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People count by tens and machines count by
twos—that pretty much sums up the way
we do arithmetic on this planet. But there

are countless other ways to count. Here I want to
offer three cheers for base 3, the ternary system.
The numerals in this sequence—beginning 0, 1, 2,
10, 11, 12, 20, 21, 22, 100, 101—are not as widely
known or widely used as their decimal and bina-
ry cousins, but they have charms all their own.
They are the Goldilocks choice among number-
ing systems: When base 2 is too small and base
10 is too big, base 3 is just right.

Cheaper by the Threesome
Under the skin, numbering systems are all alike.
Numerals in various bases may well look differ-
ent, but the numbers they represent are the same.
In decimal notation, the numeral 19 is shorthand
for this expression:

1 × 101 + 9 × 100.

Likewise the binary numeral 10011 is understood
to mean:

1 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 1 × 20,

which adds up to the same value. So does the
ternary version, 201:

2 × 32 + 0 × 31 + 1 × 30.

The general formula for a numeral in any po-
sitional notation goes something like this:

… d3r3 + d2r2 + d1r1 + d0r0 .…

Here r is the base, or radix, and the coefficients di
are the digits of the number. Usually, r is a posi-
tive integer and the digits are integers in the range
from 0 to r – 1, but neither of these restrictions is
strictly necessary. (You can build perfectly good
numbers on a negative or an irrational base, and
below we’ll meet numbers with negative digits.)

To say that all bases represent the same num-
bers, however, is not to say that all numeric repre-
sentations are equally good for all purposes. Base
10 is famously well suited to those of us who
count on our fingers. Base 2 dominates computing

technology because binary devices are simple and
reliable, with just two stable states—on or off, full
or empty. Computer circuitry also exploits a coin-
cidence between binary arithmetic and binary log-
ic: The same signal can represent either a numeric
value (1 or 0) or a logical value (true or false).

The cultural preference for base 10 and the en-
gineering advantages of base 2 have nothing to
do with any intrinsic properties of the decimal and
binary numbering systems. Base 3, on the other
hand, does have a genuine mathematical distinc-
tion in its favor. By one plausible measure, it is the
most efficient of all integer bases; it offers the most
economical way of representing numbers.

How do you measure the cost of a numeric rep-
resentation? If you simply count digits, then the
biggest base will always win; for example, base
1,000,000 can represent any number between 0
and decimal 999,999 in a single digit. The trouble
is, that single digit can be any of a million different
symbols, all of which you must somehow recog-
nize. At the opposite pole are unary, or base-1,
numbers. The unary representation of decimal
1,000,000 needs only one type of symbol, but that
symbol is repeated a million times. (Unary nota-
tion is in a category apart from other bases—it’s
not really a positional number system—but in the
present context it serves as a useful limiting case.)

Among all possible ways of writing the num-
bers up to a million, neither base 1,000,000 nor
base 1 seems ideal; as a matter of fact, you could
hardly do worse than either of these choices.
Minimizing the number of digits causes an ex-
plosion in the alphabet of symbols, and vice ver-
sa; when you squish down one factor, the other
squirts out. Evidently we need to optimize some
joint measure of a number’s width (how many
digits it has) and its depth (how many different
symbols can occupy each digit position). An ob-
vious strategy is to minimize the product of these
two quantities. In other words, if r is the radix
and w is the width in digits, we want to mini-
mize rw while holding rw constant.

Curiously, this problem is easier to solve if r
and w are treated as continuous rather than inte-
ger variables—that is, if we allow a fractional
base and a fractional number of digits. Then it
turns out (see Figure 1) that the optimum radix is
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e, the base of the natural logarithms, with a nu-
merical value of about 2.718. Because 3 is the in-
teger closest to e, it is almost always the most eco-
nomical integer radix (see Figure 2).

Consider again the task of representing all
numbers from 0 through decimal 999,999. In base
10 this obviously requires a width of six digits, so
that rw = 60. Binary does better: 20 binary digits
suffice to cover the same range of numbers, for
rw = 40. But ternary is better still: The ternary
representation has a width of 13 digits, so that
rw = 39. (If base e were a practical choice, the
width would be 14 digits, yielding rw = 38.056.)

