
A reprint from

American Scientist
the magazine of Sigma Xi, The Scientific Research Society

This reprint is provided for personal and noncommercial use. For any other use, please send a request Brian Hayes by
electronic mail to brian@bit-player.org.

© 2019 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

142 American Scientist, Volume 107

Fifty years ago, three astro-
nauts and two digital com-
puters took off for the Moon.
A few days later, half a billion

earthlings watched murky television
images of Neil Armstrong and Buzz
Aldrin clambering out of the Apollo
11 lunar module and leaving the first
human bootprints in the powdery soil
of the Sea of Tranquility. (Michael Col-
lins, the command module pilot, re-
mained in lunar orbit.) The astronauts
became instant celebrities. The com-
puters that helped guide and control
the spacecraft earned fame only in a
smaller community of technophiles.
Yet Armstrong’s small step for a man
also marked a giant leap for digital
computing technology.

Looking back from the 21st century,
when everything is computer controlled,
it’s hard to appreciate the audacity of
 NASA’s decision to put a computer
aboard the Apollo spacecraft. Comput-
ers then were bulky, balky, and power
hungry. The Apollo Guidance Comput-
er (AGC) had to fit in a compartment
smaller than a carry-on bag and could
draw no more power than a light bulb.
And it had to be utterly reliable; a mal-
function could put lives in jeopardy.

Although the AGC is not as fa-
mous as the astronauts, its role in the
Apollo project has been thoroughly
documented. At least five books tell
the story, and there is more informa-
tion on the web. Among all the avail-
able resources, one trove of historical
documents offers a particularly direct
and intimate look inside this novel
computer. Working from rare surviv-
ing printouts, volunteer enthusiasts
have transcribed several versions of
the AGC software and published them

online. You can read through the pro-
grams that guided Apollo 11 to its
lunar touchdown. You can even run
those programs on a “virtual AGC.”

Admittedly, long lists of machine in-
structions, written in an esoteric and
antiquated programming language, do
not make easy reading. Deciphering
even small fragments of the programs
can be quite an arduous task. The re-
ward is seeing firsthand how the de-
signers worked through some tricky
problems that even today remain a
challenge in software engineering. Fur-
thermore, although the documents are
technical, they have a powerful human
resonance, offering glimpses of the cul-
tural milieu of a high-profile, high-risk,
high-stress engineering project.

Navigation, Guidance, and Control
Each Apollo mission to the Moon car-
ried two AGCs, one in the command
module and the other in the lunar mod-
ule. In their hardware the two machines
were nearly identical; software tailored
them to their distinctive functions.

For a taste of what the computers
were asked to accomplish, consider the
workload of the lunar module’s AGC
during a critical phase of the flight—the
powered descent to the Moon’s surface.
The first task was navigation: measur-
ing the craft’s position, velocity, and
orientation, then plotting a trajectory to
the target landing site. Data came from
the gyroscopes and accelerometers of
an inertial guidance system, supple-
mented in the later stages of the descent
by readings from a radar altimeter that
bounced signals off the Moon’s surface.

After calculating the desired trajecto-
ry, the AGC had to swivel the nozzle of
the rocket engine to keep the capsule on
course. At the same time it had to adjust
the magnitude of the thrust to maintain
the proper descent velocity. These guid-

ance and control tasks were particularly
challenging because the module’s mass
and center of gravity changed as fuel
was consumed and because a space-
craft sitting atop a plume of rocket ex-
haust is fundamentally unstable—like
a broomstick balanced upright on the
palm of your hand.

Along with the primary tasks of
navigation, guidance, and control, the
AGC also had to update instrument
displays in the cockpit, respond to
commands from the astronauts, and
manage data communications with
ground stations. Such multitasking is
routine in computer systems today.
Your laptop runs dozens of programs
at once. In the early 1960s, however,
the tools and techniques for creating
an interactive, “real-time” computing
environment were in a primitive state.

