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I was southbound on Interstate 95, 
approaching Washington, DC, on 
a summer afternoon. The Capital 
Beltway offers two routes around 

the city—an eastern loop via Green-
belt, MD, and a western arc through 
Tysons Corner, VA. As I approached 
the decision point, online traffic maps 
showed several slow spots on the 
western branch, whereas the eastern 
roadway was flowing freely. The choice 
seemed clear, yet an unsettling thought 
kept nagging at me: Other drivers had 
access to the same information I was 
seeing. If we all followed the recom-
mended route, our strategy would be 
self-defeating. In collectively avoiding 
one traffic jam, we’d create a new one.

Traffic patterns present many such 
puzzles and perplexities. (Pondering 
them can help pass the time when 
you’re caught in gridlock.) One of the 
most intriguing ideas in the theory of 
transport networks is Braess’s para-
dox, which says that building a new 
road to relieve congestion can some-
times have the opposite effect, caus-
ing greater delays for all drivers. 
Conversely, closing off a road can 
sometimes speed everyone’s journey.

In trying to better understand these 
counterintuitive cloggings and clear-
ings of roadways, I have been playing 
with computer simulations in which 
I can watch individual vehicles wend 
their way through a network of roads, 
choosing a path at each intersection. 
Although the model is a simple one, it 
does show evidence of Braess’s para-
dox, along with an abundance of other 
curious instabilities and oscillations. 

Whether the results will help drivers—
or future driverless vehicles—navigate 
real highways remains to be seen.

Selfishness on Wheels
Braess’s paradox is named for Dietrich 
Braess of Ruhr University in Bochum, 
Germany, who described it in 1968. 
His key assumption in formulating his 
model is now known as selfish routing: 
Each driver chooses whatever route 
minimizes his or her own travel time. 
The system is in equilibrium if no driv-
er can get to the destination quicker by 
switching to a different route.

The road network is diamond-
shaped, with two routes leading from 
a start node to an end node.
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Each route consists of two segments. 
The thick blue links labeled A and B are 
wide roads where everyone drives at the 
speed limit no matter how heavy traffic 
might become. Each of these segments 
has a fixed travel time of one hour. The 
thinner red segments labeled a and b are 
narrow roads susceptible to congestion. 
The travel time on one of these roads 
varies in proportion to the fraction of 
traffic choosing that road. If there’s no 
one on the road, the travel time goes 
to zero. But if everyone funnels into a 
single red segment, the travel time for 
that road is a full hour (the same as that 
on the fixed-speed blue links).

In this network a sensible driver 
chooses the route with less traffic (or 
chooses randomly if the routes happen 
to be equal). This is the selfish solution. 
It is also the optimum solution for the 

whole population, attaining the lowest 
average driving time for everyone. At 
equilibrium half the cars take the north-
erly loop and half the southerly, and 
everyone spends 90 minutes en route.

Now add an extra link to the net-
work, labeled X:
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This golden highway has zero travers-
al time for any number of vehicles. 
Suppose you are just about to de-
part the start node when the X link is 
opened. Up to that moment, traffic has 
been evenly divided between the Ab 
and aB routes, with travel times of 90 
minutes each. You observe that the aXb 
route will take only 60 minutes, and 
so you eagerly select it. The trouble is, 
everyone else makes the same calcula-
tion, and so all the traffic migrates to 
the aXb pathway. Now both the a and 
b segments are saturated with 100 per-
cent of the traffic, and everyone has a 
two-hour trip—30 minutes longer than 
before the golden link was opened.

When I first read about the Braess 
paradox, I felt sure there must be some 
flaw in the argument. Intelligent driv-
ers would realize that they are all suf-
fering needlessly, and so they would 
return to their original Ab and aB 
routes, ignoring the new crosslink. Un-
der the rules of selfish routing, howev-
er, that happy outcome is unattainable.