Trit by Trit by Trit
This special property of base 3 attracted the notice
of early computer designers. On the hypothesis
that a computer’s component count would be
roughly proportional both to the width and to the
depth of the numbers being processed, they sug-
gested that rw might be a good predictor of hard-
ware cost, and so ternary notation would make
the most efficient use of hardware resources. The
earliest published discussion of this idea I’ve been
able to find appears in the 1950 book High-speed
Computing Devices, a survey of computer tech-
nologies compiled on behalf of the U.S. Navy by
the staff of Engineering Research Associates.

At about the same time as the ERA survey, Her-
bert R. J. Grosch proposed a ternary architecture
for the Whirlwind computer project at MIT. Whirl-
wind evolved into the control system for a mili-
tary radar network, which stood vigil over North
American airspace through 30 years of the Cold
War. Whirlwind was also the proving ground for
several novel computer technologies—including
magnetic core memory—but ternary arithmetic
was not among the innovations tested; Whirlwind
and its successors were binary machines.

As it happens, the first working ternary com-
puter was built on the other side of the Iron Cur-
tain. The machine was designed by Nikolai P.
Brusentsov and his colleagues at Moscow State
University and was named Setun, for a river that
flows near the university campus. Some 50 ma-
chines were built between 1958 and 1965. Setun
operated on numbers composed of 18 ternary
digits, or trits, giving the machine a numerical
range of 387,420,489. A binary computer would
need 29 bits to reach this capacity; in terms of rw,
the ternary design wins 54 to 58. 

Unfortunately, Setun did not realize the poten-
tial of base 3 to reduce component counts. Each
trit was stored in a pair of magnetic cores, wired in
tandem so that they had three stable states. A pair
of cores could have held two binary bits, which
amounts to more information than a single trit,
and so the ternary advantage was squandered.

Along with ternary arithmetic, a computer built
of base-3 hardware can also exploit ternary logic.
Consider the task of comparing two numbers. In a
machine based on binary logic, comparison is of-
ten a two-stage process. First you ask, “Is x less

than y?”; depending on the answer, you may then
have to ask a second question, such as “Is x equal
to y?” Ternary logic simplifies the process: A single
comparison can yield any of three possible out-
comes: “less,” “equal” and “greater.”

Ternary computers were a fad that faded,
though not quickly. In the 1960s there were sever-
al more projects to build ternary logic gates and
memory cells, and to assemble these units into
larger components such as adders. In 1973
Gideon Frieder and his colleagues at the State
University of New York at Buffalo designed a
complete base-3 machine they called TERNAC, and
created a software emulator of it. Since then the
idea of ternary computing has had occasional re-
vivals, but you’re not going to find a ternary
minitower in stock at CompUSA.

Why did base 3 fail to catch on? One easy guess
is that reliable three-state devices just didn’t exist
or were too hard to develop. And once binary
technology became established, the tremendous
investment in methods for fabricating binary
chips would have overwhelmed any small theo-
retical advantage of other bases. Furthermore, it’s
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Figure 2. Most economical integer radix is almost always 3, the integer
closest to e. If the capacity of a numbering system is rw, and the cost
of a representation is rw, then r =3 is the best integer radix for all but
a finite set of capacities. Specifically, ternary is inferior to binary only
for 8,487 values of rw; ternary is superior for infinitely many values.

Figure 1. Most economical radix for a numbering system is e (about
2.718) when economy is measured as the product of the radix and the
width, or number of digits, needed to express a given range of values.
Here both the radix and the width are treated as continuous variables.

0 0.2 0.4 0.6 0.8 1.0

40

35

30

25

capacity of number system, rw (× 106)

m
ea

su
re

 o
f c

om
pl

ex
ity

, r
w

r=e

r=2 r=3

0 0.2 0.4 0.6 0.8 1.0

40

35

30

25

capacity of number system, rw (× 106)

m
ea

su
re

 o
f c

om
pl

ex
ity

, r
w

r=e

r=2 r=3



only a hypothesis that such an advantage exists.
Everything hinges on the assumption that rw is a
proper measure of hardware complexity, or in
other words that the incremental cost of increas-
ing the radix is the same as the incremental cost of
increasing the number of digits.

