COMPUTING SCIENCE

g—OLOGY

Brian Hayes

match between theory and experiment. This

description is nowhere more apt than in the
study of a physical constant known as the g factor
of the electron and the muon. For more than 50
years g has been batted back and forth by theorists
and experimenters striving always to append an-
other decimal place to the known value. The game
depends on having well-matched players on ei-
ther side of the net, so that what’s predicted theo-
retically can be checked experimentally. In this
case the players are very good indeed. The g factor
of the electron has been both calculated and mea-
sured so finely that the uncertainty is only a few
parts per trillion. The current experimental value
is 2.0023193043718 = 0.0000000000075.

Measuring a property of matter with such ex-
traordinary precision is a labor of years; a single
experiment could well occupy the better part of a
scientific career. It's not always appreciated that
theoretical calculations at this level of accuracy
are also arduous and career-consuming. Getting
to the next decimal place is not back-of-the-enve-
lope work. It calls for care and patience and for
mastery of specialized mathematical methods.
These days it also requires significant computer
resources for both algebraic and numerical calcu-
lations. Only a few groups of workers worldwide
have the necessary expertise. My own role in this
tennis game is purely that of a spectator, but I
have been watching the ball bounce for some
time, and I would like to give a brief account of
the game from a fan’s point of view, emphasizing
the action on the theoretical side of the net.

The study of g is not just an exercise in accumu-
lating decimal places for their own sake. The g fac-
tor represents an important test for fundamental
theories of the forces of nature. So far, theory and
experiment are in excellent agreement on the g
factor of the electron. But for the muon—the heav-
ier sibling of the electron—the situation is not so
clear. Calculations and measurements of the muon
g factor have not yet reached the precision of the
electron results, but already there are hints of pos-
sible discrepancies. Those hints could be early
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signs of “new physics.” Or they could be signs
that we don’t understand the old physics as well
as we think we do.

QED

The naive mental picture of an electron is a blob
of mass and electric charge, spinning on its axis
like a tiny planet. If we take this image seriously,
the moving charge on the spinning particle’s sur-
face has to be regarded as an electric current,
which ought to generate a magnetic field. The g
factor (also known as the gyromagnetic ratio) is
the constant that determines how much magnet-
ic field arises from a given amount of charge,
mass and spin. The formula is:

e
H=8om ™

where u is the magnetic moment, e the electric
charge, m the mass and s the spin angular mo-
mentum (all expressed in appropriate units). Ear-
ly experimental evidence suggested that the nu-
merical value of g is approximately 2.

In the 1920s P. A. M. Dirac created a new and
not-so-naive theory of electrons in which g was
no longer just an arbitrary constant to be mea-
sured experimentally; instead, the value of g was
specified directly by the theory. For an electron in
total isolation, Dirac calculated that g is exactly 2.
We now know that this result was slightly off the
mark; g is greater than 2 by roughly one partin a
thousand. And yet Dirac’s mathematics was not
wrong. The source of the error is that no electron
is ever truly alone; even in a perfect vacuum, an
electron is wrapped in a halo of particles and an-
tiparticles, which are continually being emitted
and absorbed, created and annihilated. Interac-
tions with these “virtual” particles alter various
properties of the electron, including the g factor.

Methods for accurately calculating ¢ were de-
vised in the 1940s as part of a thorough overhaul
of the theory of electrons—a theory called quan-
tum electrodynamics, or QED. That the calcula-
tion of g can be honed to such a razor edge of
precision is something of a fluke. The mass,
charge and magnetic moment of the electron are
known only to much lower accuracy; so how can
g, which is defined in terms of these quantities,



be pinned down more closely? The answer is that
g is a dimensionless ratio, calculated and mea-
sured in such a way that uncertainties in all those
other factors cancel out.

Experimental measurements of ¢ benefit from
another fortunate circumstance. The experiments
can be arranged to determine not g itself but the
difference between ¢ and 2; thus the measure-
ments have come to be known as “g minus 2 ex-
periments.” Because g—2 is only about a thou-
sandth of g, the measurement gains three decimal
places of precision for free.

Bottled Electrons

One good way to measure g is to capture an elec-
tron and keep it in a bottle formed out of electric
and magnetic fields. In confinement, the electron
executes an elegant dance of twirls and pirou-
ettes. The various modes of motion are quan-
tized, meaning that only certain discrete energy
states are possible. In some of these states the
electron’s intrinsic magnetic moment is oriented
parallel to the external magnetic field, and in oth-
er states it is antiparallel. The energy difference
between two such states is proportional to g.
Thus a direct approach to determining g is sim-
ply to measure the energy of a “spin-flip” transi-
tion between parallel and antiparallel states.

