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COMPUTING SCIENCE

THE POST-OQOP PARADICGM

Brian Hayes

of computer programming. In the 1950s the

key innovations were programming lan-
guages such as Fortran and Lisp. The 1960s and
'70s saw a crusade to root out “spaghetti code”
and replace it with “structured programming.”
Since the 1980s software development has been
dominated by a methodology known as object-
oriented programming, or OOP. Now there are
signs that OOP may be running out of oomph,
and discontented programmers are once again
casting about for the next big idea. It’s time to
look at what might await us in the post-OOP era
(apart from an unfortunate acronym).

Every generation has to reinvent the practice

The Tar Pit

The architects of the earliest computer systems
gave little thought to software. (The very word
was still a decade in the future.) Building the ma-
chine itself was the serious intellectual challenge;
converting mathematical formulas into program
statements looked like a routine clerical task. The
awful truth came out soon enough. Maurice V.
Wilkes, who wrote what may have been the first
working computer program, had his personal
epiphany in 1949, when “the realization came
over me with full force that a good part of the re-
mainder of my life was going to be spent in find-
ing errors in my own programs.” Half a century
later, we're still debugging.

The very first programs were written in pure
binary notation: Both data and instructions had
to be encoded in long, featureless strings of 1s
and Os. Moreover, it was up to the programmer
to keep track of where everything was stored in
the machine’s memory. Before you could call a
subroutine, you had to calculate its address.

The technology that lifted these burdens from
the programmer was assembly language, in which
raw binary codes were replaced by symbols such
as load, store, add, sub. The symbols were translated
into binary by a program called an assembler,
which also calculated addresses. This was the first
of many instances in which the computer was re-
cruited to help with its own programming.
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Assembly language was a crucial early ad-
vance, but still the programmer had to keep in
mind all the minutiae in the instruction set of a
specific computer. Evaluating a short mathemati-
cal expression such as x2+y? might require
dozens of assembly-language instructions. High-
er-level languages freed the programmer to think
in terms of variables and equations rather than
registers and addresses. In Fortran, for example,
x2+y2 would be written simply as X**2 + Y**2. Ex-
pressions of this kind are translated into binary
form by a program called a compiler.

With Fortran and the languages that followed,
programmers finally had the tools they needed
to get into really serious trouble. By the 1960s
large software projects were notorious for being
late, overbudget and buggy; soon came the ap-
palling news that the cost of software was over-
taking that of hardware. Frederick P. Brooks, Jr.,
who managed the OS/360 software program at
IBM, called large-system programming a “tar
pit” and remarked, “Everyone seems to have
been surprised by the stickiness of the problem.”

One response to this crisis was structured pro-
gramming, a reform movement whose manifesto
was Edsger W. Dijkstra’s brief letter to the editor
titled “Go to statement considered harmful.”
Structured programs were to be built out of sub-
units that have a single entrance point and a sin-
gle exit (eschewing the goto command, which al-
lows jumps into or out of the middle of a routine).
Three such constructs were recommended: se-
quencing (do A, then B, then C), alternation (ei-
ther do A or do B) and iteration (repeat A until
some condition is satisfied). Corrado Bohm and
Giuseppe Jacopini proved that these three idioms
are sufficient to express essentially all programs.

Structured programming came packaged with
a number of related principles and imperatives.
Top-down design and stepwise refinement urged
the programmer to set forth the broad outlines of a
procedure first and only later fill in the details.
Modularity called for self-contained units with
simple interfaces between them. Encapsulation, or
data hiding, required that the internal workings
of a module be kept private, so that later changes
to the module would not affect other areas of the
program. All of these ideas have proved their



worth and remain a part of software practice to-
day. But they did not rescue programmers from
the tar pit.

Nouns and Verbs

The true history of software development is not a
straight line but a meandering river with dozens
of branches. Some of the tributaries—functional
programming, declarative programming, meth-
ods based on formal proofs of correctness—are no
less interesting than the mainstream, but here I
have room to explore only one channel: object-
oriented programming.

Consider a program for manipulating simple
geometric figures. In a non-OOP environment,
you might begin by writing a series of proce-
dures with names such as rotate, scale, reflect, cal-
culate-area, calculate-perimeter. Each of these verb-
like procedures could be applied to triangles,
squares, circles and many other shapes; the fig-
ures themselves are nounlike entities embodied
in data structures separate from the procedures.
For example, a triangle might by represented by
an array of three vertices, where each vertex is a
pair of x and y coordinates. Applying the rotate
procedure to this data structure would alter the
coordinates and thereby turn the triangle.

