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P
ierre Simon de Laplace had a plan for un-
derstanding everything. To this celestial me-
chanic, it looked simple: The particles of

matter produce forces, and those forces in turn
move the particles. So if we could just measure
all the forces and motions at any one instant, we
could calculate the entire history of the uni-
verse—past, present and future.

Two centuries of progress in the sciences have
not fulfilled Laplace’s vision; on the contrary,
quantum mechanics, and lately chaos theory,
have undermined faith in his program. But let’s
pretend. If we study a computational model of
the universe rather than the real thing, we really
can track all the forces and motions. The laws of
physics can be kept as simple as we please, since
we invent and enforce them. In this toy universe,
we can banish all quantum uncertainties, and
trace every last detail of every microscopic event.
Yet even in such an open and transparent world,
total knowledge is still elusive. Although we can
follow the individual particles, we have trouble
seeing how they act in the aggregate. For exam-
ple, we may well fail to predict basic thermody-
namic phenomena such as boiling and freezing.
We could know the whereabouts of every mole-
cule of water in an artificial ocean, but not know
whether the stuff is solid or liquid or vapor.

The prototypical system for exploring issues of
this kind is called the Ising model. It is a model of
matter pared down to its barest essentials—just
about the simplest imaginable system in which
large numbers of particles might be expected to
produce some kind of cooperative behavior. If
Laplace’s plan can be made to work anywhere, it
should succeed here. But the Ising model has
proved a difficult challenge, even when attacked
with some heavy-duty mathematics and comput-
er science. Indeed, the most important version of
the model remains without an exact solution.

A Model Magnet
The Ising model was invented in 1920 by Wil-
helm Lenz, who proposed it as a simplified ver-
sion of a ferromagnet—the kind of magnet that
holds your grocery list to the refrigerator door. A

few years later Lenz’s student Ernst Ising chose
the model as the subject of his doctoral disserta-
tion at the University of Hamburg.

The elements of the model are called spins, al-
though the concept of rotation never enters the
picture. You can think of a spin as nothing more
than an arrow pointing either up or down (but in
no other direction). The spins are arranged in a
grid or lattice pattern. Spins at neighboring sites
prefer to point the same way; in other words, the
energy is lower when adjacent spins are parallel
and higher when they are antiparallel. Except for
these nearest-neighbor preferences, the spins
don’t interact at all. Thermal fluctuations tend to
randomize the spins. Finally, an external magnet-
ic field may impose a bias on the spin directions.

The Ising model is a crude cartoon of a ferro-
magnet, but it does capture the main features of
the real thing. The Ising spins correspond to spin-
ning electrons in iron atoms; the lattice represents
the crystal structure; the nearest-neighbor inter-
action mimics the overlap of wave functions in
adjacent iron atoms. The one element of the
model that has no obvious counterpart in real
physics is the requirement that spins take on only
two possible orientations.

Is the model magnet magnetic? Do the spins
line up in parallel the way they do in a real ferro-
magnet? It’s easy to guess the answer at the ex-
tremes of the temperature range. At infinite tem-
perature, thermal fluctuations overwhelm the
nearest-neighbor interactions; each spin continu-
ally makes random flips, so that the average
magnetization is zero. At the other end of the
thermometer, thermal fluctuations disappear al-
together at absolute zero, and the system falls
into a state of minimum energy, with all the spins
either up or down. (In the absence of an external
field, the two choices are equally likely.)

Suppose we steadily reduce the temperature of
an Ising model from infinity down to zero. Total-
ly random spins must somehow become totally
ordered, but is the change smooth and gradual, or
does magnetization set in abruptly at some spe-
cific temperature? This question is an important
one in statistical physics, where discontinuities—
phase transitions and critical points—are major
landmarks. For real ferromagnets, experiments
give the answer. As iron cools from the melt, the
magnetization remains zero until it suddenly
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leaps up at a temperature called the Curie point
(about 1,040 kelvins). If the Ising model has any-
thing to say about ferromagnetism, it should have
a comparable discontinuity.

Ising’s dissertation examined this question for
a one-dimensional version of the model—a line of
spins. His result was a disappointment. There
was no phase transition at any temperature above
zero. It’s not hard to understand why. Consider a
line of 10,000 spins, all pointing up. This configu-
ration is clearly a minimum-energy state, since all
nearest-neighbor pairs are parallel. Now reverse
each of the 5,000 spins lying to the right of the
midpoint. The overall magnetization falls to zero
(since there are now equal numbers of up and
down spins), and yet the change in the energy is
minuscule: Only one pair of neighbors is pointing
in opposite directions, while 9,998 pairs remain
parallel. In a one-dimensional system, it seems,
the coupling between spins is just too tenuous to
overcome even the slightest thermal agitation.

Ising reportedly believed that his negative re-
sult would hold in higher dimensions as well. In
this conjecture he was wrong. But before going on
to recount the further history of the Ising model, I
want to mention the further history of Ising. After
receiving his doctorate, he taught physics in Ger-
man public high schools, but as a Jew he was dis-
missed when Hitler came to power in 1933. He
then taught at a Jewish boarding school in Pots-
dam, until that was destroyed in the Kristallnacht
pogrom of 1938. Ising and his wife fled Germany,
but they got only as far as Luxembourg before the
war overtook them. There they managed to sur-
vive the occupation, and finally reached the Unit-
ed States in 1947. Ising taught physics and mathe-
matics in Minot, North Dakota, and then for
almost 30 years more at Bradley University in Peo-
ria, Illinois. He died two years ago at age 98.

