state of the entire machine sometimes calls for a whole deck of them.

Cues provided by the calculator make operations with the cards almost mindless. When writing a program onto cards, a message in the display indicates how many tracks will be needed; when reading a program, the same message gives the lowest-numbered track that has yet to be read. The cards can be inserted in any sequence, and the information is sorted out internally. A defective card or an unsuccessful pass through the slot generates an appropriate error message.

Cards can be both written and read at the command of a running program. For example, a data card might be requested during an initialization routine, and new values might be written onto the card at the end of a calculation. Or one of several possible subroutines might be appended to a running program once the program had determined which subroutine was needed. Unfortunately, all these procedures still require human intervention for the actual insertion of the card. Thus, the user must attend the machine and feed it by spoonfuls on demand.

An amusing feature of the card reader is its ability to create "private" program cards. When such a card is read back into the calculator, the program appears in the catalog and becomes available for execution, but it cannot be examined, modified, or copied onto another card. Any attempt to do so is blocked by the imperious message "private." The security measures seem to be effective (although I have not worked seriously at penetrating them); how often they will be needed is another question. In the realm of very-small-scale systems, the major worry is theft of hardware, not software.

Software Compatibility

The introduction of a new model computer often raises questions of software compatibility. In this case, Hewlett-Packard has made the new machine compatible with the old software by including a translator routine in the card reader. Magnetic cards written on the HP-67 or HP-97 can be entered into the HP-41C and, with no intervention by the user, will be converted into HP-41C programs. Thus, the machine has access to the large body of software written for the earlier calculators, including more than 3000 programs in a users' library administered by Hewlett-Packard.

An incidental benefit is the addition of more than a dozen instructions peculiar to the HP-67 and HP-97 that become available on the HP-41C whenever the card reader is plugged in, even though most of these instructions have nothing directly to do with card operations. For example, there is a block-memory swap that comes in handy occasionally.

Bar-Code Wand

One drawback of magnetic-card recording is the cost of the medium: roughly fifty cents a card, plus the considerable expense of the card reader itself. There is also the delicacy of the iron-oxide surface, which necessitates careful storage and the maintenance of duplicate copies for backup. A second input device for the HP-41C, the bar-code reader, relies on the most inexpensive of all known storage media, ink on paper. The reader is a
hand-held wand similar to a general-purpose one introduced some months ago (the Hewlett-Packard HEDS-3000), but it has an interface and a plug specifically adapted to the HP-41C.

With programs encoded and printed by Hewlett-Packard, the wand works extremely well. A line of code can be scanned in either direction, although multiple lines must be read in sequence. The calculator display prompts for the lowest-numbered line not yet read. Even more helpful is audible confirmation. After each successful pass, the calculator emits a high-pitched beep; a failure results in a lower-pitched tone. The speed and orientation of the wand are not critical, and with practice the success rate becomes quite high.

The wand can also do a few things besides the straightforward loading of programs. Individual instructions can be executed from a "paper keyboard" (which is a table of bar codes, each of which is a single HP-41C instruction); data can be entered directly into designated storage registers; subroutines can be appended and programs merged. One wand function, instead of translating the scanned bar code into HP-41C operation codes, displays the actual binary value represented by the bars.

Printed machine-readable code is an ideal medium for the mass distribution of programs, and Hewlett-Packard will reportedly make all its software for the HP-41C available in this form. Programs from the users' library will also be offered in bar code, presumably at a lower price than programs on magnetic cards. For frequent users of such prepared software, bar code seems to be the medium of choice.

The situation is somewhat different, however, for those whose main interest is in writing their own programs rather than in running other people's. The trouble is that bar code, for now, remains largely a one-way channel of communication.

It is possible to assemble by hand a bar-code representation of a program. The basic materials are adhesive labels, each bearing the code for a single instruction or a single numeric or alphabetic character. [The "paper keyboard" can also be photocopied, with a program being created by cutting and pasting photocopied bar-code keystrokes. . . . GW] A long program, however, would require several hundred labels; moreover, they must be scanned as a series of many short strokes. The ability to reproduce the program by photocopying might sometimes compensate for this inconvenience, although the wand owner's manual warns that such copies may not always give acceptable results. (Three copying machines I tried all produced readable images, although the error rate was somewhat higher than with originals.)