What's the matter with this scheme? One like-
ly source of trouble is that the procedures and
the data structures are separate but interdepen-
dent. If you change your mind about the imple-
mentation of triangles—perhaps using a linked
list of points instead of an array—you must re-
member to change all the procedures that might
ever be applied to a triangle. Also, choosing dif-
ferent representations for some of the figures be-
comes awkward. If you describe a circle in terms
of a center and a radius rather than a set of ver-
tices, all the procedures have to treat circles as a
special case. Yet another pitfall is that the data
structures are public property, and the proce-
dures that share them may not always play nice-
ly together. A figure altered by one procedure
might no longer be valid input for another.

Object-oriented programming addresses these
issues by packing both data and procedures—
both nouns and verbs—into a single object. An
object named triangle would have inside it some
data structure representing a three-sided shape,
but it would also include the procedures (called
methods in this context) for acting on the data. To
rotate a triangle, you send a message to the trian-
gle object, telling it to rotate itself. Sending and
receiving messages is the only way objects com-
municate with one another; outsiders are not al-
lowed direct access to the data. Because only the
object’s own methods know about the internal
data structures, it’s easier to keep them in sync.

This scheme would not have much appeal if
every time you wanted to create a triangle, you
had to write out all the necessary data structures
and methods—but that’s not how it works. You
define the class triangle just once; individual tri-

angles are created as instances of the class. A
mechanism called inheritance takes this idea a
step further. You might define a more-general
class polygon, which would have triangle as a sub-
class, along with other subclasses such as quadri-
lateral, pentagon and hexagon. Some methods
would be common to all polygons; one example
is the calculation of perimeter, which can be done
by adding the lengths of the sides, no matter how
many sides there are. If you define the method
calculate-perimeter in the class polygon, all the sub-
classes inherit this code.

Object-oriented programming traces its heri-
tage back to SIMULA, a programming language de-
vised in the 1960s by Ole-Johan Dahl and Kristen
Nygaard. Some object-oriented ideas were also
anticipated by David L. Parnas. And the Sketch-
pad system of Ivan Sutherland was yet another
source of inspiration. The various threads came
together when Alan Kay and his colleagues creat-
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Figure 1. Software objects encapsulate both data and procedures. In
an object representing a triangle the data are the coordinates of the
vertices, and the procedures, or methods, operate on those coordi-
nates. At left the triangle object receives a message telling it to rotate
90 degrees; the subsequent state of the system is shown at right.
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Figure 2. Classes of objects are organized in a treelike hierarchy, al-
lowing methods defined in one class to be inherited by its subclasses.
The most general methods appear at the top of the tree, and more
specialized ones farther down. Note that Polygon defines a version of
calc-perimeter inherited by both Triangle and Quadrilateral, but Circle
needs a different implementation of calc-perimeter.
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Figure 3. Finding the right taxonomy can be as hard for software objects as it is in the real world. One way of organizing
polygons is according to the number of sides; all five-sided polygons would be collected in the class Pentagon. Other clas-
sifications are based on whether a polygon is convex, regular, self-intersecting and so on. For example, certain methods
ought to be inherited by all convex polygons (regardless of the number of sides) but by no concave or self-intersecting
ones. A few object-oriented programming languages allow inheritance from multiple parent classes.

ed the Smalltalk language at the Xerox Palo Alto
Research Center in the 1970s. Within a decade
several more object-oriented languages were in
use, most notably Bjarne Stroustrup’s C++, and
later Java. Object-oriented features have also been
retrofitted onto older languages, such as Lisp.

As OOP has transformed the way programs
are written, there has also been a major shift in
the nature of the programs themselves. In the
software-engineering literature of the 1960s and
"70s, example programs tend to have a sausage-
grinder structure: Inputs enter at one end, and
outputs emerge at the other. An example is a
compiler, which transforms source code into ma-
chine code. Programs written in this style have
not disappeared, but they are no longer the cen-
ter of attention. The emphasis now is on interac-
tive software with a graphical user interface. Pro-
gramming manuals for object-oriented languages
are all about windows and menus and mouse
clicks. In other words, OOP is not just a different
solution; it also solves a different problem.

Aspects and Objects

Most of the post-OOP initiatives do not aim to
supplant object-oriented programming; they seek
to refine or improve or reinvigorate it. A case in
point is aspect-oriented programming, or AOP.