Chips and Cores
The AGC was created at the Instrumen-
tation Laboratory of the Massachusetts
Institute of Technology (MIT), founded
by Charles Stark Draper, a pioneer of
inertial guidance. Although the Draper
lab had designed digital electronics for
ballistic missiles, the AGC was its first
fully programmable digital computer.

For the hardware engineers, the chal-
lenge was to build a machine of ade-
quate performance while staying within
a tight budget for weight, volume, and
power consumption. They adopted a
novel technology: the silicon integrated
circuit. Each lunar-mission computer
had some 2,800 silicon chips, with six
transistors per chip.

For memory, the designers turned
to magnetic cores—tiny ferrite toroids
that can be magnetized in either of two
directions to represent a binary 1 or 0.
Most of the information to be stored
consisted of programs that would never
be changed during a mission, so many

Brian Hayes is a former editor and columnist for
American Scientist. Email: brian@bit-player.org

Moonshot Computing

Getting to the Moon required daring programmers as well as daring astronauts.

Brian Hayes

Computing Science

2019 May–June 143www.americanscientist.org © 2019 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

of the cores were wired in a read-only
configuration, with the memory’s con-
tent fixed at the time of manufacture.

The logic circuits and memory cores
were sealed in a metal case tucked
away in an equipment bay. The as-
tronauts interacted with the comput-
er through a device called the DSKY
(short for “display keyboard” and pro-
nounced dis-key), which looked some-
thing like the control panel of a micro-
wave oven. It had a numeric keypad,
several other buttons, and room to dis-
play 21 bright green decimal digits.

Squeezing into 15 Bits
A critical early decision in the design of
the computer was setting the number of
bits making up a single “word” of infor-
mation. Wider words allow more varied
program instructions and greater math-
ematical precision, but they also require
more space, weight, and power. The
AGC designers chose a width of 16 bits,
with one bit dedicated to error checking,
so only 15 bits were available to represent
data, addresses, or instructions. (Modern
computers have 32- or 64-bit words.)

A 15-bit word can accommodate
215 = 32,768 distinct bit patterns. In the
case of numeric data, the AGC generally
interpreted these patterns as numbers
in the range ±16,383. Grouping together
two words produced a double-precision
number in the range ±268,435,455.

A word could also represent an in-
struction in a program. In the original
plan for the AGC, the first three bits of
an instruction word specified an “op-
code,” or command; the remaining 12
bits held an address in the computer’s
memory. Depending on the context, the
address might point to data needed in a
calculation or to the location of the next
instruction to be executed.

Allocating just three bits to the op-
code meant there could be only eight
distinct commands (the eight binary
patterns between 000 and 111). The
12-bit addresses limited the number
of memory words to 4,096 (or 212). As
the Apollo mission evolved, these con-
straints began to pinch, and engineers
found ways to evade them. They orga-
nized the memory into multiple banks;
an address specified position within a
bank, and separate registers indicated
which bank was active. The designers
also scrounged a few extra bits to ex-
pand the set of opcodes from 8 to 34.

The version of the AGC that went
to the Moon had 36,864 words of read-
only memory for storing programs

and 2,048 words of read-write memory
for ongoing computations. The total
is equivalent to about 70 kilobytes. A
modern laptop has 100,000 times as
much memory. As for speed, the AGC
could execute about 40,000 instructions
per second; a laptop might do 10 billion.

Software Infrastructure
A no-frills architecture, puny memory,
and a minimalist instruction set pre-

sented a challenge to the programmers.
Moreover, the software team at MIT
had to create not only the programs
that would run during the mission but
also a great deal of infrastructure to
support the development process.

One vital tool was an assembler, a
program that converts symbolic in-
structions (such as AD for add and TC for
transfer control) into the binary codes
recognized by the AGC hardware. The W

ik
im

ed
ia

 C
om

m
on

s

Stacked printouts of software for the Apollo Guidance Computer (AGC) form a tower five and
a half feet tall, the height of Margaret H. Hamilton, who joined the project as a programmer in
1963 and a few years later became director of software engineering. Each binder holds the pro-
grams for either the command module or the lunar module for a single mission. The photograph
was taken at the MIT Instrumentation Laboratory in 1969, shortly before the flight of Apollo 11.

