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Foolproof

Brian Hayes

I was a teenage angle trisector. In 
my first full-time job, fresh out of 

high school, I trisected angles all day 
long for $1.75 an hour. My employer 
was a maker of voltmeters, ammeters 
and other electrical instruments. This 
was back in the analog age, when a me-
ter had a slender pointer swinging in an 
arc across a scale. My job was drawing 
the scale. A technician would calibrate 
the meter, recording the pointer’s angu-
lar deflection at a few key intervals—say 
3, 6, 9, 12 and 15 volts. When I drew the 
scale, using ruler and compass and a fine 
pen, I would fill in the intermediate divi-
sions by interpolation. That’s where the 
trisection of angles came in. I was also 
called upon to perform quintisections 
and various other impossible feats.

I joked about this with my coworker 
and supervisor, Dmytro, who had been 
drawing meter scales for some years. We 
should get extra pay, I said, for solving 
one of the famous unsolvable problems 
of antiquity. But Dmytro was a skeptic, 
and he challenged me to prove that tri-
section is impossible. This was beyond 
my ability. I did my best to present an 
outline of a proof (after rereading a Mar-
tin Gardner column on the topic), but 
my grasp of the mathematics was tenu-
ous, my argument was incoherent, and 
my audience remained unconvinced.

On the other hand, Dmytro himself 
quickly produced visible evidence that 
the specific method of trisection we 
employed—drawing a chord across the 
angle and dividing it into three equal 
segments—gave incorrect results when 
applied to large angles. After that, we 
made sure all the angles we trisected 
were small ones. And we agreed that 
the whole matter was something we 
needn’t discuss with the boss. Our cir-

cumspect silence was a little like the 
Pythagorean conspiracy to conceal the 
irrationality of √

—
2.

Looking back on this episode, I am 
left with vague misgivings about the 
place of proof in mathematical dis-
course and in everyday life. Admit-
tedly, my failure to persuade Dmytro 
was entirely a fault of the prover, not of 
the proof. Still, if proof is a magic wand 
that works only in the hands of wiz-
ards, what is its utility to the rest of us?

Reading Euclid Backward
Here is how proof is supposed to work, 
as illustrated by an anecdote in John 
Aubrey’s Brief Lives about the 17th cen-
tury philosopher Thomas Hobbes:

He was 40 yeares old before he 
looked on geometry; which hap-
pened accidentally. Being in a 
gentleman’s library in..., Euclid’s 
Elements lay open, and ’twas the 
47 El. libri I. He read the proposi-
tion. “By G—,” sayd he (he would 
now and then sweare, by way of 
emphasis), “this is impossible!” 
So he reads the demonstration 
of it, which referred him back to 
such a proposition; which propo-
sition he read. That referred him 
back to another, which he also 
read. Et sic deinceps, that at last he 
was demonstratively convinced 
of that trueth. This made him in 
love with geometry.

What’s most remarkable about this 
tale—whether or not there’s any trueth 

in it—is the way Hobbes is persuaded 
against his own will. He starts out in-
credulous, but he can’t resist the force 
of deductive logic. From proposition 
47 (which happens to be the Pythago-
rean theorem), he is swept backward 
through the book, from conclusions 
to their premises and eventually to 
axioms. Though he searches for a flaw, 
each step of the argument compels as-
sent. This is the power of pure reason.

For many of us, the first exposure 
to mathematical proof—typically in 
a geometry class—is rather different 
from Hobbes’s middle-age epiphany. 
A nearer model comes from another 
well-worn story, found in Plato’s dia-
logue Meno. Socrates, drawing figures 
in the sand, undertakes to coach an 
untutored slave boy, helping him to 
prove a special case of the Pythagorean 
theorem. I paraphrase very loosely:

Socrates: Here is a square with 
sides of length 2 and area equal to 
4. If we double the area, to 8 units, 
what will the length of a side be?
Boy: Umm, 4?
Socrates: Does 4 × 4 = 8?
Boy: Okay, maybe it’s 3.
Socrates: Does 3 × 3 = 8?
Boy: I give up.
Socrates: Observe this line from 
corner to corner, which the erudite 
among us call a diagonal. If we erect 
a new square on the diagonal, note 
that one-half of the original square 
makes up one-fourth of the new 
square, and so the total area of the 
new square must be double that of 
the original square. Therefore the 
length of the diagonal is the length 
we were seeking, is it not?
Boy: Whatever.