For those who have access to a computer system that includes a daisy-wheel printer or a plotter, Hewlett-Packard will supply programs in BASIC or FORTRAN that will generate bar code in the HP-41C format. A far more appealing method would be to produce the bar code on the printer in the HP-41C system; if that could be done, the wand might entirely displace the magnetic-card reader. The HP-41C printer can readily be made to generate patterns that superficially resemble bar codes. In several weeks of experimenting, however, I have been unable to persuade the wand to recognize those patterns

Micros aren't just for games anymore...
AARDVARK gets down to brass TAX.

AARDVARK SOFTWARE takes home computer use one practical step further with "Personal Tax," a federal income tax program designed specifically for home use.

"Personal Tax" was developed by CPA's and computer professionals. It will calculate Federal Forms 1040 and 4726, as well as schedules A, B, G, and TC. The program features multiple entries for a variety of inputs (e.g. wages, dividends and charitable contributions). An indexed instruction manual and easy-to-follow input forms are included.

"Personal Tax" computes quickly and accurately, then displays or prints the totals automatically (using a standard printer interface). You simply copy the totals onto your IRS forms.

This spring, use your microcomputer to simplify your taxes and file with confidence! You won't have to spend half of your refund either. The "Personal Tax" program is very affordable at only $75.

"Personal Tax" will run on: Apple II, TRS-80 Models I and II, and OSI. Additionally, under CP/M, the program will run on Vector Graphics, North Star and Cromemco.

Minimum machine requirements:
48K and one disk drive.

Send check or money order, or, write us for more information.

AARDVARK SOFTWARE INC.
The Microcomputer People for Professionals
783 NORTH WATER STREET MILWAUKEE WISCONSIN 53202 414/289-9988

Micros aren't just for games anymore...
AARDVARK gets down to brass TAX.
WHERE TO GET IT: Ask your nearest Sorcerer dealer to see Qualify Software's Sorcerer TANK TRAP by Don Ursem $11.95

Other game programs:

SOFTWARE INTERNALS MANUAL by Vic Tolomei. A 64-page book $14.95

Versions for 8K, 16K, 32K, and 48K Sorcerer all on one cassette. Requires the Sorcerer's Save backup files on tape at 1200 baud. Load and merge files from tape by file name. For listings. Built-in serial driver. Stop and restart listings. Abort assembly with the ESC key directly from EDIT to MONITOR or DDT80 modes and automatically set up the I/O you want for it. Change a character string wherever it occurs. Simple commands allow you to jump for listings. Includes a separate program for constructing images.

$29.95

SPECIAL DRIVE UNIVERSITY by Bob Pierce. Convert your Sorcerer to a smart terminal. Used with a modem, this program provides the capability for you to communicate efficiently and save connect time with larger computers and other microcomputers. The program formats incoming data into a file in RAM. Files, including programs, may be saved to or loaded from cassette. Listed on the video, transmitted out through your modem, or edited with an on-board text editor. Interfaces with BASIC and the Word Processor.

$49.95

DSXra (Development Pac Extension) by Don Ursem. Serious Z80 program developers will find this utility program to be invaluable. Move the line pointer upward. Locate a word or symbol. Change a character string wherever it occurs. Simple commands allow you to jump directly from EDIT to DDT80 modes and execute the DDT80 command.

$29.95

NEW! THE RIME "SORCERER" has been trademarked by Enidy, Inc.

The mere possibility of obtaining hard copy greatly enhances the utility of the calculator.

The Printer

The printer is easily the most engaging component of the HP-41C system. The mere possibility of obtaining hard copy greatly enhances the utility of the calculator, since it relieves the operator of the need to transcribe results as they become available. The printer for the HP-41C does more than that: it will reproduce anything that appears in the display and much else besides.

The print mechanism is a thermal, dot-matrix one; 24-character lines are printed on rolls of heat-sensitive paper about 6 cm wide. There is a standard set of 127 characters, including full uppercase and lowercase alphabets, the ten numerals, a few Greek letters, and miscellaneous other symbols and punctuation marks. All characters can be printed in a standard 5 by 7 matrix or in a double-width format. A few of the standard calculator instructions trigger printing and, in addition, the printer has its own repertoire of about twenty-five instructions.

