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The Science of Sticky Spheres

Brian Hayes

Take a dozen marbles, all the 
same size, and squeeze them 

into a compact, three-dimensional 
cluster. Now count the number of 
points where the marbles touch one 
another. What is the maximum num-
ber of contact points you can possibly 
achieve with 12 marbles? What geo-
metric arrangement yields this greatest 
contact number? Is the optimal cluster 
unique, or are there multiple solutions 
that all give the same maximum?

When I first heard these questions 
asked, they did not seem overly chal-
lenging. For a cluster consisting of two, 
three, four or five equal-size spheres, I 
was pretty sure I knew the answers. 
But I soon learned that the problem 
gets harder in a hurry as the size of the 
cluster increases. Over the past three 
years, the maximum contact number 
has been determined for clusters of up 
to 11 spheres. Finding those answers 
required a variety of mathematical 
tools drawn from graph theory and 
geometry, as well as extensive compu-
tations and, at a few crucial junctures, 
building ball-and-stick models with a 
set of toys called Geomags. For clus-
ters of 12 or more spheres, the answers 
remain unknown.

To be stumped by such simple ques-
tions about small clumps of spheres is 
humbling—but perhaps not too sur-
prising. Sphere-packing problems are 
notoriously tricky. Some of them have 
resisted analysis for centuries.

Kepler and Newton
In 1611 Johannes Kepler declared that 
the densest possible packing of identi-
cal spheres is the arrangement seen in 
a grocer’s pyramid of oranges. Any 
sphere in the interior of Kepler’s lat-

tice touches 12 other spheres, and the 
fraction of space filled by the spheres 
is π/√1

—
8, or about 0.74. Kepler appar-

ently believed that the superiority 
of this packing was so obvious that 
no proof was needed; as it happens, 
no proof was forthcoming for nearly 
400 years. In 1998 Thomas C. Hales 
of the University of Pittsburgh finally 
showed that no other packing that ex-
tends throughout three-dimensional 
space can have a higher density.

Kepler’s conjecture (and Hales’s 
proof of it) apply to an infinite lattice 

of spheres, but another centuries-old 
puzzle concerns finite clusters. The sto-
ry begins with a dispute between Isaac 
Newton and his disciple David Grego-
ry in the 1690s. According to one telling 
of the tale, Newton held that a central 
sphere could touch no more than 12 
surrounding spheres of the same size, 
but Gregory thought there might be 
room for a 13th halo sphere. This prob-
lem of the “kissing number” was not 
resolved until 1953, when Kurt Schütte 
and B. L. van der Waerden proved that 
Newton was right—but just barely so. 
When a 13th satellite sphere is shoe-
horned into the assemblage, the di-
ameter of the cluster increases by only 
about 5 percent.

Newton’s kissing-number prob-
lem suggests a solar-system model of 
sphere packing, with a dozen planets 
all feeling the attraction of a central 
sun. The contact-counting problem 
has a more egalitarian character. There 
is no designated center of attraction; 
instead, all the spheres stick to one 
another, and the goal is to maximize 
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The kissing-number problem asks how many spheres can touch a central sphere of the same 
size. The question was debated by Isaac Newton and David Gregory in the 1690s but was an-
swered only in the 1950s. At left 12 halo spheres make contact with the red central sphere, in a 
configuration derived from the hexagonal close-packed lattice of Johannes Kepler. At right a 
13th halo sphere is added; as a result, all of the halo spheres lose touch with the central sphere, 
although the diameter of the cluster grows by only about 5 percent. A different sphere-packing 
problem of recent interest seeks to maximize the total number of contacts among all the spheres 
in a cluster. In the diagrams, any two spheres that touch have their centers connected by a rod. 
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the overall number of contact points 
throughout the cluster.

Why is there so much interest in 
cramming spheres together? Kepler 
was trying to explain the symmetries of 
snowflakes, and much of the later work 
on sphere-packing has also been moti-
vated by questions about the structure 
of solids and liquids. The recent focus 
on clusters with many sphere-to-sphere 
contacts arose from studies of colloids, 
powders and other physical systems 
in which particles are held together by 
extremely short-range forces.