At this point I trust we are all root-
ing for the kid. I would like to be able 
to report that the dialogue continues 
with the boy taking the initiative, say-
ing something like, “Okay, dude, so 
what’s the length of your erudite diag-
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onal? It’s not 4 and it’s not 3, so what is 
it, exactly?” Alas, Plato reports no such 
challenge from the slave boy. 

The problem with the Meno proof is 
exactly the opposite of the one I faced 
when I was an untutored wage slave. 
Whereas I was too inept and intellec-
tually ill-equipped to craft a proof that 
would persuade my colleague (or even 
myself, for that matter), Socrates is a 
figure of such potent authority that the 
poor kid would surely go along with 
anything the master said. He would 
put up no resistance even if Socrates 
were proving that 1 = 2. It’s hard to 
believe that the boy will go on to prove 
theorems of his own.

Sadly, Hobbes didn’t get much more 
benefit from his own geometry lesson. 
He became a notorious mathematical 
crank, claiming to have solved all the 
most famous problems of classical ge-
ometry, including the trisection of the 
angle, the squaring of the circle and 
the doubling of the cube. These claims 
were a little less foolish in the 17th cen-
tury than they would be now, since the 
impossibility of the tasks had not yet 
been firmly established. Nevertheless, 
Hobbes’s contemporaries had no trou-
ble spotting the gaffes in his proofs.

Enormous Theorems, Unwieldy Proofs
In recent years proof has become a 
surprisingly contentious topic. One 
thread of discord began with the 1976 
proof of the four-color-map theorem 
by Kenneth Appel, Wolfgang Haken 
and John Koch of the University of 
Illinois at Urbana-Champaign. They 
showed that if you want to color a 
map so that no two adjacent countries 
share a color, four crayons are all you’ll 
ever need. The proof relied on com-
puter programs to check thousands of 
map configurations. This intrusion of 
the computer into pure mathematics 
was greeted with suspicion and even 
disgust. Haken and Appel reported a 
friend’s comment: “God would never 
permit the best proof of such a beauti-
ful theorem to be so ugly.” Apart from 
such emotional and aesthetic reactions, 
there was the nagging question of veri-
fication: How can we ever be sure the 
computer didn’t make a mistake?

Some of the same issues have come 
up again with the proof of the Kepler 
conjecture by Thomas C. Hales of the 
University of Pittsburgh (with contri-
butions by his student Samuel P. Fer-
guson). The Kepler conjecture—or is it 
now the Hales-Ferguson theorem?—

says that the pyramid of oranges on a 
grocer’s shelf is packed as densely as 
possible. Computations play a major 
part in the proof. Although this reli-
ance on technology has not evoked the 
same kind of revulsion expressed three 
decades ago, worries about correctness 
have not gone away.

Hales announced his proof in 1998, 
submitting six papers for publication 
in Annals of Mathematics. The journal 
enlisted a dozen referees to examine the 
papers and their supporting computer 
programs, but in the end the reviewers 
were defeated by the task. They found 
nothing wrong, but the computations 
were so vast and formless that exhaus-
tive checking was impractical, and the 
referees felt they could not certify the 
entire proof to be error-free. This was a 
troubling impasse. Eventually the An-
nals published “the human part of the 

proof,” excluding some of the compu-
tational work; the full proof was pub-
lished last summer in Discrete and Com-
putational Geometry. Interestingly, Hales 
has turned his attention to computer-
assisted methods of checking proofs.