Programs can be listed in their entirety, or a designated number of lines can be printed out; in either case, the listing shows the same mnemonics that appear in the display. The path followed by the calculator through a program being executed can be traced, providing a record of all instructions and operands; this is a useful facility when the program does not function as expected. The contents of the operand stack can be printed out with a single command; so can the contents of all allocated memory registers, or of a defined block of registers. In addition, assignments of nonstandard functions to the keyboard and the status of all flags can be listed. All of these functions can be executed manually or within a program.

The most commonly invoked print functions are those that print the contents of the X register (roughly equivalent to an accumulator), the alpha register, or a print buffer. The variations offered by these instructions allow the output of a program to take almost any format within the physical capabilities of the printer. The main limitations are the time and space the programmer wishes to dedicate to format commands. It is easy to list a series of variable names, each followed by a colon or an equals sign and a value. Tabulating two or three columns of numbers so they line up vertically on their decimal points reliably. The printer output itself, which is made up of blue or purple characters, is not recognized at all by the wand, and photocopies give erratic results.

Even if the problems of color, contrast, and resolution could be solved, there would remain other impediments. The bar pattern for most of the instruction codes exceeds the capacity of the print buffer; what is more, with no means of summoning up operation codes from program memory, printing the bar-code representation of a program would necessarily entail manual translation. With the system in its present configuration, bar-code output from the printer does not seem to be practical, although it is tantalizingly close.
demands a somewhat larger investment of program memory and execution time.

The dot-matrix print head is a single vertical row of print elements that sweeps across the paper forming characters as a series of columns (see table 1a). A special set of printer instructions brings this process under program control so that nonstandard characters can be created. Indeed, the printer reproduces any pattern that can be defined by a matrix 7 dots high and no more than 40 dots wide. If the pattern fits in a 7 by 7 box, it can be treated as a special character, stored in a register, and called up as needed. In principle, a complete font could be built up in this way, although its usefulness might be somewhat impaired by the limited capacity of the print buffer: only 6 special characters per line can be printed. A more practical application is the creation of schematic symbols and markers, such as playing-card suits, chess pieces, or the phases of the moon (see table 1b).

Another capability of the printer is the plotting of graphs for any function that can be expressed in the form \(y = f(x) \). The graph is drawn under the direction of a program called PRPLOT (print plot), which is committed to read-only memory in the printer. When PRPLOT is executed (see listing 1), it first asks the user to supply certain information that determines the form of the graph, such as the range of \(x \) and \(y \). It then calls on a named program, also supplied by the user, that for each given value of \(x \) must return a value \(f(x) \). The resulting graphs cannot compare to the product of an \(x,y \) plotter, but they can be run off quickly and are adequate for gauging the basic form and range of a function. PRPLOT can also be executed from within a program without the prompting for input values, and various parts of it can be called independently.

Programming with Labels

An organizing principle of programs for the HP-41C is that all references and transfers of control are made by means of *labels*. The name given to a program constitutes a global label, one that can be accessed from any point in program memory. By invoking the name, a program can be called as a subroutine and can even call itself, although there are limits to such recursion.

Labels within programs are generally local, so that the same labels can be repeated in different programs without interference. Subroutine calls and branches can be made only to a label; there is no absolute addressing by line number. As a result, all programs and procedures within programs can be relocated at will. Lines can also be freely inserted or deleted without adjusting references elsewhere.

Instructions that require an address or a numerical argument can be given it either directly or indirectly. The addressing modes are uniform for all memory operations, subroutine calls, branching, loop control, the setting, clearing, and testing of flags, and even such functions as setting the display format and determining the pitch of the beeper. A subroutine is called by the XEQ (execute) function, which must be followed by a local label or the name of a program.

If the instruction is an indirect one (XEQ IND), the 2-digit number that follows is interpreted as the register number. As a result, all programs and procedures within programs can be relocated at will. Lines can also be freely inserted or deleted without adjusting references elsewhere.

Conditional tests of numerical data include various combinations of “less than,” “greater than,” “equal to,” and “not equal to”; alphabetic strings can also be compared, but only for equivalence. All the tests have the same format, in which a false result causes the instruction following the test to be skipped. Tests of flags (set or clear) employ the same scheme. The complement of fifty-six flags seems particularly generous. Eleven flags are completely unencumbered for use in programs; the rest control the status of the HP-41C and its peripherals, thereby affording the calculator a valuable amount of self-knowledge.