The Well-Connected Cluster
In building clusters and counting con-
tacts, it’s convenient to work with unit 
spheres, which have a diameter of 1 
and thus a radius of 1/2. When two 
unit spheres are touching, the center-
to-center distance is 1. The diagrams 
accompanying this column show a 
unit-length rod connecting the cen-
ters of spheres when they are in con-
tact. Some physical models of clusters 
(including Geomags) keep this skel-
eton of connecting rods and omit the 
spheres altogether.

In any cluster of n spheres, let Cn de-
note the total number of contact points; 
then max(Cn) is the highest value of Cn 
found among all n-sphere clusters.

For the smallest values of n, finding 
max(Cn) is easy. The case of n = 1 is triv-
ial: A single, isolated sphere doesn’t 
touch anything, and so max(C1) = 0. 
Two spheres can meet at only one 
point, which means that max(C2) = 1. 
For three spheres the best solution 
puts the sphere centers at the verti-
ces of an equilateral triangle; in this 
arrangement there are three contact 
points, and thus max(C3) = 3. A fourth 
sphere can be placed atop the triangle 
to create a regular tetrahedron with six 
pairwise contacts: max(C4) = 6.

Not only is it easy to construct these 
small clusters; it’s also easy to prove 
that no other n-sphere configurations 

could have a higher Cn. The reason 
is simply that in these clusters each 
sphere touches every other sphere, and 
so the number of contacts could not 
possibly be greater. In the terminology 
of graph theory, the cluster is a clique. 
The number of contacts in a cliquish 
cluster is n(n−1)/2. The sequence be-
gins 0, 1, 3, 6, 10, 15, 21….

Going on to n = 5, cliquishness is left 
behind: In three-dimensional space 
there is no way to arrange five unit 
spheres so that they all touch one an-
other. If such a five-sphere clique ex-
isted, it would have 10 contact points. 
The best that can actually be attained is 
C5 = 9, which is the number of contacts 
formed when you attach a fifth sphere 
to any face of a tetrahedral cluster. The 
resulting structure is known as a trian-
gular dipyramid.

At Sixes and Sevens
Up to this point, each value of n has 
had a unique cluster that maximizes 
Cn. Furthermore, in each case the best-
connected cluster with n+1 spheres 
can be assembled incrementally by 
sticking a new sphere somewhere 
on the surface of the max(Cn) cluster. 
These properties come to an end at 
n = 6. With six spheres, two cluster 

shapes both yield the same maximum 
contact number, C6 = 12. (Note that a 
hypothetical six-sphere clique would 
have 15 contacts.) One of the max(C6) 
clusters is built incrementally from 
the five-sphere triangular dipyramid. 
But the other max(C6) cluster is a “new 
seed”—a structure that cannot be cre-
ated simply by gluing a sphere to the 
surface of a smaller optimum cluster. 
The new seed is the octahedron (which 
might also be described as a square 
dipyramid).

Beyond n = 6, the problem of find-
ing all the maximum-contact clusters 
becomes more daunting. For n = 7, the 
incremental approach of adding an-
other sphere to the surface of an n = 6 
cluster yields four solutions that have 
15 contact points. Three of these C7 = 15 
clusters consist of four tetrahedra glued 
together face-to-face in various ways. 
The remaining product of incremental 
construction consists of an octahedron 
with a tetrahedron erected on one face. 
(One of the seven-sphere solutions has 
both left-handed and right-handed 
forms, but the convention is to count 
these “ chiral” pairs as variants of a sin-
gle cluster, not as separate structures.) 

Finding this particular set of struc-
tures is not especially difficult. If you 

For clusters of up to five spheres, counting the maximum number of contacts is easy. A single sphere has no contacts, and two spheres can touch at 
only one point. Three spheres form an equilateral triangle with a total of three contacts; four spheres arranged in a tetrahedron have six contacts. 
In these four cases, each sphere touches every other sphere in the cluster, but no such configuration exists for five spheres. The best arrangement 
glues a fifth sphere to one face of a tetrahedron, creating a triangular dipyramid with nine contact points.

Two distinct geometries both maximize the number of contacts in clusters of six spheres. The 
cluster at left is constructed incrementally from the optimal n = 5 cluster by attaching a sixth 
sphere to one face of the triangular dipyramid. At right is a “new seed”: the octahedron. In 
both structures the six spheres have a total of 12 contact points.