In the case of another famously 
problematic proof, we can’t put the 
blame on computers. An effort to clas-
sify the mathematical objects known 
as finite simple groups began in the 
1950s; the classification amounts to a 
proof that no such groups exist out-
side of five known categories. By the 
early 1980s the organizers of the proj-
ect believed the proof was essentially 
complete, but it was scattered across 
500 publications totaling at least 10,000 
pages. Three senior authors undertook 
to revise and simplify the proof, bring-
ing together the major ideas in one se-
ries of publications. The process, still 

Bisecting an angle—dividing it into two equal parts—is one of the simplest procedures presented 
in Euclid’s Elements, the seminal work on geometry compiled some 2,400 years ago. The bisec-
tion method and the proof of its correctness are given here in colorful diagrams created by Oliver 
Byrne for an innovative edition of the Elements published in London in 1847. The proof shows 
that the two elongated triangles (with red, blue-green and black sides) are equal, and so the two 
halves of the bisected angle at the top of the diagram must also be equal. The simplicity of bisec-
tion contrasts with the difficulty—indeed, impossibility—of trisection, or dividing an arbitrary 
angle into three equal parts. The plate is reproduced courtesy of the mathematics department 
and the Special Collections Library of the University of British Columbia, which has also made 
Byrne’s edition available online at http://www.sunsite.ubc.ca/DigitalMathArchive/Euclid/.
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unfinished, is testing the limits of the 
human attention span—and lifespan. 
(One of the leaders of the revision pro-
gram died in 1992.)

If some proofs are too long to com-
prehend, others are too terse and cryp-
tic. Four years ago the Russian mathe-
matician Grigory Perelman announced 
a proof of the Poincaré conjecture. This 
result says—here I paraphrase Christi-
na Sormani of Lehman College—that if 
a blob of alien goo can ooze its way out 
of any lasso you throw around it, then 

the blob must be nothing more than 
a deformed sphere, without holes or 
handles. Everyday experience testifies 
to this fact for two-dimensional sur-
faces embedded in three-dimensional 
space, and the conjecture was proved 
some time ago for surfaces (or “mani-
folds”) of four or more dimensions. The 
hard case was the three-dimensional 
manifold, which Perelman solved by 
proving a more-general result called 
the geometrization conjecture.

Perelman’s proof is not easy reading. 
Sormani explains its strategy as “heat-
ing the blob up, making it sing, stretch-
ing it like hot mozzarella and chopping 
it into a million pieces.” I applaud the 
vividness of this description, and yet it 
has not helped me follow Perelman’s 
logic. Given the difficulty of the work, 
others stepped in to explicate and elabo-
rate, publishing versions of the proof 
considerably longer than the original. 
These were not popularizations aimed 
at the general public; they were meant 
to explain the mathematics to mathema-
ticians. Controversy ensued. Were the 
explicators trying to claim a share of the 
glory? Did they deserve a share? In Au-
gust Perelman was awarded a Fields 
Medal, the biggest prize in mathemat-
ics, which may put an end to the contro-
versy. (Perelman refused the prize.)

Poof
These incidents and others like them 
have led to talk of a crisis in mathemat-
ics, and to fears that proof cannot be 
trusted to lead us to eternal and indubi
table truth. Already in 1972 Philip J. 
Davis of Brown University was writing:

The authenticity of a mathemati-
cal proof is not absolute but only 
probabilistic.... Proofs cannot be 
too long, else their probabilities go 
down, and they baffle the check-
ing process. To put it another way: 
all really deep theorems are false 
(or at best unproved or unprov-
able). All true theorems are trivial. 

A few years later, in Mathematics: 
The Loss of Certainty, Morris Kline 
portrayed mathematics as a teetering 
superstructure with flimsy timbers 
and a crumbling foundation; continu-
ing with this architectural conceit, he 
argued that proofs are “a façade rather 
than the supporting columns of the 
mathematical structure.”

Davis and Kline both wrote as math-
ematical insiders—as members of the 
club, albeit iconoclastic ones. In con-
trast, John Horgan positioned himself 
as a defiant outsider when he wrote 
a Scientific American essay titled “The 
Death of Proof” in 1993. “The doubts 
riddling modern human thought have 
finally infected mathematics,” he said. 
“Mathematicians may at last be forced 
to accept what many scientists and phi-
losophers already have admitted: their 
assertions are, at best, only provision-
ally true, true until proved false.”