Loops

The control of loops in HP-41C programs is facilitated by two instructions that store all the needed information in a single register. The instructions, ISG (increment, skip if greater) and DSE (decrement, skip if equal), refer...
directly or indirectly to a register holding a number of the form nnnnnn.tttccc. Here nnnnn is the number to be tested, ttt is the value against which it is tested, and cc is the amount by which nnnnn is incremented, or decremented. The compacted form is a convenience, although I find it odd that the incremented number has a range of up to 99,999, whereas a jump must take place whenever it exceeds 999.

Other Programming Features
The HP-41C cannot realistically be said to support structured programming, not as I understand the term. The rule that all procedures should have a single entry point and a single exit, which is one of the precepts of structured programming, cannot be observed without extreme awkwardness. On the other hand, the program-control structures of the HP-41C strongly encourage the composition of modular programs, where each procedure is a self-contained unit, small enough to be fully understood and capable of being tested independently. In a program longer than a few hundred lines, some such technique for imposing order is obligatory.

In the end, the capabilities of the HP-41C can be exhibited best by real programs and their output. A few short utility routines and a longer program, called CHART, are given in listings 2 and 3. CHART, which incidentally shows off to good advantage the versatility of CHART, is a self-contained unit, small enough to be fully understood and capable of being tested independently. In a program longer than a few hundred lines, some such technique for imposing order is obligatory.

In the end, the capabilities of the HP-41C can be exhibited best by real programs and their output. A few short utility routines and a longer program, called CHART, are given in listings 2 and 3. CHART, which incidentally shows off to good advantage the versatility of the printer, produces a bar graph, a form of display that is more appropriate for some kinds of data than the line graphs of PRPLOT.

The main program in CHART (listing 2), which is confined to the first 20 lines, is little more than a list of XEQ statements. It first prompts the user for needed information, then does some preliminary calculations and prints a header that will identify the graph. An external program (see listing 4) is then called once for each bar; it is expected to return a value defining the length of the bar and a label of not more than 4 characters.

It is worth noting that the actual calculation of the bar length is a trivial operation. The bulk of the program is taken up with input and output routines, which are intended to minimize the burden on the user's memory and faculties of interpretation. A bar graph generated by the CHART program is shown for data on the distribution of digits obtained from the RDM LN pseudorandom-number generator; see listing 5.

Next Generations
What more can one ask for in a programmable calculator? Quite a lot; there is much to look forward to in the next generation. More memory is always near the top of such a wish list. One way of supplying it, which might be compatible with the present mainframe, would be in a double-density memory module. The entire address space could then be utilized without filling all the ports.

The very existence of ports inspires thoughts of other Text continued on page 136
Listing 2: A bar-graph program. CHART, the HP-41C program for generating bar graphs, is written as a series of modules. The first of these prompts the user to supply certain initial information that will determine the form of the graph. An alternative entry point, CHARTP, is intended for occasions when the bar-graph routine is called from another program; this entry point bypasses the prompting. For each bar drawn, CHART calls on a user-supplied program, which must return two items, the value to be plotted in the X register and a label for the bar no more than 4 characters long in the alpha register. The bar is actually formed in subroutine 08 of a standard character and additional print columns for fine adjustment of the length.

Main calculation and printing of bars. Calls a user program whose name is stored in register 11.

Initialization; can be executed from the keyboard by pressing "A."

Calculate absolute position of axis; if beyond the range of the graph, axis is suppressed.

Print identifying header: "Plot of 'PGM NAME'"

Print labels for X and Y axes.

Labels axis within graph, if it has not been suppressed.

Accumulates markers for the extreme points and the axis in spaces between bars.

Master subroutine for accumulating and printing a bar. Checks if the length is zero; if so, executes LBL 07. Checks if the length is

Listing 2 continued on page 134
Listing 2 continued:

\[\begin{align*}
284+ & \text{LBL 16} \\
285 & \text{1} \\
286 & \text{XY?} \\
287 & \text{RTN} \\
288 & \text{X=Y?} \\
289 & \text{RTN} \\
290 & \text{42} \\
291 & \text{RCDL} \\
292 & \text{RTN} \\
293 & \text{121} \\
294 & \text{RDN} \\
295 & \text{122} \\
296 & \text{RDN} \\
297 & \text{123} \\
298 & \text{RTN} \\
299 & \text{124} \\
\end{align*} \]

Calculates the length of the bar.