444     American Scientist, Volume 100 © 2012 Brian Hayes. Reproduction with permission only. 
Contact bhayes@amsci.org.

spend some time playing with Geomags 
or some other three-dimensional mod-
eling device, you are likely to stumble 
upon them. But having identified these 
four clusters with C7 = 15, how do you 
know there aren’t more? And how do 

you prove that no seven-sphere cluster 
has 16 or more contacts?

As it turns out, 15 is indeed the 
maximum contact number for seven 
spheres, but there is another C7 = 15 
cluster. It is a new seed, called a pen-

tagonal dipyramid. With its fivefold 
symmetry, it has no structural motifs 
in common with any of the smaller 
clusters. The novelty of this object 
again raises the question: How can we 
ever be sure there aren’t still more ar-
rangements waiting to be discovered?

A successful program for answer-
ing such questions was initiated 
about five years ago by Natalie Arkus, 
who was then a graduate student at 
Harvard University. (She is now at 
Rockefeller University.) In a series of 
papers written with her Harvard col-
leagues Michael P. Brenner and Vino-
than N. Manoharan, she enumerated 
all the max(Cn) configurations for n = 7 
through n = 10. The results were later 
extended to n = 11 by Robert S. Hoy, 
Jared Harwayne-Gidansky and Corey 
S. O’Hern of Yale University. (Hoy is 
now on the faculty of the University 
of South Florida.) All of the results I 
describe here come from the work of 
these two groups.

Sticky Spheres
One way to solve sphere-packing 
problems is to view the spheres as 
particles subject to a physical force. 
Then, through mathematical analysis 
or computer simulation, you can try 
to find the geometric arrangement that 
minimizes the potential energy of the 
system. The force is usually defined as 
a smooth function of distance. When 
two particles are far apart, the force 
between them is negligible; at closer 
range the force becomes strongly at-
tractive; at even smaller distances a 
“hard-core repulsion” prevents the 
spheres from overlapping. Under a 
force law of this kind, the particles set-
tle into equilibrium at some small but 
nonzero separation.

The Geomags construction set offers another way to explore and visualize the structure of 
sticky-sphere clusters. The set consists of small steel balls linked by plastic-coated magnetic 
rods, which are all the same length. The steel balls represent the centers of spheres, which 
are touching if and only if a rod fits between the corresponding steel balls. In the two photo-
graphs above the yellow rods represent contacts between spheres. The red rods are not part of 
the skeleton of bonded spheres; they have been inserted to show where pairs of spheres that 
look like they might be in contact are actually too far apart for the rod to connect them.

The best-connected clusters of seven spheres have 15 contacts. Two of the structures above are assemblages of four tetrahedra glued together 
across various faces. The “tetratetrahedron” at left is highly symmetrical; the one in the middle is not only asymmetric but also chiral, meaning 
it has both left-handed and right-handed forms. The structure at right is an octahedron augmented with a tetrahedron erected on one face. All 
of these clusters can be built up incrementally by adding a single sphere to the surface of one of the two n = 6 optimal clusters.

Two more seven-sphere clusters look superficially alike but actually have very different struc-
tures. At left is yet another way of assembling four tetrahedra by gluing faces together, yielding 
an almost-pentagonal form. It is almost pentagonal because the two spheres at the front are 
not touching. At right, a slight adjustment creates a pentagonal dipyramid, an object with true 
fivefold symmetry, but now the spheres above and below the five-member ring no longer touch.
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The contact-counting problem 
can be translated into the language 
of forces and energy, but the phys-
ics of the system is rather peculiar. 
To begin with, the force law is not a 
smooth function of distance. Instead 
of hills and valleys representing 
gradual changes in energy, there is a 
sheer cliff, where the energy jumps 
abruptly. Imagine two spheres drifting 
through space. As long as they do not 
touch, there is no force acting between 
them—neither attraction nor repul-
sion. If the spheres happen to come in 
contact, however, they stick together; 
suddenly, the force becomes attractive. 
Yet any attempt to push them still clos-
er is met by infinite resistance.

In this world of sticky spheres, the 
forces at work are not merely short-
range but zero-range. (Martin Gard-
ner once suggested a model for such 
systems: ping-pong balls coated with 
rubber cement.) Two spheres lower 
their total energy when they touch, 
and energy has to be supplied to pull 
them apart; but once they are sepa-
rated, they have no further influence 
on one another. Minimizing the poten-
tial energy of the whole system means 
maximizing the number of contacts. 