Suppose you arrive at the starting 
node with the network in its dysfunc-
tional condition, with everyone crawl-
ing bumper to bumper through route 
aXb. You might be tempted to strike 
out in a different direction. All four 
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pathways—Ab, aB, aXb, and AXB—
promise exactly the same travel time of 
two hours, so the choice appears to be 
a matter of indifference. But suppose 
you take route AXB while everyone 
else continues on aXb. Your defection 
reduces the load on segments a and b, 
and so traffic there speeds up slightly. 
The selfish routing principle requires 
you to switch back, even though no 
one will benefit from that decision.

The Price of Anarchy
The Braess paradox might be seen as 
a tragic quirk of human nature: When 
everyone strives to get ahead of every-
one else, we all fall behind. The phe-
nomenon has been termed “the price 
of anarchy”—the penalty we pay for 
failing to coordinate our actions.

But it won’t do to put too much em-
phasis on the social and psychological 
aspects of these events. In 1991 Joel E. 
Cohen of Rockefeller University and 
Paul Horowitz of Harvard showed that 
the paradox can affect even inanimate 
systems, where no human foibles can 
possibly be to blame. Their most strik-
ing example consists of a weight sus-
pended from a certain arrangement of 
strings and springs. Cutting one of the 
supporting strings causes the weight 
to rise rather than fall! The same effect 
is seen in electrical networks, where 
opening one branch of a circuit can al-
low more current to flow.

As a mathematical artifact, the 
Braess model has the virtues of sim-
plicity, elegance, and determinism. As 
a model of road traffic, however, the 
framework is somewhat artificial and 
unrealistic. For example, some road-
ways have unlimited capacity, and 
others allow infinite speed. Moreover, 
there are really no cars in the model, 
just rates of flow. Once those rates of 
flow reach equilibrium, nothing ever 
changes; it’s a static model.

In recent years a few investigators 
have addressed the Braess paradox 
through a more algorithmic and mecha-
nistic style of modeling. The idea is to 
trace the progress of individual vehicles 
in time and space as they select paths 
according to the selfish routing rule. 
These models reveal the dynamics of the 
system—how vehicles clump togeth-
er or spread apart, how disturbances 
propagate through the network, how 
traffic jams evolve and dissolve. A dis-
advantage of this approach is that prov-
ing theorems becomes more difficult, 
but gaining intuition may be easier.

Traffic engineers have built highly 
detailed dynamic models, with realistic 
roadway geometry and vehicle physics. 
I have chosen a more schematic design, 
closer to the abstract formulation of 
Braess’s paradox, with just a faint whiff 
of physical plausibility. Roads are lines 
or curves; cars are colored dots; simple 
formulas define speed as a function of 
traffic density. If you would like to play 
with the model yourself, it’s available at 
http://bit-player.org/extras/traffic.

Bypasses and Shortcuts
The layout of the model is inspired by 
a version of the Braess paradox intro-
duced in 1997 by Claude M. Penchina 
of the University of Massachusetts, Am-
herst. Two cities, Origin and Destination, 
lie along a river, connected by straight, 
narrow roads a and b and by looping 
freeways A and B. The freeways are 
twice as long as the straight segments, 
but they allow speed-limit driving for 
any number of cars; the surface roads, in 
contrast, are subject to congestion. At the 
midpoint of the river a bridge connects 
the two routes, but initially the bridge 
is closed. Although the geometry of this 
tableau is quite different from that of 
the diamond network, the topology is 
identical. The same four links (or five 
when the bridge is open) connect the 
same four nodes.

In the classic Braess model, speed 
on the a and b links varies from infin-
ity down to 1, and travel time ranges 

from 0 up to 1. To bring the dynamic 
model a little closer to physical real-
ism, maximum speed is limited to 1 
everywhere. On the a and b links travel 
time is proportional to the number of 
vehicles occupying the link. The con-
stant of proportionality, or congestion 
coefficient, ranges from 0 (congestion 
has no effect) to 1 (at maximum occu-
pancy traffic comes to a halt). For most 
of the experiments described here, the 
congestion coefficient was equal to ½; 
with this setting, traversing a congest-
ed shortcut takes just as long as driv-
ing twice as far on a freeway loop.