\[\begin{align*}
243 & \text{*} \\
244 & \text{FIX 0} \\
245 & \text{RXD} \\
246 & \text{FIX 2} \\
247 & \text{RTN} \\
248 & \text{246+LBL 11} \\
249 & \text{ABS} \\
250 & \text{258 SF 25} \\
251 & \text{LOG} \\
252 & \text{252 CF 25} \\
253 & \text{INT} \\
254 & \text{5} \\
255 & \text{+} \\
256 & \text{7} \\
257 & \text{*} \\
258 & \text{RTN} \\
259 & \text{259+LBL 12} \\
260 & \text{135} \\
261 & \text{261 RCL 18} \\
262 & \text{+} \\
263 & \text{263 SKPCL} \\
264 & \text{ADV} \\
265 & \text{265 RKCDL} \\
266 & \text{ADV} \\
267 & \text{267 RDN} \\
268 & \text{268+LBL 58} \\
269 & \text{ADV} \\
270 & \text{ADV} \\
271 & \text{271 BEEP} \\
272 & \text{272 END} \\
\end{align*} \]

HARD DISK MULTIPLEXOR

FOR THE TRS-80® Mod II

NOW YOU CAN HAVE THAT LARGE COMMON DATA BASE!!

- Allows up to 4 Mod II's to connect to a single controller - up to 4 hard disk drives per controller. Users may access the same file simultaneously (first-come, first-served).
- Uses CeMo controller and standard 10-megabyte cartridge (hard disk) drives along with HARDSoft/Disk System (HSD) software.
- Access times 3 to 8 times faster than floppy. MIXed floppy/hard disk operation supported.
- Compatible with your existing TRS80 programs - you need only change filenames! BASiC statement ident1cal.
- A single file may be as large as one disk. Alternate mode allows 24-million byte record range. Directory expandable to handle thousands of files.
- Includes special utilities - XCOPY for backup and copies, XPURG for multiple deletions, DOS catalog system, and Hard Disk Superzap. FORMAT utility includes options for specifying sectors/gran, platters/drive, logical disk size, etc.

HARD DISK DRIVE & CONTROLLER $995 RACET HSD Software $400

Call for multiuser pricing. Dealers call for OEM pricing.

BASIC LINK FACILITY "BLINK" $25 Mod I, $50 Mod II

Custom Link from one BASIC program to another saving all variables! The new program can be smaller than the original program in memory. The chained program may either replace the original program, or be merged by statement number. This statement number where the chained program execution is to begin may be specified!

(Mod I Min 32K 1-disk)

INFINITY BASIC (Mod I Tape or Disk) $49.95

Extends Level II BASIC with complete MATRIX functions and 50 more string functions. Includes RACET machine language sorts! Sort 1000 elements in 9 seconds!! Select only functions you want to optimize memory usage.

INFINITY BUSINESS (Requires INFINITY BASIC) $29.95

\[\begin{align*}
* \text{TRS-80 IS A REGISTERED TRADEMARK} \\
\end{align*} \]

t ^ H r ^ B B ^ m m M

t ^ H ^ M I B M

\[\begin{align*}
\end{align*} \]

See unique utilities - XPURG, XCOPY, SUPERZAP are used to reconstruct or recover data from bad diskettes! XCOPY provides multi-file copies, 'Wild-card' mask select, absolute sector mode and other features. SUPERZAP allows examine/change any sector on diskette include track-0, and absolute disk backup/copy with recovery. DCS allows consolidate directories from multiple diskettes into a single display or listing sorted by disk name or file name plus more. Change Disk ID with DISKID. SEEK and FIND functions for V ariables, Line Numbers, Strings, Keywords. 'All' options available for line numbers and variables. Load from BASIC - Call with 'CTRL'N. Output to screen or printer!

DISK Sort/Merge for RANDOM files. All machine language stand-alone package for sorting speed. Establish sort specification in simple BASIC command file. Execute from DOS. Only operator action to sort is to change diskettes when requested! Handles multiple diskette files! Super fast sort times - improved disk I/O times make this the fastest Disk Sort/Merge available on Mod I or Mod II.