The discontinuous nature of the 
force law affects the choice of math-
ematical tools for solving the sticky-
sphere problem. With a smooth force 
law, sphere-packing problems can be 
solved by optimization methods. An 
algorithm repeatedly attempts to re-
duce the total energy by making small 
adjustments to the particles’ positions, 
continuing until no further progress is 
made. This scheme won’t work with 
sticky spheres because there are no 
smooth gradients to guide the particles 
toward lower-energy configurations. 
For this reason, the sticky-spheres 
problem has seemed harder than most 
other sphere-packing tasks.

On the other hand, the discrete, 
all-or-nothing character of the sticky-
spheres potential also brings an im-
portant advantage. Because each pair 
of spheres is either touching or not, 
the number of essentially different 
configurations is finite. In principle, 
you can examine all these possibilities 
and simply choose the one with the 
most contacts and hence the lowest 
potential energy. It was this insight—
the idea that the problem can be solved 
by exhaustive enumeration—that led 
to the recent results of the Harvard 
and Yale groups.

From Geometry to Graph Theory
All the essential facts about sphere-
to-sphere contacts in a cluster can be 
captured in a graph—a collection of 
vertices and edges. Each sphere is 
represented by a vertex, and two ver-
tices are connected by an edge if and 
only if the corresponding spheres are 
in contact. The same information can 
be encoded even more abstractly in 
an adjacency matrix. A cluster of n 
spheres becomes an n-by-n matrix of 
0s and 1s. The matrix element at the 
intersection of row i and column j is 
1 if sphere i touches sphere j and oth-
erwise is 0.

Given a cluster of spheres, it’s easy 
to construct the corresponding graph 
or adjacency matrix. But is it possible 
to go the other way—to start with an 
adjacency matrix and recover the full 
geometry of the cluster? In other words, 
with nothing more to go on than a table 
indicating which spheres are in contact, 

can one determine the coordinates of all 
the spheres in three-dimensional space? 
The answer is: Not always. Consider 
the all-0s matrix, which reveals noth-
ing about the locations of the spheres 
except that they’re not touching. And 
the all-1s matrix describes a cluster that 
simply cannot exist when n is greater 
than 4. But for an important class of 
clusters the adjacency matrix does sup-
ply enough information to allow a full 
reconstruction. That class includes the 
clusters that maximize contact number. 
These facts suggest a direct problem-
solving strategy: Generate all the can-
didate matrices and check to see which 
ones produce geometrically feasible 
clusters.

How many adjacency matrices need 
to be tested? Because contact is a sym-
metric relation—if i touches j, then j 
touches i—all the information in the 
matrix is confined to the upper tri-
angle, which has n(n−1)/2 elements. 

1
1

2 2

3
3

4
4

5 56 6

1 2 3 4 5 6

1 0 0 1 1 1 1
2 0 0 1 1 1 1
3 1 1 0 1 1 0
4 1 1 1 0 0 1
5 1 1 1 0 0 1
6 1 1 0 1 1 0

Graph theory offers a convenient way of enumerating all sticky-sphere clusters with a given 
number of contacts. A mathematical graph is a set of vertices (usually drawn as dots) and a 
set of edges (drawn as lines between vertices). Two vertices are connected by an edge if and 
only if the corresponding spheres are in contact. The octahedral cluster at left is represented 
by the graph in the center, which ignores geometry but preserves the pattern of connectivity. 
The same information is recorded in the adjacency matrix at right. If i and j are any spheres in 
the cluster, the entry in row i and column j of the matrix is 1 if i touches j and otherwise is 0. 
Only the upper triangle (blue) needs to be specified; the lower triangle is its mirror image. All 
matrices with m 1s in the upper triangle are candidates for clusters with m contacts.

Geometric constraints determine which adjacency matrices describe clusters that can be real-
ized in three-dimensional space. If two spheres are in contact (left), a third sphere can touch 
them both only if its center lies somewhere on a circle defined by the intersection of two 
“neighbor spheres.” With three spheres all in mutual contact (right), the available positions 
for adding a fourth sphere are reduced to two points, at the intersections of three circles.
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Each element has two possible values, 
and so the total number of adjacency 
matrices is 2n(n−1)/2.