But even if ternary circuits don’t find a home in
computer hardware, the Goldilocks argument
favoring base 3 may apply in other contexts. Sup-
pose you are creating one of those dreadful tele-
phone menu systems—Press 1 to be inconve-
nienced, Press 2 to be condescended to, and so
forth. If there are many choices, what is the best
way to organize them? Should you build a deep
hierarchy with lots of little menus that each offer
just a few options? Or is it better to flatten the
structure into a few long menus? In this situation
a reasonable goal is to minimize the number of
options that the wretched caller must listen to be-
fore finally reaching his or her destination. The
problem is analogous to that of representing an
integer in positional notation: The number of
items per menu corresponds to the radix r, and
the number of menus is analogous to the width w.
The average number of choices to be endured is
minimized when there are three items per menu.

Turning to Ternary Dust
Although numbers are the same in all bases, some
properties of numbers show through most clearly
in certain representations. For example, you can
see at a glance whether a binary number is even or
odd: Just look at the last digit. Ternary also distin-
guishes between even and odd, but the signal is
subtler: A ternary numeral represents an even
number if the numeral has an even number of 1s.
(The reason is easy to see when you count powers
of 3, which are invariably odd.)

More than 20 years ago, Paul Erdo”s and Ronald
L. Graham published a conjecture about the
ternary representation of powers of 2. They ob-
served that 22 and 28 can be written in ternary
without any 2s (the ternary numerals are 11 and
100111 respectively). But every other positive
power of 2 seems to have at least one 2 in its
ternary expansion; in other words, no other power

of 2 is a simple sum of powers of 3. Ilan Vardi of
the Institut des hautes études scientifiques has
searched up to 26973568802 without finding a coun-
terexample, but the conjecture remains open.

The digits of ternary numerals can also help il-
luminate a peculiar mathematical object called the
Cantor set, or Cantor’s dust. To construct this set,
draw a line segment and erase the middle third;
then turn to each of the resulting shorter segments
and remove the middle third of those also, and
continue in the same way. After infinitely many
middle thirds have been erased, does anything re-
main? One way to answer this question is to label
the points of the original line as ternary numbers
between 0 and 0.222.… (The repeating ternary
fraction 0.222… is exactly equal to 1.0.) Given this
labeling, the first middle third to be erased con-
sists of those points with coordinates between 0.1
and 0.122…, or in other words all coordinates with
a 1 in the first position after the radix point. Like-
wise the second round of erasures eliminates all
points with a 1 in the second position after the
radix point. The pattern continues, and the limit-
ing set consists of points that have no 1s anywhere
in their ternary representation. In the end, almost
all the points have been wiped out, and yet an in-
finity of points remain. No two points are connect-
ed by a continuous line, but every point has neigh-
bors arbitrarily close at hand. It’s hard to form a
mental image of such an infinitely perforated ob-
ject, but the ternary description is straightforward.

The Jewel in the Triple Crown
“Perhaps the prettiest number system of all,”
writes Donald E. Knuth in The Art of Computer Pro-
gramming, “is the balanced ternary notation.” As
in ordinary ternary numbers, the digits of a bal-
anced ternary numeral are coefficients of powers
of 3, but instead of coming from the set {0, 1, 2}, the
digits are –1, 0 and 1. They are “balanced” because
they are arranged symmetrically about zero. For
notational convenience the negative digits are usu-
ally written with a vinculum, or overbar, instead
of a prefixed minus sign, thus: 1–.

As an example, the decimal number 19 is writ-
ten 11–01 in balanced ternary, and this numeral is
interpreted as follows:

1 × 33 – 1 × 32 + 0 × 31 + 1 × 30,

or in other words 27 – 9 + 0 + 1. Every number,
both positive and negative, can be represented
in this scheme, and each number has only one
such representation. The balanced ternary count-
ing sequence begins: 0, 1, 11–, 10, 11, 11–1–, 11–0, 11–1.
Going in the opposite direction, the first few neg-
ative numbers are 1–, 1–1, 1–0, 1–1–, 1–11, 1–10, 1–11–. Note
that negative values are easy to recognize because
the leading trit is always negative.