(Mod I Min 32K2-drive system. Mod II 64K 1-drive)

UTILITY PACKAGE (Mod II 64K) $150.00

Important enhancements to the Mod II. The file recovery capabilities alone will pay for the package in even one application! Fully documented in 124 page manual! XHIT, XGAT, XCOPY and SUPERZAP are used to reconstruct or recover data from bad diskettes! XCOPY provides multi-file copies, 'Wild-card' mask select, absolute sector mode and other features. SUPERZAP allows examine/change any sector on diskette include track-0, and absolute disk backup/copy with recovery. DCS builds consolidated directories from multiple diskettes into a single display or listing sorted by disk name or file name plus more. Change Disk ID with DISKID. XCREATE facilitates files and sets the 'LOP' to end to speed disk accesses. DEBRID adds single step, trace, subroutine calling, program looping, dynamic disassembly and more!

DEVELOPMENT PACKAGE (Mod II 64K) $125.00

Includes RACET machine language SUPERZAP, Apparil Disassembler, and Mod II interface to the Microsoft "Editor Assembler Plus" software package including uploading services and patches for Disk I/O. Purchase price includes complete copy of Editor Assembler + and documentation for Mod I. Assemble directly into memory, MACRO facility, save all or portions of source to disk, dynamic debug utility (ZBUG), extended editor commands.

COMMAND PROCEDURE (Mod I - Disk only) $19.95

Command Processor. Auto your disk to perform any sequence of instructions that you can give from the keyboard. DIR, FREE, parse, wait for user input, BASIC, No. 8 commands, etc. SELECTS disk, MODIFY disk, respond to input statements, BREAK, return to DOS, etc. Includes lowcase driver, debugr, screenprint!
Text continued from page 130:

peripheral devices. A cassette recorder could provide mass storage and would make feasible operations on large blocks of data. An x,y plotter could be driven very efficiently by the HP-41C, albeit at a leisurely pace. With a fairly simple interface, it should be possible to connect the calculator to a computer system. The likelihood that any of these products will ever be forthcoming is unknown. It is probably too much to ask that Hewlett-Packard release technical information on the signals available at the ports so that others could develop plug-compatible devices. Some intrepid experimenter with a logic probe may do it anyway.

There are a few gaps in the instruction set of the HP-41C that should not be perpetuated in future calculators. For example, there are tests for $x < y$, for $x \leq y$ and for $x > y$, but there is no test for $x \geq y$. Of course, any desired logic function can be fabricated out of the existing instructions, but the programmer should not have to go to that trouble and should not have to remember which of the tests is the missing one.

The most fundamental defect in the architecture of the HP-41C, inadequate numerical precision, is a serious flaw indeed. Numbers are represented, both internally and in the display, with 10 decimal digits; there are no guard digits. As a result, inaccuracies are quite often introduced into the least-significant digit. For example, $(\sqrt{2})^2$ is evaluated by the calculator as 1.999999999. For operations on some data, the corruption goes still deeper and 2 or 3 digits become suspect. There is something absurd about the world’s fanciest calculator not being able to give results accurate to more than seven or eight decimal places.

Actually, a subsidiary problem is more serious than that. Conditional tests on data are carried out on the full 10-digit representation. Consequently, a test that effectively asks "Is $(\sqrt{2})^2$ equal to 27" will give a false result, which can lead a program far astray.

Listing 3: Utility routines for the HP-41C. These two routines are the kinds of programs that can remain in memory as resources to be drawn on by other programs, somewhat like macro instructions in an assembly language. BAR simply prints a heavy bar across the width of the paper to separate different kinds of information. TAB handles the spacing of numbers to be printed in vertical columns. It must be supplied with the number to be printed (in the X register) and the number of character spaces to be measured from the present position in the line of print to the decimal point. TAB was employed in formatting the random-number data in listing 2.

```
Listing 4: Random-number routines for the HP-41C. These two random-number generators, standard coding exercises for programmable calculators, both calculate a pseudorandom real value, then select a single pseudorandom digit for return to the calling program. RDM LC employs the standard linear-congruential method, which has virtues and failings that are well understood. In this example, $R_{*}$, is defined as $1/(24,298R_{*}+99,991)$ and $199,991-$. RDM LN is an algorithm the author stumbled upon but has not seen in the literature. $R_{*}$, is defined as $1/\ln R_{*}$. Experimental runs of up to several thousand iterations have given good results, but the behavior of the algorithm is not understood. A sample test is shown in listing 5.