The classic challenge in writing object-oriented
programs is finding the right decomposition into
classes and objects. Returning to the example of a
program for playing with geometric figures, a
typical instance of the class pentagon might look
like this: (V. But this object is also a pentagon: 7.
And so is this: %. To accommodate the differ-
ences between these figures, you could introduce
subclasses of pentagon—perhaps named convex-
pentagon, non-convex-pentagon and five-pointed-
star. But then you would have to do the same
thing for hexagons, heptagons and so forth,
which soon becomes tedious. Moreover, this clas-
sification would give you no way to write meth-
ods that apply, say, to all convex polygons but to
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no others. An alternative decomposition would
divide the polygon class into convex-polygon and
non-convex-polygon, then subdivide the latter class
into simple-polygon and self-intersecting-polygon.
With this choice, however, you lose the ability to
address all five-sided figures as a group.

One solution to this quandary is multiple in-
heritance—allowing a class to have more than
one parent. Thus a five-pointed star could be a
subclass both of pentagon and of self-intersecting-
polygon and could inherit methods from both.
The wisdom of this arrangement is a matter of
eternal controversy in the OOP community.

Aspect-oriented programming takes another
approach to dealing with “crosscutting” issues
that cannot easily be arranged in a treelike hierar-
chy. An example in the geometry program might
be the need to update a display window every
time a figure is moved or modified. The straight-
forward OOP solution is to have each method
that changes the appearance of a figure (such as
rotate or scale) send a message to a display-manager
object, telling the display what needs to be re-
drawn. But hundreds of methods could send
such messages. Even apart from the boredom of
writing the same code over and over, there is the
worry that the interface to the display manager
might change someday, requiring many methods
to be revised. The AOP answer is to isolate the
display-update “aspect” of the program in a mod-
ule of its own. The programmer writes one in-
stance of the code that calls for a display update,
along with a specification of all the occasions on
which that code is to be invoked—for example,
whenever a rotate method is executed. Then even
though the text of the rotate method does not
mention display updating, the appropriate mes-
sage is sent at the appropriate time.

An AOP system called Aspect], developed by
Gregor Kiczales and a group of colleagues at Xe-
rox PARC, works as an extension of the Java lan-
guage. AOP is particularly attractive for imple-
menting ubiquitous tasks such as error-handling,



the logging of events, and synchronizing multiple
threads of execution, which might otherwise be
scattered throughout a program. But there are dis-
senting views. Jorg Kienzle and Rachid Guerraoui
report on an attempt to build a transaction-
processing system with Aspect], where the key re-
quirement is that transactions be executed com-
pletely or not at all (so that the system cannot deb-
it one account without crediting another). They
found it difficult to cleanly isolate this property as
an aspect.

Automating Automation
Surely the most obvious place to look for help
with programming a computer is the computer it-
self. If Fortran can be compiled into machine code,
then why not transform some higher-level de-
scription or specification directly into a ready-to-
run program? This is an old dream. It lives on un-
der names such as generative programming,
metaprogramming and intentional programming.

In general, fully automatic programming re-
mains beyond our reach, but there is one area
where the idea has solid theoretical underpinnings
as well as a record of practical success: in the
building of compilers. Instead of hand-crafting a
compiler for a specific programming language, the
common practice is to write a grammar for the
language and then generate the compiler with a
program called a compiler compiler. (The best-
known of these programs is Yacc, which stands
for “yet another compiler compiler.”)

Generative programming would adapt this
model to other domains. For example, a program
generator for the kind of software that controls
printers and other peripheral devices would ac-
cept a grammar-like description of the device and
produce an appropriately specialized program.
Another kind of generator might assemble “pro-
tocol stacks” for computer networking.

Krzysztof Czarnecki and Ulrich W. Eisenecker
compare a generative-programming system to a
factory for manufacturing automobiles. Building
the factory is more work than building a single
car by hand, but the factory can produce thou-
sands of cars. Moreover, if the factory is designed
well, it can turn out many different models just
by changing the specifications. Likewise genera-
tive programming would create families of pro-
grams tailored to diverse circumstances but all
assembled from similar components.

The Quality Without a Name

Another new programming methodology draws
its inspiration from an unexpected quarter. Al-
though the term “computer architecture” goes
back to the dawn of the industry, it was nonethe-
less a surprise when a band of software design-
ers became disciples of a bricks-and-steel archi-
tect, Christopher Alexander. Even Alexander
was surprised.

Alexander is known for the enigmatic thesis
that well-designed buildings and towns must

have “the quality without a name.” He explains:
“The fact that this quality cannot be named does
not mean that it is vague or imprecise. It is im-
possible to name because it is unerringly pre-
cise.” Does that answer your question?