Sifting through 2n(n−1)/2 matrices 
would be a formidable task; the value 
of this expression is already beyond 
two million at n = 7 and exceeds 1016 
at n = 11. But not all of those matrices 
are distinct; many of them represent 
mere relabelings of the same graph. 
When redundancies of this kind are 
eliminated, the number of distinct 7×7 
matrices is reduced from 2,097,152 to 
just 1,044.

Arkus and her group took advan-
tage of a further dramatic winnowing. 
For reasons that will be explained be-
low, they examined only matrices that 
meet two criteria: Every column and 
row has at least three 1s, and the total 
number of 1s in the upper triangle is 
3n−6. For n = 7, imposing these con-
straints reduces the number of can-

didate adjacency matrices from 1,044 
to just 29. Among those 29 matrices, 
only five give rise to genuine three-
dimensional sphere packings.

And Back to Geometry
How were these geometric structures 
determined? The key idea is to trans-
form the adjacency matrix A into a dis-
tance matrix D. Whereas each element 
Aij of the adjacency matrix is a binary 
value, answering the yes-or-no ques-
tion “Do spheres i and j touch?,” the 
element Dij is a real number giving the 
Euclidean distance between i and j.

As it happens, we already know 
some of those distances. Every 1 in the 
adjacency matrix designates a pair of 
unit spheres whose center-to-center 
distance is exactly 1; thus Aij = 1 im-
plies Dij = 1. We even know something 
about the rest of the distances: A clus-
ter is feasible only if every element of 
the distance matrix satisfies the con-
straint Dij ≥ 1. Any distance smaller 
than 1 would mean that two spheres 
were occupying the same volume.

To fully pin down the geometry of 
a cluster, we need to determine the x, 
y and z coordinates of all n spheres. A 
rule of elementary algebra suggests we 
would need 3n equations to determine 
these 3n unknowns, but in fact 3n−6 
equations are enough. The energy of 
the cluster depends only on the relative 
positions of the n spheres, not on the 
absolute position or orientation of the 
cluster as a whole. In effect, the loca-
tions of two spheres come “for free.” 
We can arbitrarily assume that one 
sphere is at the origin of the coordi-
nate system and another is exactly one 
unit away along the positive x axis. In 
this way six coordinates become fixed. 
Then the 3n−6 equations supplied by 
the 1s in the adjacency matrix are ex-

actly the number needed to locate the 
rest of the spheres.

Having just enough constraints to 
solve the system of equations is more 
than a convenient coincidence; it’s also 
a necessary condition for mechanical 
stability in a cluster. Specifically, hav-
ing 3n−6 contacts and at least three 
contacts per sphere gives a cluster a 
property called minimal rigidity. If any 
sphere had only one or two contacts, 
it could flap or wobble freely. Such as 
cluster cannot be a max(Cn) configura-
tion because the unconstrained sphere 
can always pivot to make contact with 
at least one more sphere, thereby in-
creasing Cn.

Each of the 3n−6 equations has the 
form:
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 = 1,

defining the distance between the cen-
ters of spheres i and j. To recover the 
coordinates of all the spheres, this sys-
tem of equations must be solved. To 
that end, Arkus first tried a technique 
called a Gröbner basis, which in recent 
years has emerged as a powerful tool 
of algebraic geometry. The method of-
fers a systematic way to reduce the 
number of variables until a solution 
emerges. An implementation of the 
Gröbner-basis algorithm built into a 
computer-algebra system was able to 
solve the n = 7 equations, but it became 
too slow for n = 8.

Another approach relies on numeri-
cal methods that converge on a solution 
by successive approximation. The best-
known example is Newton’s method of 
root-finding by refining an initial guess. 
Arkus found that the numerical tech-
niques were successful and efficient, 
but she was concerned that they are not 
guaranteed to find all valid solutions. 

A 10-sphere cluster with 25 contacts is the 
first to cross an important threshold. From 
n= 3 through n= 9, the maximum number of 
contacts in an n-sphere cluster is 3n – 6, which 
is the minimum required for mechanical sta-
bility. This 10-sphere cluster exceeds that re-
quirement. It is built up from the flexible n= 9 
cluster by adding a sphere to one of the square 
faces (thereby eliminating the flexibility).