My own position as an observer of 
these events is somewhere in the awk-
ward middle ground, neither inside nor 
outside. I am certainly not a mathema-
tician, and yet I have been an embed-
ded journalist in the math corps for so 
long that I cannot claim detachment or 
impartiality. I report from the no man’s 
land between the fences.

I do believe there is a kind of crisis 
going on—but only because the en-
tire history of mathematics is just one 
crisis after another. The foundations 
are always crumbling, and the bar-
barians are always at the gate. When 
Haken and Appel published their 
computer-aided proof, it was hardly 
the first time that a technical innova-
tion had stirred up controversy. In the 
17th century, when algebraic methods 
began intruding into geometry, the 
heirs of the Euclidean tradition cried 
foul. (Hobbes was one of them.) At the 
end of the 19th century, when David 
Hilbert introduced nonconstructive 
proofs—saying, in effect, “I know x ex-
ists, but I can’t tell you where to look 
for it”—there was another rebellion. 
Said one critic: “This is not mathemat-
ics. This is theology.”

Drawing scales for instruments such as ammeters sometimes required trisection of angles to 
interpolate between major divisions. The trisection method once employed by the author was to 
draw a chord across the angle and divide it into three equal segments. The result is an approxi-
mation, good for narrow angles but visibly inaccurate for wider ones. In the diagrams at right 
the trisected chords are shown in white, and correct trisections are indicated on the blue arcs. 
The meter scale at left dates from the era when the author was performing trisections, but it is 
not the author’s work, and it shows evidence of a more-sophisticated algorithm.

Doubling of a square is a proof taught to a 
slave boy in Plato’s Meno. A simplified ver-
sion of the proof begins with a square of side 
2 and area 4, bisects the square along the di-
agonal, and constructs a new square whose 
side is the diagonal of the original square. The 
isosceles triangle forming half the area of the 
smaller square is one-fourth the area of the 
larger one, and so the area has doubled.
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All in all, the crisis of the present mo-
ment seems mild compared with that 
of a century ago, when paradoxes in set 
theory led to Gottlob Frege’s lament, 
“Alas, arithmetic totters.” In response 
to that crisis, a rescue party of ambitious 
mathematicians, led by Hilbert, set out 
to rebuild the edifice of mathematics on 
a new foundation. Hilbert’s plan was to 
apply the process of proof to proof itself, 
showing that the axioms and theorems 
of mathematics can never lead to a con-
tradiction—that you can never prove 
both “x” and “not x.” The outcome is 
well known: Kurt Gödel proved instead 
that if you insist on consistency, there 
are true statements you can’t prove at 
all. You might think that such a Tower 
of Babel catastrophe would scatter the 
tribes of mathematics for generations, 
but mathematicians have carried on.

That some of the latest proofs from 
the frontiers of mathematical research 
are difficult and rely on novel tools 
seems to me utterly unexceptional. Of 
course the proofs are hard to digest; 
they were hard to create. These are so-
lutions to problems that have stumped 
strong minds for decades or centuries. 
When Perelman’s proof of the Poincaré 
conjecture defeats my attempts at un-
derstanding, this is a disappointment 
but not a surprise. (I can’t keep pace 
with Olympic marathoners either.) If I 

have a worry about the state of math-
ematics, it’s not the forbidding inacces-
sibility of the deepest thinkers; rather 
it’s my own clumsiness when I tackle 
perfectly humdrum problems, far from 
the frontiers of knowledge.

Who’s on First?
Donald E. Knuth of Stanford Univer-
sity once appended a note to a com-
puter program: “Beware of bugs in the 
above code; I have only proved it cor-
rect, not tried it.” Coming from Knuth, 
the warning is a joke, but if you hear it 
from me, you should take it seriously.

Allow me to bring back Socrates and 
the slave boy for a little exercise in prob-
ability theory. They are arguing about 
sports: In a best-of-seven tournament 
(such as the baseball World Series), 
what is the probability that the contest 
will be decided in a four-game sweep? 
Assume that the teams are evenly 
matched, so that each team has a 50-50 
chance of winning any single game.