Even if the quality had a name, it’s not clear
how one would turn it into a prescription for
building good houses—or good software. Fortu-
nately, Alexander is more explicit elsewhere in
his writings. He urges architects to exploit recur-
rent patterns observed in both problems and so-
lutions. For the pattern of events labeled “watch-
ing the world go by,” a good solution is probably
going to look something like a front porch. Taken
over into the world of software, this approach
leads to a catalogue of design patterns for solving
specific, recurring problems in object-oriented
programming. For example, a pattern named
Bridge deals with the problem of setting up com-
munications between two objects that may not
know of each other’s existence at the time a pro-
gram is written. A pattern named Composite han-
dles the situation where a single object and a col-
lection of multiple objects have to be given the
same status, as is often the case with files and di-
rectories of files.

Over the past 10 years a sizable community
has grown up around the pattern idea. There are
dozens of books, web sites and an annual confer-
ence called Pattern Languages of Programming,
or PLoP. Compared with earlier reform move-
ments in computing, the pattern community
sounds a little unfocused and New Age. Whereas
structured programming was founded on a proof
that three specific structures suffice to express all
algorithms, there is nothing resembling such a
proof to justify the selection of ideas included in
catalogues of design patterns. As a matter of fact,
the whole idea of proofs seems to be out of favor
in the pattern community.

Software Jeremiahs usually preach that pro-
gramming should be an engineering profession,

Triangle Quadrilateral

calc-perimeter() calc-perimeter()

calc-area() calc-area()

rotate(angle) rotate(angle) :

scale(factor) scale(factor) Display Aspect
move(dx, dy) move(dx, dy)
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DisplayManager

Figure 4. Aspect-oriented programming aims to isolate “concerns” that
cut across the object hierarchy. In this example, several methods inside
several objects all need to notify a display handler whenever an object
needs to be redrawn. Rather than duplicate this code in each method, an
aspect-oriented system allows it to appear just once in the program text.
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guided by standards analogous to building codes,
or else it should be a branch of applied mathe-
matics, with programs constructed like mathe-
matical proofs. The pattern movement rejects
both of these ideals and suggests instead that pro-
grammers are like carpenters or stonemasons—
stewards of a body of knowledge gained by ex-
perience and passed along by tradition and
apprenticeship. This is a movement of practition-
ers, not academics. Pattern advocates express par-
ticular contempt for the notion that programming
might someday be taken over entirely by the
computer. Automating a craft, they argue, is not
only infeasible but also undesirable.

The rhetoric of the pattern movement may
sound like the ranting of a fringe group, but pat-
tern methods have been adopted in several large
organizations producing large—and successful—
software systems. (When you make a phone call,
you may well be relying on the work of pro-
grammers seeking out the quality without a
name.) Moreover, beyond the rhetoric, the writ-
ings of the software-patterns community can be
quite down-to-earth and pragmatic.

If the pattern community is on the radical
fringe, how far out is extreme programming (or,
as it is sometimes spelled, eXtreme program-
ming)? For the leaders of this movement, the is-
sue is not so much the nature of the software itself
but the way programming projects are organized
and managed. They want to peel away layers of
bureaucracy and jettison most of the stages of
analysis, planning, testing, review and documen-
tation that slow down software development. Just
let programmers program! The recommended
protocol is to work in pairs, two programmers
huddling over a single keyboard, checking their
own work as they go along. Is it a fad? A cult?
Although the name may evoke a culture of body
piercing and bungee jumping, extreme program-
ming seems to have gained a foothold among the
pinstriped suits. The first major project completed
under the method was a payroll system for a
transnational automobile manufacturer.

Ask Me About My OOP Diet
Frederick Brooks, who wrote of the tar pit in the
1960s, followed up in 1987 with an essay on the
futility of seeking a “silver bullet,” a single magi-
cal remedy for all of software’s ills. Techniques
such as object-oriented programming might alle-
viate “accidental difficulties” of software devel-
opment, he said, but the essential complexity can-
not be wished away. This pronouncement that the
disease is incurable made everyone feel better.
But it deterred no one from proposing remedies.

After several weeks’ immersion in the how-to-
program literature, I am reminded of the shelves
upon shelves of diet books in the self-help de-
partment of my local bookstore. In saying this I
mean no disrespect to either genre. Most diet
books, somewhere deep inside, offer sound ad-
vice: Eat less, exercise more. Most programming
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manuals also give wise counsel: Modularize, en-
capsulate. But surveying the hundreds of titles
in both categories leaves me with a nagging
doubt: The very multiplicity of answers under-
mines them all. Isn’t it likely that we’d all be thin-
ner, and we’d all have better software, if there
were just one true diet, and one true program-
ming methodology?

Maybe that day will come. In the meantime,
I'm going on a spaghetti-code diet.
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