144 American Scientist, Volume 107 © 2019 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

assembler’s primary author was Hugh
Blair-Smith, an engineer with extensive
background in programming the large
computers of that era. The assembler
ran on such a mainframe machine,
not on the AGC itself. All of the flight-
control programs were assembled and
committed to read-only memory long
before launch, so there was no need to
have an assembler on the spacecraft.

A digital simulation of the AGC also
ran on a mainframe computer. It al-
lowed programs to be tested before
the AGC hardware was ready. Later a
“hybrid” simulator incorporated a real
AGC and DSKY, as well as both analog

and digital models of the rest of the
spacecraft and its environment.

Another tool was an interpreter for a
higher-level programming language,
designed by J. Halcombe Laning and
written mainly by Charles A. Muntz,
both on the MIT team. The interpreted
language provided access to mathemat-
ical concepts beyond basic arithmetic,
such as matrices (useful in expressing
control laws) and trigonometric func-
tions (essential in navigation). The price
paid for these conveniences was a ten-
fold slowdown. Interpreted commands
and assembly language could be freely
mixed, however, so the programmer

could trade speed for mathematical
versatility as needed.

An AGC program called the Execu-
tive served as a miniature operating
system. Also designed by Laning, it
maintained a list of programs waiting
their turn to execute, sorted according
to their priority. The computer also had
a system of interrupts, allowing it to re-
spond to external events. And a few
small but urgent tasks were allowed to
“steal” a memory cycle without other
programs even taking notice. This facil-
ity was used to count streams of pulses
from the inertial guidance system and
from radars.

Reading an AGC Program

line label opcode address comments

0184 P63SPOT3 CA BIT6 IS THE LR ANTENNA IN POSITION 1 YET
0185 EXTEND
0186 RAND CHAN33
0187 EXTEND
0188 BZF P63SPOT4 BRANCH IF ANTENNA ALREADY IN POSITION 1
0189 CAF CODE500 ASTRONAUT: PLEASE CRANK THE
0190 TC BANKCALL SILLY THING AROUND
0191 CADR GOPERF1
0192 TCF GOTOP00H TERMINATE
0193 TCF P63SPOT3 PROCEED SEE IF HE'S LYING
0194 P63SPOT4 TC BANKCALL ENTER INITIALIZE LANDING RADAR
0195 CADR SETPOS1
0196 TC POSTJUMP OFF TO SEE THE WIZARD...
0197 CADR BURNBABY

Program P63 in the Apollo 11 lunar lander controlled the early stages of the
descent to the Moon’s surface. The snippet of source code reproduced here
configures a radar altimeter needed for landing. As shown in the flowchart
at right, the program first checks the status of the radar antenna; if it is not yet
in position, the astronaut is asked to deploy it. Depending on the astronaut’s
response, the program can check the status again (to make sure the astronaut
complied), give up, or initialize the radar regardless of antenna position.

Each AGC instruction has two parts: an opcode and an address. The op-
codes are written as abbreviations, such as CA and TC, but they represent
three-bit numeric codes. The table below defines the opcodes appearing
in this program fragment. Addresses are also given in symbolic form but
represent 12-bit values. A program called an assembler translates each
opcode-address pair into a 15-bit word stored in the computer’s memory.

Lines 184 through 188 check the antenna position. The state of the an-
tenna is recorded in the sixth bit of input-output channel 33; if the antenna
is properly positioned, this bit is 0. The program computes the logical
AND of the channel reading with the constant 000 000 000 100 000, which
has a 1 at position 6 and 0 for all the rest of the bits. If the antenna is in
position, this operation leaves a value of zero in the accumulator (the main
site for arithmetic and logical operations). In that case the instruction BZF
redirects the program to the location labeled P63SPOT4 at line 194. If the
value in the accumulator is not zero (implying that the antenna is not yet
in position), execution “falls through” to the next instruction at line 189.