Socrates: In a best-of-seven series, 
how many ways can a team score 
a clean sweep?
Boy: Just one way. You’ve got to 
win four in a row, with no losses.
Socrates: And how many ways 
could we form a five-game series, 
with four wins and a single loss?

Boy: Well, you could lose either the 
first, the second, the third or the 
fourth game, and win all the rest.
Socrates: And what about losing 
the fifth game?
Boy: If you win the first four, you 
don’t play a fifth.
Socrates: So to build a five-game 
series, we take a four-game series 
and insert an additional loss at 
each position except the last, is 
that right?
Boy: I guess.
Socrates: Therefore we can create 
a six-game tournament by tak-
ing each of the five-game series 
and inserting an additional loss 
in each of five positions. Thus we 
have 4 × 5, or 20, six-game series.
Boy: If you say so.
Socrates: Then each of the 20 six-
game series can be expanded in six 
different ways to make a seven-
game series, and so there are 120 
seven-game variations. Adding it 
all up, we have 1+4+20+120 cas-
es, for a total of 145. Exactly one of 
these cases is a clean sweep, and 
so the probability is 1⁄145.

At this point the boy, who knows 
something about baseball, points out 
that of 98 best-of-seven World Series, 
19 have been won in a clean sweep, 

The baseball World Series offers a problem where mathematical analysis is the best route to understanding but not necessarily the surest path to 
the right answer. The World Series ends as soon as either team scores four wins. Assuming evenly matched teams, what are the probabilities that 
the series will last four, five, six or seven games? Any series can be represented as a path through a four-by-four grid; starting in the southwest 
corner, a win by one team is a step to the east, a win by the other a step to the north. The 35 cases shown are all those in which East is the series 
winner. It’s essential both to count the cases correctly and to weight them by their individual probabilities. For example, since East wins each game 
with probability 1⁄2, the probability of any specific five-game sequence is 2–5, or 1⁄32; there are four such sequences, and so the probability that East 
will win in five games is 1⁄8. Erroneous calculations mentioned in the text count incorrectly or assume that all cases have the same weight. Avoiding 
such blunders is probably easier in a computer simulation, but the simulation fails to explain why the probabilities take this form. The numbers 1, 
4, 10 and 20 are binomial coefficients (found along a diagonal of Pascal’s triangle), suggesting a way to generalize the result to other tournaments.
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suggesting an empirical probability 
nearer to 1⁄5 than to 1⁄145. Socrates is not 
swayed by this fact.

Socrates: Do not be distracted by 
mere appearances; here we study 
ideal baseball. Let me demonstrate 
by another method.
Boy: Go for it.
Socrates: Suppose for the moment 
that the teams always play a full 
schedule of seven games. Since 
each game can have either of two 
outcomes, there are 27, or 128, pos-
sible sequences. Now go through 
the list of 128 patterns and remove 
all of those in which play continues 
after a team has already achieved 
four victories. I find that there are 
70 distinct patterns remaining. 
Two of those patterns are clean 
sweeps—one for each team—and 
so the probability is 1⁄35.
Boy: You’re getting warmer. Try 
this: Winning four games in a row 
has a probability of 1⁄2 × 1⁄2 × 1⁄2 × 1⁄2, 
or 1⁄16. Either team can have the 
clean sweep, so the combined 
probability is 1⁄16 + 1⁄16 = 1⁄8.

Deductive logic has led us to three 
different answers, at least two of which 
must be wrong. Although I have made 
Socrates the fool in this comedy of er-
rors, I cannot conceal that the blunders 
are actually my own. A few years ago I 
had occasion to perform this calculation, 
and I got a wrong answer. How did I 
know it was wrong? It disagreed with a 
simple computer experiment: a program 
that simulated a million random World 
Series and produced 124,711 four-game 
clean sweeps. (That’s almost exactly 1⁄8.)

What does it mean that I put greater 
trust in the output of a computer pro-

gram than in my own reasoning? Well, 
I am not arguing that computer simu-
lations are superior to proofs or more 
reliable than deductive methods. It’s 
not that there’s something wrong with 
classical mathematics. All three of the 
approaches discussed in my pseudo-
Socratic dialogue can be made to yield 
the right answer, if they are applied 
with care. But proof is a tool that can 
also prove you a fool.