```

NOW... Continuous Checks
That Can Be Used With or Without Your Computer!
The Best in A Home Checking System

That’s right. Continuous Checks in a 2-to-a-page desk set design that can be computer printed or handwritten - just as you now do your present home checks.

VERSATILE
Our checks are not a high-volume business form adaptation. They’re especially designed for the home or low volume user. Now, you don’t have to change your check writing habits just to use your computer.

THOUGHTFUL FEATURES
Programming? Easy. All stub and check information is on the same line. No need to change tractor width either. Our checks are standard 9½" width for tractor feed printers.

COMPLETE HOME SYSTEM
When you've finished printing your monthly checks on your computer, store your checks and stubs in our attractive Data Ring Binder Checkbook. Later, if you have a few checks to write there’s no need to feed them into a printer - just write a check right there at your desk as shown above.

And, you can mail your checks in our dual windowed envelopes to eliminate addressing chores.

UNIQUE
You won't find checks like these at any bank or forms company. Even so, our special small quantity printing process will give you quality and appearance equal to any check supplier. Color co-ordinated imprinting is standard on blue, grey, tan, or green checks. Standard imprinting and encoding is as shown above (logos and multi-color printing are optional).

Our prices are reasonable too. Two Hundred checks are just $29.95 (envelopes $11.95). Five Hundred checks are $49.95 (envelopes $23.95). Data Ring Checkbooks are only $8.95. Special "ORDER NOW" Offer If you order now, we'll send you a checkbook FREE. You'll save $8.85. Just enter a guided check (for encoding information) with your payment. VISA - MasterCharg orders must show signature, expiration date, and account number. Or, send today for samples (enough, we can’t make this free offer on requests for samples) To:

SYNERGETIC SOLUTIONS
4715 SHEPHERD RD.
MULBERRY, FL
33860

Circle 85 on Inquiry card.
Before you buy the programs that your company is going to depend on for its accounting, ask the following questions:

- Do I get the source code? (Don't settle for less. You cannot make the smallest change without it.)
- Is it well documented? (The Osborne documentation is the best.)
- Is it fully supported? (If not, why not? What are they afraid of?)

The Osborne system is the industry standard accounting package, with literally thousands of users. We offer an enhanced version of that package that will run on most systems without recompiling.

CRT INDEPENDENCE. The original programs were designed to run on a Hazeltine terminal. To use a different CRT, you had to modify and test two modules — and recompile every program! With the Vandata package, you simply pick your CRT from a menu and run.

FILE/DRIVE MAP. The original package had all data files on the same drive as the programs. Ours allows you to dynamically specify the drive assigned to each file. In fact, you can change the drive assignments whenever you wish, to accommodate expanded file sizes or new hardware — all without recompiling!

INTEGRATION. The original AR and AP systems had to be changed and recompiled to feed journal entries to GL. Our installation program eliminates this hassle. It simply asks you if you want the systems integrated, and what your special account numbers are.

SPEED. The original programs used a binary search to access the GL account file. We use an enhanced technique that greatly cuts down on disk accesses, thus speeding up accounting. We use an enhanced technique that greatly cuts down on disk accesses, thus speeding up account

BUGS. We have corrected a number of bugs in the original programs. If you find a bug in our programs, we'll fix it — and send you a $20 reward! Our users are sent bug fixes in source form.

MORE! We have made many minor enhancements, and fixed many minor problems. We are committed to the ongoing support of our package. Vandata has been an independent supplier for over seven years. Quality and support are our way of doing business.

Statistics

CHI SQUARED	6.8240
HIGH/LOW	1.8593
ODD/EVEN	8.9935

It is easy to imagine that some programmable calculator evolved from the HP-41C would have instructions much like those of a higher-level language. Having introduced named programs, the next obvious step is named variables, which will relieve the programmer of much tedious worry over memory allocation. Let the machine keep track of where the numbers are; it does so much better than people can. The existing conditional tests, which act directly on particular registers, might be recast as a more general if . . . then . . . else construction, employing the named variables. Also, do . . . while and repeat . . . until commands would be a welcome addition; indeed, the loop-control instructions of the HP-41C already come close.

One essential capability must be added to the calculator before such higher-level commands can be made available. A higher-level language is a program whose output is another program, and so it is necessary that instructions be allowed to operate not only on data but also on other instructions. In this context, it seems significant that the inability of a calculator to alter its own instructions is what most clearly distinguishes calculators from computers.