The block of instructions beginning at line 189 presents the request
to the astronaut. The aim is to call a subroutine named GOPERF1 that
displays a message in the cockpit. Here a complication arises. Because
the memory of the AGC is divided into several “banks,” program P63
cannot directly call the GOPERF1 subroutine. Instead it invokes a sub-
routine named BANKCALL, which in turn calls GOPERF1. The address of
GOPERF1 is placed in the program immediately after the TC BANKCALL
instruction, where BANKCALL can retrieve it. Meanwhile, the constant
at location CODE500 has been loaded into the accumulator and will be
used by GOPERF1 to determine what message to display.

The instructions at lines 192–194 are the three locations to which
the GOPERF1 subroutine can return. If the astronaut enters a “termi-
nate” command, program P63 exits and transfers control to P00, the
computer’s idle routine. A “proceed” command sends the program
back to the top of the loop, at line 184, to confirm that the antenna is
now in position 1. The “enter” option bypasses this check and calls
(via BANKCALL) the SETPOS1 subroutine to initialize the landing radar.
When SETPOS1 returns, control passes to BURNBABY, the program that
fires the descent engine.

Comments within the program (gray text) are ignored by the assem-
bler but are crucial to human understanding of the program. They also
offer glimpses of the programmers’ personalities.

Antenna in
position 1?

Yes

No

Ask astronaut
to deploy it

Initialize
landing radar

Goto
BURNBABY

Astronaut
response?

Proceed

Terminate

Goto
program P00H

Enter

AGC Opcodes

CA, CAF ADDR “Clear and add.” Load the contents of ADDR into
the accumulator by first setting the accumulator
to zero and then adding.

BZF ADDR “Branch if zero.” If the contents of accumulator
are equal to zero, jump to ADDR.

TC, TCF ADDR “Transfer control.” Jump to ADDR. The instruction
also saves a return address, so that a subroutine
can jump back to the place it was called from.

RAND CHAN “Read-AND.” Read from channel CHAN, then ap-
ply the Boolean function AND to each bit from the
channel and the corresponding bit in the accumu-
lator. (The result is 1 only if both bits are 1.)

EXTEND Interpret the next opcode as part of an expanded
instruction set.

CADR ADDR “Complete address.” CADR is not a true opcode
but a constant designating a full 15-bit address
(hence the distinctive coloring).

Br
ia

n
H

ay
es

2019 May–June 145www.americanscientist.org © 2019 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

In the Labyrinth of Code
When I first tried reading some AGC
programs, I found them inscrutable. It
wasn’t just the terse, opaque opcodes.
The greater challenge was learning to
follow the narrative thread of a program
with its many detours and digressions.
Instructions such as TC and BZF create
branch points, where the path through
the sequence of instructions abruptly
jumps to some other location, and may
or may not return to where it came from.
Following the trail can feel like playing
Chutes and Ladders.

The learning curve for the AGC as-
sembly language is steep but not very
tall, simply because there are so few
opcodes. To make sense of the pro-
grams, however, you also need to mas-
ter the conventions and protocols de-
vised by the MIT team to get the most
out of this strange little machine. The
fragment of source code reproduced
on the opposite page provides some
examples of these unwritten rules.

I was particularly confused by the
scheme for invoking a subroutine—a
block of code that can be called from
various places in a program and then
returns control to the point where it
was called. In the AGC the opcode
for calling a subroutine is TC, which
not only transfers control to the ad-
dress of the subroutine but also saves
the address of the word following the
TC instruction, stashing it in a place
called the Q register. When the sub-
routine finishes its work, it can return
to the main program simply by execut-
ing the instruction TC Q. This much I
under stood. But it turns out that a sub-
routine can alter the content of the Q
register and thereby change its own re-
turn destination. Many AGC programs
take advantage of this facility. In the
snippet on the opposite page, one sub-
routine has three return addresses, one
for each of three possible responses to
a query. Until I figured this out, the
code was incomprehensible.

Current norms of software engineer-
ing discourage such tricks, because they
make code harder to understand and
maintain. But software conforming to
current standards would not fit in 70
kilobytes of memory.