For those who believe they could 
never possibly commit such an error, I 
offer my congratulations, along with a 
reminder of the infamous Monty Hall 
affair. In 1990 Marilyn vos Savant, a col-
umnist for Parade magazine, discussed 
a hypothetical situation on the televi-
sion game show “Let’s Make a Deal,” 
hosted by Monty Hall. A prize is hid-
den behind one of three doors. When a 
contestant chooses door 1, Hall opens 
door 3, showing that the prize is not 
there, and offers the player the option of 
switching to door 2. Vos Savant argued 
(correctly, given certain assumptions) 
that switching improves the odds from 
1⁄3 to 2⁄3. Thousands disagreed, including 
more than a few mathematicians. Even 
Paul Erdős, a formidable probabilist, 
got it wrong. It was a computer simula-
tion that ultimately persuaded him.

Putting Proof in Its Place
The law seeks proof beyond a rea-
sonable doubt, but mathematics sets 
a higher standard. In a tradition that 
goes back to Euclid, proof is taken as a 
guarantee of infallibility. It is the flam-
ing sword of a sentry standing guard 
over the published literature of math-
ematics, barring all falsehoods. And 
the literature may need guarding. If 
you view mathematics as a formal sys-

tem of axioms and theorems, then the 
structure is dangerously brittle. Ad-
mit just one false theorem and you can 
prove any absurdity you please.

The special status of mathematical 
truth, setting the discipline apart from 
other arts and sciences, is a notion still 
cherished by many mathematicians, 
but proof has other roles as well; it’s 
not just a seal of approval. David Bres-
soud’s book Proofs and Confirmations 
gives what I believe is the best-ever 
insider’s account of what it’s like to 
do mathematics. Bressoud emphasizes 
that the most important function of 
proof is not to establish that a proposi-
tion is true but to explain why it’s true. 
“The search for proof is the first step in 
the search for understanding.” 

And of course there’s more to math-
ematics than theorems and proofs. 
A genre calling itself experimental 
mathematics is thriving today. There 
are journals and conferences devoted 
to the theme, and a pair of books by 
Jonathan Borwein and David Bailey 
serve as a manifesto for the field. Not 
that practitioners of experimental math 
want to abandon or abolish proof, but 
they give greater scope to other activi-
ties: playing with examples, making 
conjectures, computation. 

Still, there are ideas that never could 
have entered the human mind except 
through the reasoning process we call 
proof. Which brings me back to the tri-
section of angles. 

Wantzel’s Theorem
The fact that trisection is impossible 
is common knowledge, but the rea-
son it’s impossible—the content of the 
proof—is not so widely known. Many 
authors mention it but few explain 

Euclidean constructions with straightedge and compass are capable of performing five arithmetic operations: addition, subtraction, multiplication, 
division and the extraction of square roots. Addition is simply the concatenation of line segments, and subtraction is the reverse. Multiplication 
entails building similar triangles whose sides embody the ratios 1:b::a:x; thus x is the product of a and b. Division, again, involves reversing the 
process. For square roots, triangles inscribed in a semicircle yield the ratios 1:x::x:a, so that x2 = a and the length of the segment x is the square root 
of a. Only these five operations are possible; there is no way to extract cube roots, a fact crucial to proving that trisection is impossible.
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it. Even Underwood Dudley’s splen-
did send-up of mathematical cranks, 
A Budget of Trisections, does not go 
through the proof step by step.

The origin and history of the proof 
are also somewhat shadowy. There is a 
lesson here for those who seek immor-
tality by solving some trophy problem 
in mathematics. Trisection had been 
near the top of the most-wanted list for 
two millennia, and yet the author of the 
first published proof of impossibility 
has not earned a place in the pantheon.

That author was the French mathe-
matician Pierre Laurent Wantzel (1814–
1848), who is hardly a household name, 
even in mathematical households. His 
proof appeared in 1837. As far as I 
know, it has never been reprinted and 
has never been published in English 
translation. (I have posted a crude at-
tempt at a translation on the American 
Scientist Web site.) Many citations of the 
paper give the wrong volume number, 
suggesting that even some of those who 
refer to the proof have not read it. And 
to pile on one further indignity, the pa-
per itself gets the author’s name wrong: 
He is listed as “M. L. Wantzel.”