The idea of balanced number systems has quite
a tangled history. Both the Setun machine and the
Frieder emulator were based on balanced ternary,
and so was Grosch’s proposal for the Whirlwind
project. In 1950, Claude E. Shannon published an
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Figure 3. Ternary structure may offer the quickest path through a
telephone menu system. Putting eight choices (assumed to be equal-
ly likely) in a single octonary menu (left) forces the caller to listen to
4.5 menu items on average. A binary structure (middle) has the same
performance, but the ternary tree (right) reduces the average to 3.75.



account of symmetrical signed-digit systems, in-
cluding ternary and other bases. But none of these
20th-century inventors was the first. In 1840,
Augustin Cauchy discussed signed-digit numbers
in various bases, and Léon Lalanne immediately
followed up with a discourse on the special virtues
of balanced ternary. Twenty years earlier, John
Leslie’s remarkable Philosophy of Arithmetic had
set forth methods of calculating in any base with
either signed or unsigned digits. Leslie in turn
was anticipated a century earlier by John Colson’s
brief essay on “negativo-affirmative arithmetick.”
Earlier still, Johannes Kepler used a balanced-
ternary scheme modeled on Roman numerals.
There is even a suggestion that signed-digit arith-
metic was already implicit in the Hindu Vedas,
which would make the idea very old indeed!

What makes balanced ternary so pretty? It is a
notation in which everything seems easy. Positive
and negative numbers are united in one system,
without the bother of separate sign bits. Arith-
metic is nearly as simple as it is with binary num-
bers; in particular, the multiplication table is triv-
ial. Addition and subtraction are essentially the
same operation: Just negate one number and then
add. Negation itself is also effortless: Change
every 1– into a 1, and vice versa. Rounding is mere
truncation: Setting the least-significant trits to 0
automatically rounds to the closest power of 3.

The best-known application of balanced ternary
notation is in mathematical puzzles that have to
do with weighing. Given a two-pan balance, you
are asked to weigh a coin known to have some in-
tegral weight between 1 gram and 40 grams. How
many measuring weights do you need? A hasty
answer would be six weights of 1, 2, 4, 8, 16 and 32
grams. If the coin must go in one pan and all the
measuring weights in the other, you can’t do bet-
ter than such a powers-of-2 solution. If the weights
can go in either pan, however, there’s a ternary
trick that works with just four weights: 1, 3, 9 and
27 grams. For instance, a coin of 35 grams—1101–

in signed ternary—will balance on the scale when
weights of 27 grams and 9 grams are placed in the
pan opposite the coin and a weight of 1 gram lies
in the same pan as the coin. Every coin up to 40
grams can be weighed in this way. (So can all he-
lium balloons weighing no less than –40 grams.)

James Allwright, who maintains a Web site
promoting balanced ternary notation, suggests a
monetary system based on the same principle. If
both a merchant and a customer have just one bill
or coin in each power-of-3 denomination, they
can make exact change for any transaction.

Martha Stewart’s File Cabinet
Some weeks ago, rooting around in files of old
clippings and correspondence, I made a discov-
ery of astonishing obviousness and triviality. What
I found had nothing to do with the content of the
files; it was about their arrangement in the drawer.

Imagine a fastidious office worker—a Martha
Stewart of filing—who insists that no file folder

lurk in the shadow of another. The protruding tabs
on the folders must be arranged so that adjacent
folders always have tabs in different positions.
Achieving this staggered arrangement is easy if
you’re setting up a new file, but it gets messy
when folders are added or deleted at random.

A drawer filled with “half-cut” folders, which
have just two tab positions, might initially alter-
nate left-right-left-right. The pattern is spoiled, how-
ever, as soon as you insert a folder in the middle of
the drawer. No matter which type of folder you
choose and no matter where you put it (except at
the very ends of the sequence), every such inser-
tion generates a conflict. Removing a folder has
the same effect. Translated into a binary numeral
with left = 0 and right = 1, the pristine file is the al-
ternating sequence …0101010101.… An insertion
or deletion creates either a 00 or a 11—a flaw
much like a dislocation in a crystal. Although in
principle the flaw could be repaired—either by in-
troducing a second flaw of the opposite polarity or
by flipping all the bits between the site of the flaw
and the end of the sequence—even the most ma-
niacally tidy record-keeper is unlikely to adopt
such practices in a real file drawer.