Marginalia
In contrast to the cryptic opcodes and
addresses, another part of the AGC
software is much easier to follow. The
comments that accompany the code
are lucid and even amusing. These an-

notations were added by the program-
mers as they created the software.
They were meant entirely for human
consumption, not for the machine.

Most of the comments are straight-
forward explanations of what the pro-
gram does. “Clear bits 7 and 14.” “See
if Alt < 35000 ft last cycle.” A few gruff
warnings mark code that should not
be meddled with. One line is flagged
“Don’t Move,” and a table of constants
has the imperious heading “Noli Se
Tangere” (biblically inspired Latin
for “Do Not Touch”). The style of the
comments varies from one program to
another, presumably reflecting differ-
ences in authorship.

Most intriguing are the messages
that venture beyond the impersonal,
emotionless manner of technical doc-
umentation. A nervously apologetic
programmer flags two lines of code as
“Temporary, I hope hope hope.” A con-
stant is introduced as “Numero mys-
terioso.” An out-of-memory condition
provokes the remark “No room in the
inn.” In a few places the tone of voice
becomes positively breezy. The passage
shown on the opposite page has the
following request: “Astronaut: Please
crank the silly thing around.” As the
program checks to see if the astronaut
complied, a comment reads, “See if
he’s lying.” One can’t help wondering:
Did the astronauts ever delve into the
source code? Some of them, most nota-
bly Buzz Aldrin, were frequent visitors
to the Instrumentation Lab.

Hints of whimsy also turn up in
names chosen for subroutines and
labels. A section of the software con-
cerned with alarms and failures in-
cludes the symbols WHIMPER, BAILOUT,
P00DOO, and CURTAINS. Elsewhere we
encounter KLEENEX, ERASER, and ENEMA.
There are a few Peanuts comic strip ref-
erences, such as the definition LINUS
EQUALS BLANKET. The program that ig-
nites the rocket motor for descent to
the Moon is titled BURNBABY, an appar-
ent reference to the slogan “Burn, baby,
burn!,” which was associated with the
1965 Watts riots in Los Angeles.

Perhaps I should not be surprised to
find these signs of levity and irrever-
ence in the source code. The program-
mers were mostly very young and
clearly very smart; they formed a close-
knit group where inside jokes were
sure to evolve, no matter how solemn
the task. Also, they were working at
MIT, where “hacker culture” has a long
tradition of tomfoolery. On the other

hand, the project was supervised by
NASA, and every iteration of the soft-
ware had to be reviewed and approved
at various levels of the federal bureau-
cracy. The surprise, then, is not that
wisecracks were embedded in the pro-
grams but that they were not expunged
by some humorless functionary.

In an email exchange, I asked Mar-
garet H. Hamilton about this issue. A
mathematician turned programmer
who worked on several other MIT proj-
ects before joining the AGC group in
1963, Hamilton later became the lab’s
director of software engineering (a term
she coined). “People were serious about
their work,” she wrote, “but at the same
time they had fun with various aspects
of comic relief, including things like
giving parts of the on board flight soft-
ware funny or mysterious names.” She
also conceded that NASA vetoed a few
of their cheeky inventions.

What Could Go Wrong?
Hamilton has said that the Apollo
project offered “the opportunity to
make just about every kind of error
humanly possible.” It’s not hard to
come up with a long list of things that
might have gone wrong but didn’t.

For example, the AGC had two for-
mats for representing signed numbers:
one’s complement and two’s complement.
Mixing them up would have led to a
numerical error. Similarly, spacecraft
position and velocity were calculated
in metric units but displayed to the
astro nauts in feet or feet per second. A
neglected conversion (or a double con-
version) could have caused much mis-
chief. Another ever-present hazard was
arithmetic overflow: A number that ex-
ceeded the maximum positive value for
a 14-bit quantity would “wrap around”
to a negative value.