One reason for Wantzel’s obscurity 
may be that his proof is almost unintel-
ligible for modern readers. Later ex-
positors offer more lucid accounts. Felix 
Klein, L. E. Dickson and Robert C. Yates 
all published versions of the proof; so 
did Willard Van Orman Quine, who 
wrote his version in response to a $100 
challenge. For a thorough and acces-
sible book-length exposition I highly 
recommend Abstract Algebra and Famous 
Impossibilities, by Arthur Jones, Sidney 
A. Morris and Kenneth R. Pearson.

As penance for my youthful career 
as a trisector, I would now like to try 
giving a brief sketch of the impossibil-
ity proof. The basic question is: What 
can you do with a straightedge and 
compass? You can draw lines and 
circles, obviously, but it turns out you 
can also do arithmetic. If the length of 
a line segment represents a number, 
then ruler-and-compass manipulations 
can add, subtract, multiply and divide 
such numbers, and also extract square 
roots. Suppose you are given a seg-
ment of length 1 to start with; what 
further numbers can you generate? All 
the integers are easy to reach; you can 
also get to any rational number (a ratio 
of integers). Square roots give access 
to certain irrationals; by taking square 
roots of square roots, you can also do 
fourth roots, eighth roots, and so on. 

But that’s all you can do. There is no 
way to extract cube roots, fifth roots 
or any other roots not a power of 2—
which is the crucial issue for trisection.

A purported trisection procedure is 
required to take an angle θ and pro-
duce θ/3. Since the procedure has to 
work with any angle, we can refute it 
by exhibiting just one angle that cannot 
be trisected. The standard example is 60 
degrees. Suppose the vertex of a 60-de-
gree angle is at the origin, and one side 
corresponds to the positive x axis. Then 
to trisect the angle you must draw a 
line inclined by 20 degrees to the x axis 
and passing through the origin. 

To draw any line, all you need is two 
points lying on the line. In this case you 
already have one point, namely the 
origin. Thus the entire task of trisec-
tion reduces to finding one more point 
lying somewhere along the 20-degree 
line. Surely that must be easy! After all, 
there are infinitely many points on the 
line and you only need one of them. 
But the proof says it can’t be done.

To see the source of the difficulty we 
can turn to trigonometry. If we knew 
the sine and cosine of 20 degrees, the 
problem would be solved; we could 
simply construct the point x=cos 20, 
y=sin 20. (Of course we need the exact 
values; approximations from a calcula-
tor or a trig table won’t help.) We do 
know the sine and cosine of 60 degrees: 
The values are √

—
3/2 and 1⁄2. Both of 

these numbers can be constructed with 
ruler and compass. Furthermore, for-
mulas relate the sine and cosine of any 
angle θ to the corresponding values for 
θ/3. The formulas yield the following 
equation (where for brevity the symbol 
u replaces the expression cos θ/3):

cosθ = 4u3 – 3u.

For the 60-degree angle, with cosθ = 1⁄2, 
the equation becomes 8u3 – 6u = 1. Note 
that this is a cubic equation. That’s the 
nub of the problem: No process of add-
ing, subtracting, multiplying, dividing 
and taking square roots will ever solve 
the equation for the value of u. (The 
hard part of the proof, which I’m not 
brave enough to attempt here, shows 
that the cubic equation cannot be re-
duced to one of lower degree.)

This proof, with its excursions into 
trigonometry and algebra, would have 
been alien to Euclid, but the conclu-
sion is easily translated back into the 
language of geometry: Not a single 
point along the 20-degree line (except 
the origin) can be reached from the 

60-degree line by ruler-and-compass 
methods. There is something haunt-
ingly counterintuitive about this fact. 
The two lines live on the same plane; 
they even intersect, and yet they don’t 
communicate. You can’t get there 
from here. Like Hobbes, I wouldn’t 
believe it, except the proof compels be-
lief. I wonder if my old friend Dmytro 
would be convinced.
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