Among 52 nine-sphere clusters that maximize the number of contacts, one configuration has a remarkable property: flexibility. Two sections of 
the structure can twist in opposite directions without breaking any contacts between spheres. The diagrams above show three phases in this 
oscillatory motion, with the neutral position in the middle. The source of the flexibility is a pair of square faces that share an edge.
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(Whenever the algorithm converges, 
the result is a correct solution, but fail-
ure to converge does not necessarily 
mean that no solution exists; it’s also 
possible that the initial guess was in the 
wrong neighborhood.)

Setting aside the algebraic and nu-
merical techniques, Arkus chose to 
rely on geometric reasoning both as a 
guide to assembling feasible clusters 
and as a means of excluding unphysi-
cal ones. A basic rule for unit spheres 
states that if i touches j, then j’s center 
must lie somewhere on a sphere of ra-
dius 1 centered on i—the “neighbor 
sphere.” If k touches both i and j, then 
k’s center must be somewhere on the 
circular intersection of two neighbor 
spheres. If l touches all three of i, j and 
k, the possible locations are confined to 
a set of two points. With a handful of 
rules of this general kind, it’s always 
possible to solve for the unknown dis-
tances in a distance matrix—assuming 
that the adjacency matrix describes a 
feasible structure.

Other geometric rules can be ap-
plied to prove that certain classes of 
adjacency matrices cannot possibly 
yield a physical sphere packing. For 
example, if spheres i, j and k all touch 
one another, they must form an equi-
lateral triangle. If the pattern of 1s in 
the adjacency matrix shows that more 
than two other spheres also touch i, 
j and k, then the cluster cannot exist 
in three-dimensional space. The un-
physical matrices can be eliminated 
without even exploring the geometry 
of the clusters.

Arkus also made use of the Geo-
mags construction set to check the fea-
sibility of certain sphere arrangements. 
The Geomags set consists of polished 
steel balls and bar-magnet struts en-
cased in colored plastic; all the struts 
are the same length, and so they can 
readily be assembled into a skeleton 
of unit-length bonds between sphere 
centers. Having a three-dimensional 
model you can hold in your hand is a 
great aid to geometric intuition.

Eight, Nine, Ten
The results of the survey of sticky-
sphere clusters are summarized in 
the table on page 448. Arkus and her 
colleagues determined max(Cn)—and 
identified all clusters that exhibit 
these highest contact numbers—for all 
n ≤ 10. Along the way, they discovered 
quite a few clusters with interesting 
quirks and personalities.

At n = 8 the maximum contact num-
ber is 18, and there are 13 distinct ways 
of achieving this bound. All but one of 
the clusters can be built up incremen-
tally by attaching a new sphere to the 
surface of one of the n = 7 clusters.

Clusters of nine spheres have up to 
21 contacts; there are 52 varieties, in-
cluding four new seeds. In this crowd 
of sphere packings, one stands out 
from all the rest. It has a property not 
seen in any other max(Cn) cluster up to 
this point: flexibility. The structure can 
be twisted around one axis without 
breaking any bonds between spheres. 
This ability to wiggle may seem sur-
prising, given that the adjacency ma-
trices were designed with the explicit 
aim of ensuring “minimal rigidity.” 
But there’s a reason this form of rigid-
ity is called minimal. The requirement 
that every sphere make contact with 
at least three others implies that no 
individual sphere can move relative to 
the rest of the cluster without break-
ing at least one bond. But other modes 
of motion, in which larger groups of 
spheres flex or rotate, are not ruled out. 
In the flexible n = 9 cluster, two square 
faces joined by an edge can twist and 
deform slightly. The upper illustra-
tion on the opposite page shows three 
states of torsion, somewhat exagger-
ated for clarity. (The Web version of 
this column animates the motion.)

The n = 10 clusters cross another 
threshold: For the first time the number 
of contacts exceeds 3n−6 (which is 24 
in this case). Some 259 clusters of 10 
spheres have exactly 24 contacts, but 
another three clusters have 25 each. 
Again, it’s mildly surprising that these 
objects find their way onto the list. The 

search algorithm begins with a list of 
matrices that specify exactly 3n−6 adja-
cencies, so how can the search uncover 
a cluster with even more contacts? The 
explanation is that even if two spheres 
are not required to touch, they are not 
forbidden to do so. When you solve a 
system of equations that specifies 24 
adjacencies, it can happen, as if by co-
incidence, that a 25th pair of spheres is 
also at a distance of exactly 1.