You might suppose that such blun-
ders would never slip through the
rigorous vetting process for a space
mission, but history says otherwise.
In 1996 an overflow error destroyed
an Ariane 5 rocket and its payload of
four satellites. In 1999 an error in units
of measure—pounds that should have
been newtons—led to the loss of the
Mars Climate Orbiter.

The cramped quarters of the AGC
must have added to the programmers’
cognitive burden. The handling of sub-
routines again provides an illustration.
In larger computers, a data structure
called a stack automatically keeps track
of return addresses for subroutines,

146 American Scientist, Volume 107 © 2019 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

even when the routines are deeply
nested, with one calling another, which
then calls a third, and so on. The AGC
had no stack for return addresses; it
had only the Q register, with room for
a single address. Whenever a subrou-
tine called another subroutine, the pro-
grammer had to find a safe place to
keep the return address, then restore it
afterward. Any mishap in this process
would leave the program lost in space.

As an outsider imagining my-
self writing programs for a machine
like this one, the area where
I would most fear mistakes is
the multitasking mechanism.
When multiple jobs needed to
be accomplished, the Execu-
tive always ran the one with
the highest assigned priority.
But it also had to ensure that
all jobs would eventually get
their turn. Those goals are
hard to reconcile.

Interrupts were even more
insidious. An event in the
outside world (such as an as-
tronaut pressing keys on the
DSKY) could suspend an on-
going computation at nearly
any moment and seize control
of the processor. The inter-
rupting routine had to save
and later restore the contents
of any registers it might dis-
turb, like a burglar who breaks
into a house, cooks a meal, and
then puts everything back in
its place to evade detection.

Some processes must not be
interrupted, even with the save-
and-restore protocol (for exam-
ple, the Executive’s routine for
switching between jobs). The
AGC therefore provided a com-
mand to disable interrupts, and
another to re-enable them. But this fa-
cility created perils of its own: If inter-
rupts were blocked for too long, impor-
tant events could go unheeded.

The proper handling of interrupts
and multitasking remains an intel-
lectual challenge today. These mecha-
nisms introduce a measure of random
or nondeterministic behavior: Knowing
the present state of the system is not
enough to predict the future state. They
make it hard to reason about a program
or to test all possible paths through it.
The most annoying, intermittent, hard-
to-reproduce bugs can often be traced
back to some unanticipated clash be-
tween competing processes.

A Five-Alarm Landing
None of the AGCs ever failed in space,
but there were moments of unwelcome
excitement. As the Apollo 11 lander de-
scended toward the lunar surface, the
DSKY display suddenly announced a
“program alarm” with a code number
of 1202. Armstrong and Aldrin didn’t
know whether to keep going or to
abort the landing. At Mission Control
in Houston the decision fell to the guid-
ance officer, Steve Bales, who had a
cheat sheet of alarm codes and access

to backroom experts from both NASA
and MIT. He chose “Go.” He made the
same decision following each of four
further alarms in the remaining min-
utes before touchdown.

Back at MIT, members of the AGC
team were listening to this exchange
and scrambling to confirm what a 1202
alarm meant and what might have
caused it. The explanatory comment
at the appropriate line of the program
listing reads “No more core sets.” Ev-
ery time the Executive launched a new
job, it allocated 11 words of read-write
memory for the exclusive use of the
new process. The area set aside for such
core sets had room for just eight of them.

If the Executive was ever asked to sup-
ply more than eight core sets, it was
programmed to signal a 1202 alarm
and jump to a routine named BAILOUT.

During the lunar descent, there
were never more than eight jobs eligi-
ble to run, so how could they demand
more than eight core sets? One of
those jobs was a big one: SERVICER did
all the computations for navigation,
guidance, and control. It was sched-
uled to run every two seconds and
was expected to finish its work within

that period, then shut down
and surrender its core set.
When the two-second inter-
val was up, a new SERVICER
process would be launched
with a new core set. But for
some reason the computa-
tion was taking longer than
it should have. One instance
of SERVICER was still run-
ning when the next one was
launched, forming a back-
log of unfinished jobs, all
hanging on to core sets.