The drawback of this straightforward experi-
mental design is that you cannot know g with any
greater accuracy than you know the strength of
the external field. A clever trick sidesteps this
problem: Measure the energies of two transitions,
both of which depend on the magnetic field but
only one of which involves a spin flip. For the
non-flip transition, the constant of proportionality
that sets the energy scale is exactly 2, whereas for
the spin-flip transition the constant is g. Taking the
ratio of the two energies eliminates dependence
on the strength of the field.

Experiments with isolated electrons were pio-
neered by Hans Dehmelt of the University of
Washington, who kept them penned up for
weeks at a time—long enough that some of them
were given names, like family pets. Although the
technique may sound simple in its principles,
getting results accurate to 11 significant figures is
not a project for a high school science fair.

In the case of the muon, measuring g is even
more challenging. The muon is an unstable parti-
cle, with a lifetime of a few microseconds, and so
keeping a pet muon in a cage is not an option. The
best muon g—2 measurements come from a 20-
year-long experiment designated E821, carried out
at the Brookhaven National Laboratory by work-
ers from 11 institutions. Clouds of muons with
their spins aligned circulate in a toroidal vacuum
chamber immersed in a strong magnetic field. The
apparatus is adjusted so that if g were exactly 2,
the particles would complete each orbit with the
same orientation they had at the outset. But be-
cause g differs from 2, the spin axis precesses slow-
ly, drifting about 0.8 degree on each circuit of the
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ring. When a muon decays, it emits an electron
preferentially in the direction of the spin axis. The
spatial distribution of these electrons reveals the
rate of precession and thus the value of g—-2.

The latest value of the muon g factor reported
by the E821 group works out to 2.0023318416 *
0.0000000012. This number differs from the elec-
tron g factor in the fifth decimal place, and its
precision is only at the parts-per-billion level
rather than parts-per-trillion. Despite the lesser
precision, however, the confrontation between
theory and experiment turns out to be more dra-
matic in the case of the muon.

g-Whiz

Calculating ¢ from theoretical principles might
seem to be far easier than measuring it experi-
mentally. After all, the theorist can leave behind
all the messy imperfections of the physical world
and operate in an abstract realm where vacuums
and magnetic fields are always ideal, and no one
ever spills coffee on the control panel. But theory
has challenges of its own, and in the saga of the ¢
factor, 20-year-long experiments are matched by
30-year-long calculations.

What needs to be calculated is the strength of a
charged particle’s interaction with a magnetic

°'r'nagnetic
field

«space—

Figure 1. The g factor sets the strength of an electron’s in-
teraction with a magnetic field. In classical physics (left)
magnetic lines of force (perpendicular to the page) induce
a curvature in the electron’s path. In quantum electrody-
namics (right) the electron interacts with the field by emit-
ting or absorbing a photon (y). The event is represented in
a Feynman diagram, where space extends along the hori-
zontal axis and time moves up the vertical axis.

Figure 2. Feynman diagram is not just a picture of an event
but also a computational device for keeping track of all the
ways the event might happen. For electron-photon scat-
tering, the tree-like diagram at left is not the only possi-
bility. The electron can also emit and then reabsorb a “vir-
tual” photon, as in the one-loop diagram at right. Here and
in subsequent figures, Feynman diagrams are shown in a
stylized form where only the topology—the pattern of
connections between vertices—is meaningful.
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field. The problem can be phrased in terms of
something directly observable: Given a particle
of known mass, charge and momentum, and a
magnetic field of known intensity, how much
will the particle’s path be deflected when it pass-
es through the field? Classical physics envisions
magnetic lines of flux that induce a curvature in
the particle’s trajectory. Quantum electrodynam-
ics takes a different approach. Instead of a field
exerting its influence throughout a volume of
space, QED posits a discrete, localized “scattering
event,” where an electron either emits or absorbs
a photon (the quantum of the electromagnetic
field); the recoil from this emission or absorption
alters the electron’s own motion.

A key tool for understanding such scattering
events is the diagrammatic method introduced
in the 1940s by Richard P. Feynman. A Feynman
diagram plots position in space along one axis
and time along another, so that a particle moving
with constant velocity is represented by an
oblique straight line. The Feynman diagram for a
simple scattering event might have an electron
moving diagonally until it collides with a photon
coming from the opposite direction; at this “ver-
tex” of the diagram the photon disappears and
the electron reverses course.

There is more to a Feynman diagram, howev-
er, than just a spacetime depiction of particles col-
liding like billiard balls. As a matter of fact, in
QED a particle cannot be assigned a unique, def-
inite trajectory; all you can calculate is the proba-
bility that the particle will make its way from
point A to point B. A Feynman diagram repre-
sents an entire family of possible trajectories, cor-
responding to collisions taking place at various
positions and times. Each such trajectory has an
associated “amplitude”; adding all the ampli-
tudes and squaring the result yields the proba-
bility for the overall process.