One of these happy accidents is 
shown in the lower illustration on the 
opposite page. The structure is derived 
from the flexible n = 9 cluster by add-
ing an octahedral cap to one of the 
square faces. (The addition eliminates 
the flexibility.)

Elevenses
To compile the catalog of 10- sphere 
clusters, Arkus and her colleagues 
had to examine more than 750,000 ma-
trices for minimally rigid structures. 
The challenge of pushing the frontier 
out to n = 11 was taken up by Hoy, 
Harwayne-Gidansky and O’Hern at 
Yale. They relied on many of the same 
methods but adopted a different ap-
proach to streamlining the algorithms. 
For example, they took advantage of a 
curious fact proved by Therese Biedl, 
Erik Demaine and others: Any valid 
packing of spheres has a continuous, 
unbranched path that threads from 
one sphere to the next throughout the 
structure, like a long polymer chain. 
This fact implies that the rows and col-
umns of the adjacency matrix can al-
ways be rearranged so that the super-
diagonal (just above and to the right of 
the main diagonal) consists entirely of 
1s. Confining attention only to these 

The 11-sphere champion has 29 contacts, two more than the 3n – 6 lower bound of 27. The 
structure is shown at left in a computer-generated space-filling diagram and at right in a 
photograph of a Geomags model. It can be built up from the flexible nine-sphere model by 
adding octahedral caps to both of the square faces.
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matrices reduces the workload by a 
factor of 1,000 for n = 11.

The Yale group also devised simpli-
fied rules for excluding invalid pack-
ings. And they formulated more of the 
geometric rules in such a way that ma-
trices could be tested without ever hav-
ing to go through the time-consuming 
steps of computing sphere-to-sphere 
distances. For example, one such exclu-
sion rule applies to clusters that have 
eight spheres arranged at the vertices 
of a cube. No ninth sphere can touch 
more than four of these corner spheres; 
to do so, the ninth sphere would have 
to lie somewhere inside the cube, but 
there’s no room for it there. Violations 
of this rule can be detected merely by 
counting 1s in the adjacency matrix, a 
much quicker operation than calculat-
ing three-dimensional coordinates.

At n = 11 the Yale group identified 
1,641 distinct clusters with C11 ≥ 27. The 
vast majority of these structures have 
exactly 27 contacts (the 3n−6 value), but 
there are 20 clusters with 28 contacts 
(equal to 3n−5) and a single packing 
with 29 contacts (3n–4). This last object, 
shown on page 447, can be understood 
as a further elaboration of the “floppy” 
cluster described above. The flexible 
nine-sphere structure has two square 
faces exposed at the surface. One of 
those faces is capped to form an octahe-
dron in the sole 10-sphere cluster with 
25 contacts. Capping the other square 

face to create a second octahedron leads 
to the unique 11-sphere cluster with 29 
contacts.

Incidentally, there is an obvious way 
to add a 12th sphere to this cluster to 
produce a structure with 33 contacts, 
equal to 3n−3. But whether or not 33 
is the highest attainable C12 value re-
mains a matter of conjecture, because 
no complete survey of 12-sphere clus-
ters has been attempted.

Even for n = 11 it’s possible to quib-
ble over questions of completeness 
and certainty. Some of the Yale results 
rely on a numerical algorithm to solve 
the system of distance equations. As 
noted above, when this process fails 
to converge, it does not unequivocally 
prove that no solutions exists; even af-
ter many trials, there’s always a possi-
bility that one more run with a different 
initial guess might succeed. In practice, 
the chance that a valid sphere packing 
might have been missed is extremely 
slim; whether the question is worth 
worrying about is perhaps a matter 
of differing attitudes toward rigor in 
mathematics and the physical sciences.