The cause of this behav-
ior was not a total mystery.
It had been seen in test runs
of the flight hardware. Two
out-of-sync power sup-
plies were driving a radar
to emit a torrent of spurious
pulses, which the AGC du-
tifully counted. Each pulse
consumed one computer
memory cycle, lasting about
12 microseconds. The ra-
dar could spew out 12,800
pulses per second, enough
to eat up 15 percent of the
computer’s capacity. The
designers had allowed a 10
percent timing margin.

Much has been writ-
ten about the causes of this anomaly,
with differing opinions on who was
to blame and how it could have been
avoided. I am more interested in how
the computer reacted to it. In many
computer systems, exhausting a criti-
cal resource is a fatal error. The screen
goes blank, the keyboard is dead, and
the only thing still working is the pow-
er button. The AGC reacted differently.
It did its best to cope with the situation
and keep running. After each alarm,
the BAILOUT routine purged all the jobs
running under the Executive, then re-
started the most critical ones. The pro-
cess was much like rebooting a com-
puter, but it took only milliseconds. Sm

ith
so

ni
an

 A
ir

 a
nd

 S
pa

ce
 M

us
eu

m

The AGCs in the command module and the lunar module were
accessed by the astronauts through a “display keyboard” (DSKY)
mounted in the module’s control panel. Astronauts specified ac-
tions by entering a program, a verb, and a noun, all represented by
two-digit numbers. The DSKY shown here is from the Smithson-
ian Air and Space Museum and never flew on an Apollo mission.

2019 May–June 147www.americanscientist.org © 2019 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

Annoying alerts that pop up on the
computer screen are now common-
place, but Hamilton points out they
were a novelty in the 1960s. The pro-
gram alarms appearing on the DSKY
display were made possible by the
priority-driven multitasking at the
heart of the AGC software. The alarms
took that idea a step further: They had
the temerity to interrupt not just other
computations but even, when neces-
sary, the astronauts themselves.

A White-Knuckle Job
Some of the veterans of the AGC
project get together for lunch once a
month. That they still do so 50 years
after the Moon landings suggests how
important the Apollo program was in
their lives. (It also suggests how young
they were at the time.) In 2017 I had
an opportunity to attend one of these
reunions. I found myself asking the
same two questions of everyone I met.
First, in that minefield of mistakes-
waiting-to-happen, how did you man-
age to build something that worked so
well and so reliably? Second, weren’t
you scared witless?

In reply to the latter question, one
person at the table described the de-
velopment of the AGC as “a white-
knuckle job.” But others reported they
were just too focused on solving tech-
nical problems to brood over the con-
sequences of possible mistakes. Blair-
Smith pointed out that the informal
motto of the group was “We Can Do
This,” and it wasn’t just bravado. They
had genuine confidence in their ability
to get it right.

The question of exactly how they got
it right elicited lively discussion, but
nothing came of it that I could neatly
encapsulate as the secret of their suc-
cess. They were very careful; they
worked very hard; they tested very
thoroughly. All this was doubtless
true, but many other software proj-
ects with talented and diligent work-
ers have run into trouble nonetheless.
What makes the difference?

Recalling the episode of the 1202
alarms, I asked if the key might be to
seek resilience rather than perfection.
If they could not prevent all mistakes,
they might at least mitigate their harm.
This suggestion was rejected outright.
Their aim was always to produce a
flawless product.

I asked Hamilton similar questions
via email, and she too mentioned a
“never -ending focus on making every-

thing as perfect as possible.” She also
cited the system of interrupts and pri-
ority-based multitasking, which I had
been seeing as a potential trouble spot,
as ensuring “the flexibility to detect
anything unexpected and recover from
it in real time.”

In my mind, how they did it remains
an open question—and one deserving
of scholarly attention. Engineering tra-
dition calls for careful forensic analysis
of accidents and failures, but perhaps
it would also make sense to investigate
the occasional outstanding success.

Preservation and Access
The Smithsonian Institution’s Air and
Space Museum holds some 3,500 ar-
tifacts from the Apollo program, but
the AGC software is not on exhibit
there. A few smaller museums have
helped preserve printouts, but the
programs are widely available today
almost entirely through the efforts of
amateur enthusiasts.