The algorithm that controls the 
model computes motion in discrete 
time steps. The main loop finds the po-
sition of each car, calculates its speed 
and the distance moved during a step, 
then updates the position. Before mov-
ing the car, however, it’s best to check 
that there’s nothing in the way. (We 
want no crumpled fenders.) Only a 
finite number of cars will fit on a giv-
en section of highway, and a car may 
have to wait its turn to inch ahead in 
gridlocked traffic.

Queueing Up
The very first run of the simulation viv-
idly demonstrated how modeling with 
discrete objects differs from the calcula-
tion of flow rates. When I pressed the 
“Go” button, cars poured onto the A 
loop, rounded it at high speed, and 
then began spilling onto the b segment. 

A traffic model explores the effects of routing strategies—rules for choosing which pathway 
to follow from Origin to Destination. Roads A and B are long but wide; they allow high-speed 
travel regardless of traffic. Roads a and b are shorter but also subject to congestion; in heavy traf-
fic, the shortcuts are no faster than the long way around. The dots are cars moving through the 
network; their colors indicate their route choices. The table of timings at the upper right shows 
that in this case the shortest route ab is not the fastest.
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But as more cars entered that link, the 
entire parade slowed down, and soon 
the queue was backing up onto the A 
loop. Nothing like this can happen in 
the static model. (I later learned that 
Carlos F. Daganzo of the University of 
California at Berkeley had discussed 
this spillback effect in the 1990s.)

Another surprise awaited me when 
I began running the model with the 
crossover bridge closed. In this cir-
cumstance the static model tells us that 
the flow of vehicles should split into 
two equal streams, coursing through 
the Ab and aB paths. That’s also the 
approximate result in the dynamic 
model if you look at long-term aver-
ages. On a moment-by-moment basis, 
however, the streams are anything but 
steady and equal. Instead there is a per-
sistent oscillation, with heavy traffic 
first on one route and then the other. 
A thought experiment explains why. 
Suppose it’s early morning, and you 
are the first commuter of the day. The 
roads are empty, and so the two routes 
look equally attractive; you flip a coin 
and drive onto route aB. As soon as 
you enter the a segment, speeds there 

are slightly reduced because of your 
presence, with the result that all drivers 
behind you prefer route Ab. However, 
when the first of those drivers arrive 
at the A-to-b junction, their speeds also 
begin to fall, and the aB path returns to 
favor. In this regime cars tend to form 
platoons, all selecting the same route 
until it becomes overcrowded, so that 
the next platoon goes the other way. 
(An instability of this kind is exactly 
what I had imagined on my drive 
around the Capital Beltway.) 

Platooning imposes a penalty for 
selfish routing that’s independent of 
the Braess paradox; it happens even 
when the crossover link is closed. In 
the dynamic model, selfish routing 
yields longer trips than a simple ran-
dom choice of routes.

Searching for a Paradox
The next question is whether the mod-
el exhibits a Braess effect: When we 
open the bridge, allowing drivers to 
slip down the shortcut ab path, does 
travel time increase or decrease? The 
dynamic model is different in many 
details from the system Braess stud-

ied, so it’s entirely possible that the 
paradox would not appear. But in fact 
the model does charge a price for an-
archy over a wide range of parameter 
settings. An exception is at very low 
traffic density, where the effects of con-
gestion are mild, and the short ab route 
is quickest. At densities beyond about 
0.25—where vehicles fill one-fourth of 
the available road space—selfish rout-
ers continue to choose ab even though 
it raises their average trip time.

Quite a lot has been written about 
how the Braess paradox varies as 
a function of traffic intensity. In 1997 
Penchina and independently Eric I. Pas 
and Shari L. Principio of Duke Univer-
sity found that the paradox exists only 
within a certain intermediate range of 
traffic densities; Anna Nagurney of the 
University of Massachusetts, Amherst, 
later reached a similar conclusion by 
another method. Under extreme condi-
tions the added link no longer causes 
mischief because drivers cease using 
it. Why do they abandon the shortcut? 
Not because they have finally learned 
to cooperate for the common good; it’s 
just that the ab path becomes so clogged 
that other choices are more attractive.