The simplest scattering event—one electron
bouncing off one photon—was the process con-
sidered by Dirac in his first computation of g in
the 1920s. As noted above, Dirac got an exact re-
sult of g=2. The reason this value needs correct-
ing is that the simplest, one-photon scattering
process is not the only way for an electron to get
from point A to point B. The direct route may well
be the most important path, but in QED you dare
not ignore detours or distractions along the way.

One such distraction is for the electron to emit
a photon and then reabsorb it, somewhat like a

child throwing a ball in the air and running to
catch it herself. The evanescent photon is called a
virtual particle, because it can never be detected
directly, but its effects on g are certainly real.
Adding a virtual photon to the Feynman dia-
gram is easy enough—it forms a loop, diverging
from and then rejoining the electron path—but
computing the photon’s effect on g is more diffi-
cult. The problem is that the virtual photon can
have unlimited energy. For an accurate computa-
tion, you have to add up the amplitudes associ-
ated with every possible energy—and without
an upper limit, this sum comes out infinite. These
implausibly infinite answers stymied the further
development of QED for two decades.

The solution was a trick called renormaliza-
tion, worked out by Feynman, Julian Schwinger,
Sin-Itiro Tomonaga and Freeman Dyson. In 1947
Schwinger finally succeeded in calculating the
contribution of a single virtual-photon loop to
the g factor of the electron. The answer was given
in terms of another fundamental constant of na-
ture, known as o, which measures the electric
charge of the electron and has a numerical value
of about %x. Schwinger showed that the one-loop
contribution to the “anomalous magnetic mo-
ment” of the electron is o/2r, or approximately
0.00116. The anomalous magnetic moment is de-
fined as one-half of g—2, and so the corrected val-
ue of g comes out to about 2.00232.

g-Willikers

If an electron can get away with spontaneously
tossing around a virtual photon, what's to stop it
from juggling two or three of them? Nothing at
all: A Feynman diagram decorated with a single
photon loop can just as well be festooned with
two loops. Furthermore, it turns out there are sev-
en distinct two-loop diagrams (see Figure 3).

Drawing the seven two-loop Feynman dia-
grams is actually the easy part of understanding
their effect; the hard part is calculating each dia-
gram’s contribution to the value of g. The mathe-
matical expression associated with a diagram
takes the form of an integral, summing up the am-
plitudes of an infinite family of particle paths.
Some of the two-loop integrals are complicated,
and early attempts to evaluate them went astray;
the task was not completed until 1957. The result
is again expressed in terms of o, but—reflecting
the much lower probability of a two-loop event—
the o term is now squared. And it is multiplied by

Figure 3. Two-loop Feynman diagrams offer seven more variations on the theme of an electron scattered by a photon.
Electrons (and their antiparticles, positrons) are represented by solid blue lines; photons are dashed red lines. Real par-
ticles (those that can be observed directly in the laboratory) are shown as heavy lines, virtual particles as finer lines. Six
of the diagrams have two virtual photons; in the last case, a virtual photon gives rise to a virtual electron-positron pair..
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Figure 4. Seventy-two three-loop diagrams contribute to the calculation of the electron g factor. Fifty of these diagrams involve three virtual pho-
tons, and another 16 diagrams include an electron-positron bubble. The last six diagrams represent “light-by-light” scattering, in which the real
electron and photon never come in direct contact; their interaction is mediated by a triplet of virtual photons and a virtual electron-positron pair.
In the calculation of the muon g factor, a somewhat different kind of light-by-light scattering occasioned an error that took six years to track down.

a curious coefficient that combines various ratio-
nal fractions, logarithms and the Riemann zeta
function—this last item being familiar in number
theory but an exotic interloper in physics.

What comes next is no surprise: If two loops
are good, three must be better. However, for an
electron-photon event with three loops there are
72 Feynman diagrams, representing integrals of
daunting difficulty (see Figure 4). When work on
evaluating those integrals got under way in the
1960s, it soon became clear that the methods of
pencil-and-paper algebra had reached their lim-
its. In this way Feynman-diagram calculations
became a major impetus to the development of
computer-algebra systems—programs that can
manipulate and simplify symbolic expressions.