Sticky Spheres in Action
Both the Harvard and the Yale groups 
were inspired to undertake this exercise 
by an interest in aggregations of mate-
rial spheres rather than mathematical 
ones. Hoy, Harwayne-Gidansky and 
O’Hern discuss the mysteries of crystal-
lization. Bulk materials tend to favor 
configurations that maximize density, 
such as the Kepler packing. But crys-
tal growth must start from clusters of 
just a few atoms, where the configura-
tions that minimize energy are not the 
same as those in the bulk. Some high-
contact-number clusters exhibit motifs 
seen in the Kepler packing, but other 
clusters are incompatible with space-
filling structures. For example, the n = 7 
pentagonal dipyramid is not a pattern 
that can tile three-dimensional space.

Arkus is particularly interested in the 
self-assembly of nanostructures, both 
natural ones (such as viral capsids) 
and engineered materials. Guangnan 
Meng of Harvard, working with Arkus, 
Brenner and Manoharan, has devel-
oped an experimental system that offers 
another way to explore small clusters of 
sticky spheres. The spheres are poly-
styrene beads one micrometer in diam-
eter, suspended in water along with a 
large population of much smaller plas-
tic nanoparticles. When two spheres 
come into contact, the nanoparticles are 

excluded from the space between them; 
this phenomenon creates a short-range 
attractive force between the spheres. 
Hence the system is a good model of 
idealized sticky spheres.

In Meng’s experiments the micro-
spheres were spread over glass plates 
with thousands of cylindrical micro-
wells, where they formed clusters 
with an average of about 10 spheres 
per well. The wells were scanned with 
a microscope to tabulate the relative 
abundance of various configurations. 
If potential energy were the sole crite-
rion, then clusters with more contacts 
would be more common, but entropy 
also enters into this calculus: Structures 
that can be formed in many different 
ways are more probable. For the most 
part, results were broadly in accord 
with theoretical expectations. Entropy 
favored clusters with lower symmetry, 
and also enhanced the representation 
of nonrigid structures. But because ex-
tra contacts lower the potential energy, 
structures with more than 3n−6 bonds 
were also overrepresented.

Apart from these physical ap-
plications of sticky spheres, the 
contact-counting model also evokes 
a celebrated open problem in pure 
mathematics. The question was raised 
by Paul Erdős in 1946: Given n points 
in d-dimensional space, how many 
pairs of points can be separated by 
the same distance? By scaling all dis-
tances appropriately, the repeated dis-
tance can always be set equal to 1, and 
so the problem is sometimes called 
the unit-distance problem. In three 
dimensions, the maximum-contact 
problem for unit spheres is equivalent 
to the Erdős unit-distance problem 
with the additional constraint that 
no distance is allowed to be less than 
1. Thus the recent results on sticky 
spheres solve this restricted version of 
the problem for all n ≤ 11.

What lies beyond n = 11? Arkus sug-
gests that the main roadblock to enu-
merating maximum-contact clusters for 
higher n is not the geometric problem 
of solving for coordinates and distances 
but the combinatorial one of generating 
all appropriate adjacency matrices. Be-
cause so few of the matrices correspond 
to valid packings, the process becomes 
hideously wasteful. Arkus suggests a 
possible alternative approach, although 
it has not yet been successfully imple-
mented. Through n = 10 she has shown 
that every cluster with 3n−6 contacts 
can be converted into any other 3n−6 
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Results of searches by groups at Harvard 
and Yale summarize what is known about 
sticky-sphere clusters that maximize Cn, the 
number of contacts. Up to n = 4, max(Cn) is 
equal to n(n–1)/2, the number of contacts 
formed when every sphere touches every 
other sphere. Up to n = 9, Cn is equal to 3n–6, 
the minimum for mechanical stability. The 
numbers in the multiplicity column give the 
number of clusters with each value of Cn.
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cluster by some chain of simple trans-
formations, in which a single bond is 
broken and another bond is formed. 
She conjectures that this property holds 
true for all n. If it does, the maximum-
contact problem might be solved by 
generating any one structure with 
3n−6 contacts and then systematically 
traversing the tree of all single-bond-
exchange transformations.

At some large enough value of n, 
the diversity of these curious geomet-
ric structures will necessarily begin to 
diminish, as all larger clusters come to 
look more and more like pieces of the 
Kepler packing. But we’re not there 
yet, and there may still be oddities to 
discover.

Note: The Web edition of this column, at 
http://www.americanscientist.org, includes 
animated versions of many of the illustrations.
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