In my own files I use third-cut rather than
half-cut folders; the tabs appear in three posi-
tions, left, middle and right. Nevertheless, I had
long thought—or rather I had assumed without
bothering to think—that a similar analysis
would apply, and that I couldn’t be sure of
avoiding conflicts between adjacent folders un-
less I was willing to shift files to new folders af-
ter every insertion. Then came my Epiphany of
the File Cabinet a few weeks ago: Suddenly I
understood that going from half-cut to third-cut
folders makes all the difference.

It’s easy to see why; just interpret the drawerful
of third-cut folders as a sequence of ternary digits.
At any position in any such sequence, you can al-
ways insert a new digit that differs from both of
its neighbors. Base 3 is the smallest base that has
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sequence is defined by three replacement rules: 0 → 12, 1 → 102, 2 → 0.



this property. Moreover, if you build up a ternary
sequence by consistently inserting digits that
avoid conflicts, then the choice of which symbol
to insert is always a forced one; you never have to
make an arbitrary selection among two or more
legal possibilities. Thus, as a file drawer fills up, it
is not only possible to maintain perfect Martha
Stewart order; it’s actually quite easy.

Deletions, regrettably, are more troublesome
than insertions. There is no way to remove arbi-
trary elements from either a binary or a ternary
sequence with a guarantee that two identical dig-
its won’t be brought together. (On the other
hand, if you’re fussy enough to fret about the po-
sitions of  tabs on file folders, you probably never
throw anything away anyhow.)

The protocol for avoiding conflicts between
third-cut file folders is so obvious that I assume it
must be known to file clerks everywhere. But in
half a dozen textbooks on filing—admittedly a
small sample of a surprisingly extensive litera-
ture—I found no clear statement of the principle.

Strangely enough, my trifling observation
about arranging folders in file drawers leads to
some mathematics of wider interest. Suppose
you seek an arrangement of folders in which you
not only avoid putting any two identical tabs
next to each other, but you also avoid repeating
any longer patterns. This would rule out not only
00 and 11 but also 0101 and 021021. Sequences
that have no adjacent repeated patterns of any
length are said to be “square free,” by analogy to
numbers that have no duplicated prime factors.

In binary notation, the one-digit sequences 0
and 1 are obviously square free, and so are 01
and 10 (but not 00 or 11); then among sequences
three bits long there are 010 and 101, but none of
the other six possibilities is square free. If you
now try to create a four-digit square-free binary
sequence, you’ll find that you’re stuck. No such
sequences exist.

What about square-free ternary sequences? Try
to grow one digit by digit, and you’re likely to
find your path blocked at some point. For exam-
ple, you might stumble onto the sequence
0102010, which is square free but cannot be ex-
tended without creating a square. Many other
ternary sequences also lead to such dead ends.
Nevertheless, the Norwegian mathematician Axel
Thue proved almost a century ago that unbound-
ed square-free ternary sequences exist, and he
gave a method for constructing one. The heart of
the algorithm is a set of digit replacement rules:
0 → 12, 1 → 102, 2 → 0. At each stage in the con-
struction of the sequence, the appropriate rule is
applied to each digit, and the result becomes the
starting point for the next stage. Figure 4 shows a
few iterations of this process. Thue showed that if
you start with a square-free sequence and keep
applying the rules, the sequence will grow with-
out bound and will never contain a square.

More recently, attention has turned to the
question of how many ternary sequences are

square free. Doron Zeilberger of Rutgers Univer-
sity, in a paper co-authored with his computer
Shalosh B. Ekhad, established that among the 3n

n-digit ternary sequences at least 2n/17 are square
free. Uwe Grimm of the Universiteit van Ams-
terdam has tightened this lower bound some-
what; he has also found an upper bound and has
counted all the n-digit sequences up to n = 110. It
turns out there are 50,499,301,907,904 ways of ar-
ranging 110 ternary digits that avoid all repeated
patterns. I’ll have to choose one of them when I
set up my square-free file drawer.
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