Despite such computational power tools, some
of the three-loop diagrams resisted analytic solu-
tion for 30 years. To fill in the gaps, physicists tried
numerical methods of evaluating the integrals—
an even more computer-intensive task. A simple
example of numerical integration is estimating the
area of a geometric figure by randomly throwing
darts at it and counting the hits and misses. The
same basic idea can be applied to a Feynman inte-
gral, but the object being measured is now a com-
plicated volume in a high-dimensional space; this
makes the dart-throwing process painfully ineffi-
cient. Merely deciding whether or not a dart has
hit the target becomes time-consuming. It was not

www.americanscientist.org

until 1995 that a reliable, high-precision value of
the three-loop contribution was published, by
Toichiro Kinoshita of Cornell University. He eval-
uated all 72 diagrams numerically, comparing and
combining his results with analytic values that
were then known for 67 of the diagrams. A year
later the last few diagrams were solved analyti-
cally by Stefano Laporta and Ettore Remiddi of
the University of Bologna.

The three-loop correction is proportional to o3,
which makes its order of magnitude less than
one part per million. Even so, to match the preci-
sion of the experimental measurement it’s neces-
sary to go on to the four-loop diagrams, of which
there are 891. Attacking all those intricately tan-
gled diagrams by analytic methods is hopeless
for now. Numerical computations have been un-
der way since the early 1980s. A thousandfold
increase in the computer time invested in the task
has brought a thirtyfold improvement in preci-
sion—but the best results still amount to only a
few significant digits.

The Muon’s Story
The electron and the muon are twins (or triplets,
since there is a third sibling called the tau). The
only apparent difference between them is mass,
the muon being 200 times as heavy. But mass mat-
ters mightily in the calculation of g. Because cer-
tain effects are proportional to the square of the
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mass, they are enhanced 40,000 times in the muon.
As a result, the muon g factor depends not just on
electromagnetic interactions but also on manifes-
tations of the weak and the strong nuclear forces.
The virtual particles that appear in muon Feyn-
man diagrams include the usual photons and elec-
trons and also heavier objects such as the Wand Z
(quanta of the weak force) and the strongly inter-
acting particles known collectively as hadrons.

A theoretical framework called the Standard
Model extends the ideas of QED to the strong
and weak forces. Unfortunately, however, the
theory does not always allow high-precision cal-
culations from first principles in the way QED
does. The strong-force contributions have to be
computed on a more empirical basis; in effect,
even the theoretical value of the muon g factor is
based in part on experimental findings.

The muon g factor has attracted much attention
lately because the theoretical and experimental
values seem to be diverging. The latest measure-
ments from the E821 group differ from accepted
theoretical values by roughly two standard devia-
tions. Physicists have not been reticent about spec-
ulating on the possible meaning of this discrepan-
cy, suggesting it could be our first glimpse of
physics beyond the Standard Model. Perhaps the
muon is not truly an elementary particle but has
some kind of substructure? Another popular no-
tion is supersymmetry, which predicts that all par-
ticles have shadowy “superpartners,” with names
such as selectrons, smuons and photinos.

One of these adventurous interpretations of the
muon results could well turn out to be true. On
the other hand, it seems prudent to keep in mind
that the g-factor experiments and calculations are
fearfully difficult, and it’s always possible an error
has crept in somewhere along the way. It would
not be the first time. Feynman, in his book QED:
The Strange Theory of Light and Matter, tells the sto-
ry of an early computation of the two-loop elec-
tron g factor:

It took two ‘independent’ groups of physi-
cists two years to calculate this next term,
and then another year to find out there was a
mistake—experimenters had measured the
value to be slightly different, and it looked
for a while that the theory didn’t agree with
experiment for the first time, but no: it was a
mistake in arithmetic. How could two
groups make the same mistake? It turns out
that near the end of the calculation the two
groups compared notes and ironed out the
differences between their calculations, so
they were not really independent.

The story has been re-enacted more recently. In
the mid-1990s two groups independently calcu-
lated a small, troublesome contribution to the
muon g factor called hadronic light-by-light scat-
tering. Kinoshita’s group and a European collab-
oration of Johan Bijnens, Elisabetta Pallante and
Joaquim Prades got compatible results. Then, six
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years later, Marc Knecht and Andreas Nyffeler re-
calculated the effect by another method and came
up with an answer that was the same in magni-
tude but opposite in sign. The other groups
rechecked their work, and both found they had
made essentially the same mistake entering for-
mulas into a computer-algebra program. The cor-
rection slightly diminished the disagreement be-
tween theory and experiment.

In mentioning such incidents, my aim is cer-
tainly not to embarrass the participants. They are
working far out on the frontier of computational
science, where no maps or signposts show the
way. But for that very reason a certain amount of
caution is in order when evaluating the results.

A definitive understanding of the muon g factor
will have to await further refinements of both the
experimental and the theoretical values. Incre-
mental improvements can be expected soon, but
major advances may be some time in coming. On
the experimental side, the E821 project has been
shut down by the Department of Energy, at least
for the time being. As for theory, the next major
stage will require serious attention to the five-loop
Feynman diagrams. There are 12,672 of those.
Don’t hold your breath.
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