In 2003 Ronald Burkey was watch-
ing the film Apollo 13, about the mis-
sion imperiled by an explosion en
route to the Moon. The DSKY ap-
peared in several scenes, and Burkey,
who works in embedded computer
systems, set out to learn more about
the AGC. Casual inquiries gradually
transformed into a dogged pursuit of
original documents. His aim was to
create a simulator that would execute
AGC programs.

Burkey learned that the Instrumen-
tation Laboratory had deposited list-
ings of some Apollo 11 software with
the MIT Museum, but the terms of
the donation did not allow them to
be freely distributed. After long nego-
tiations, Deborah Douglas, director of
collections at the museum, secured the
release of the printouts, and Burkey
arranged to have them scanned. Then
several volunteers helped with the te-
dious job of converting 3,500 page im-
ages to machine-readable text.

Meanwhile, Burkey was building
not only a simulator, called the Virtual
AGC, but also a new version of the
assembler. (Initially he had no access
to the source code for the original as-
sembler, which in any case would not
run on modern hardware.) A crucial
test of the whole effort was running
the transcribed Apollo 11 source code
through the new assembler and com-
paring the binary output with the 1969
original. After a few rounds of proof-
reading and correcting—some of the

scans were barely legible—the old and
new binaries matched bit for bit.

In recent years printouts from sev-
eral other Apollo missions have been
made available to Burkey and his col-
laborators, mostly by members of the
MIT team who had retained private
copies. Those programs have also been
scanned, transcribed, and reassembled.
All the scans and the transcribed source
code are available at the Virtual AGC
website, http://ibiblio.org/apollo. Also
posted there are programming manu-
als, engineering drawings, and roughly
1,400 memos, reports, and other con-
temporaneous documents.

The Apollo program might be consid-
ered the apogee of American technologi-
cal ascendancy in the 20th century, and
the AGC was a critical component of that
success. I find it curious and unsettling
that major museums and archives have
shown so little interest in the AGC soft-
ware, leaving it to amateurs to preserve,
interpret, and disseminate this material.
On the other hand, those creative and
energetic amateurs have done a brilliant
job of bringing the history back to life.
Their success is almost as remarkable as
that of the original AGC programmers.

Bibliography
Blair-Smith, H. 2015. Left Brains for the Right

Stuff: Computers, Space, and History. East
Bridgewater, MA: SDP Publishing.

Burkey, R. 2019. Virtual AGC-AGS-LVDC-Gem-
ini Project Overview. Last modified January
30. http://ibiblio.org/apollo

Cherry, G. W. 1969. Exegesis of the 1201
and 1202 alarms which occurred during
the Mission G lunar landing. Memoran-
dum from MIT Instrumentation Labora-
tory to NASA Manned Spacecraft Center,
August 4, 1969. Accessed March 25, 2019.
http://ibiblio.org/apollo/Documents
/CherryApollo11Exegesis.pdf

Eyles, D. 2017. Sunburst and Luminary: An Apollo
Memoir. Boston, MA: Fort Point Press.

Hall, E. C. 1996. Journey to the Moon: The His-
tory of the Apollo Guidance Computer. Res-
ton, VA: American Institute of Aeronautics
and Astronautics.

Mindell, D. A. 2008. Digital Apollo: Human and
Machine in Spaceflight. Cambridge, MA:
MIT Press.

O’Brien, F. 2010. The Apollo Guidance Computer:
Architecture and Operation. Chichester, UK:
Praxis Publishing.

Savage, B. I., and A. Drake. 1967. AGC4 Basic
Training Manual. Volume 1. Apollo Guid-
ance, Navigation, and Control Memo E-2052.
Cambridge, MA: MIT Instrumentation Lab-
oratory. Accessed March 25, 2019. http://
ibiblio.org/apollo/NARA-SW/E-2052.pdf

Read an extended interview with
Margaret Hamilton online.