These analyses were based on a stat-
ic model. Wei-Hua Lin and Hong K. 
Lo of the University of Arizona have 
studied the same question in a dy-
namic model and reached a different 
conclusion: The paradox persists even 
at high levels of congestion. My casual 
experiments yield equivocal results. At 
the highest traffic loads, usage of the ab 
path and the penalty for selfish rout-
ing both decline, but they do not fall 
to zero. On the other hand, by raising 
the congestion coefficient from ½ to ¾ I 
can eliminate the paradox, as opening 
the bridge link becomes strongly ben-
eficial rather than detrimental. In this 
state most of the traffic on the bridge 
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is going the other way—from north to 
south on the long AB route.

Ground Truth
The Braess paradox is not just a math-
ematician’s toy; traffic planners take it 
quite seriously. However, sightings of 
the phenomenon in the wild are scanty.

An oft-repeated tale describes the 
closing of 42nd Street in New York on 
Earth Day in 1990. Instead of the ex-
pected gridlock, traffic flow improved. 
The incident seems to be documented 
only in a New York Times article by 
Gina Kolata, which gives no indica-
tion that the effects of the street clos-
ing were measured or analyzed. Other 
cases in Stuttgart, Germany, and Seoul, 
Korea, also seem to be supported more 
by anecdote than by evidence.

In 2008 Hyejin Youn and Hawoong 
Jeong of the Korea Advanced Insti-
tute of Science and Technology and 
Michael T. Gastner of the Santa Fe 
Institute reported finding dozens of 
streets in Boston, London, and New 
York that exhibit the paradox; traffic 
flow between two specific origin and 
destination nodes would improve if 
those streets were closed. But this con-
clusion was reached through theoreti-
cal analysis of traffic patterns, not by 
experiment.

Perhaps the most thorough search 
for ground truth came in the aftermath 
of a catastrophe in 2007: the sudden 
collapse of a major bridge in Minneap-
olis, carrying Interstate 35W across the 
Mississippi River. As the replacement 
bridge was completed a year later, 
Shanjiang Zhu, David Levinson, and 
Henry Liu of the University of Minne-
sota prepared a before-and-after study. 
Tracking devices were installed in the 
automobiles of 187 volunteers, whose 
commuting routes and trip times were 
recorded over eight weeks. No evi-
dence of a Braess paradox was found: 
Average travel times improved after 
the new bridge was opened. A later 
lane closing on another bridge had a 
larger effect, but again the change was 
not in the paradoxical direction.

Urban street grids look nothing 
like the small and simple networks 
considered in these models. Cities 
have hundreds of streets, and driv-
ers navigate between many points of 
origin and destination. Perhaps this 
noisy environment protects us from 
the suboptimal choices of selfish rout-
ing—or it may just obscure the signal 
of the paradox.

It’s also possible that we are just 
now reaching the point where real-
world traffic begins to fulfill the un-
derlying assumptions of the models. 
One of those assumptions is that all 
drivers have complete, timely, and ac-
curate information about traffic condi-
tions. For many years this was highly 
unrealistic; our routing decisions were 
less than perfectly selfish as a result 
of mere ignorance. GPS units and on-
line mapping services have changed 
all that, and there is doubtless more 
to come, such as machine learning to 
detect and forecast traffic patterns in 
complex networks. What if everyone 
adopts the same algorithm?

The self-driving automobile, now 
under development by companies 
ranging from Google to Ford, could 
raise the stakes. With direct access to 
detailed traffic statistics—past, pres-
ent, and forecast—such a vehicle 
would be a formidable player in the 
game of selfish routing. But an autono-
mous car could also communicate and 
cooperate with other vehicles to escape 
the cycle leading to Braess’s paradox. 
It will be interesting to see which trend 
wins out.
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