The Spin Cycle
The Ising model was rescued from obscurity in
the 1930s, when Rudolf Peierls perceived that a
two-dimensional array of spins might admit more
interesting behavior than the one-dimensional sys-
tem. Again a simple qualitative argument sug-
gests the reason. Take 10,000 spins, all up, and
arrange them in a square array. When you flip half
of the spins to abolish the magnetization, at least
100 pairs of neighbors must be antiparallel. The
energy penalty associated with these opposed
spins is larger than it was in the one-dimensional
case—perhaps large enough to maintain magneti-
zation in the presence of thermal disruption.

This informal argument is encouraging, and
Peierls gave a stronger version, but if you want to
understand the Ising model mathematically, you
need a way to calculate the probability of any
configuration of the spins at any temperature. To
see what this entails, it’s helpful to work through
a miniature example—a two-dimensional Ising
array with just four spins arranged in a square.
Since each spin has two possible values, the sys-

tem can take on any of 16 configurations, or
states. In each state the magnetization is the num-
ber of up spins minus the number of down spins.
Likewise the energy is the number of antiparallel
neighbors minus the number of parallel neigh-
bors. Calculating these properties calls for noth-
ing but the simplest arithmetic. But what we
want to know is the probability of each state at a
given temperature, which is harder to determine.

A first step toward calculating probabilities is
an exponential function called the Boltzmann
weight, defined as e–H/T, where H is the energy
and T is the temperature. (If you want to measure
H and T in joules and kelvins, a constant is need-
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Figure 1. Two-dimensional Ising model is a grid of up and down spins,
represented here by contrasting colors. In this example, temperature
varies smoothly from top to bottom, producing nearly random spins
in warm areas and large magnetized domains in cooler regions.



ed to make the units come out right, but in an ab-
stract model these formalities can be ignored.)
The formula for the Boltzmann weight reveals in
a general way how the probability varies with
temperature and energy. If the temperature is ex-
tremely high, then e–H/T has a value close to 1 no
matter what the energy, and all configurations
are about equally likely. At low temperature, on
the other hand, small differences in energy pro-
duce extreme changes in e–H/T, so that only the
states of lowest energy are likely to be seen. 

The Boltzmann weight is proportional to a
state’s probability, but to get at the probability it-
self we need to know something more. The
weights have to be normalized, so that the proba-
bilities of all possible states add up to 1. In other
words, we have to divide the Boltzmann weight
for a single state by the sum of the weights for all
possible states. This sum is called the partition
function, and it plays a crucial role in the Ising
model and in other thermodynamic systems.

For the four-spin array, it’s no great challenge to
compute the partition function. Simply calculate
e–H/T for each of the 16 states, and add the results.
For example, at a temperature of 2, the sum of the
Boltzmann weights is 27.05. At the same tempera-
ture the weight of the specific state that has all
four spins up is about 7.39; thus the probability of
this state is 0.27. If you observe a four-spin Ising
system at T=2 long enough, you should see it with
all spins up a little more than a quarter of the time.

Notice that in order to find the probability of a
single state, we have to compute the Boltzmann
weights of all the states. For a system of four spins,
this calculation is easy, but for 40 spins the trillion
possible states would challenge the fastest com-
puters, and for 400 spins a brute-force enumera-
tion is unthinkable. Yet it’s the larger systems that

matter most. Indeed, what we really want to know
is the partition function in the thermodynamic
limit—as the number of spins tends to infinity. 

Calculating the partition function of the two-di-
mensional model is hard but not impossible. The
problem was solved—to much surprise and ac-
claim—in 1944 by Lars Onsager, a chemist at Yale
University. Of course Onsager’s method was not
direct enumeration; he got his result through a vir-
tuoso performance in operator algebra, which I’ll
not attempt to explain since my own grasp of it is
tenuous at best. (There is a thorough exposition
in Martin H. Krieger’s book Constitutions of Matter,
which also reprints two of Onsager’s papers.) The
final product was an exact expression for the par-
tition function in the thermodynamic limit.

From the partition function flow all the macro-
scopic, observable properties of the model. In par-
ticular, Onsager’s theory describes the onset of
magnetization at the critical temperature TC. The
magnetization is equal to (TC–T)1/8; note that this
quantity has two values at any temperature be-
low TC but becomes undefined (within the field of
real numbers) above TC. In other words, the mag-
netization vanishes at the critical temperature.

What a Difference a D Makes
Once Onsager had shown the way, the two-di-
mensional Ising model was solved again by sev-
eral more methods. Solutions were also discov-
ered for certain other two-dimensional models,
which share a basic conceptual framework with
the Ising model but differ in details of the lattice or
the spin-spin interaction. But, significantly, all of
these solutions are confined to flatland. In the
three-dimensional world, not one Ising-like model
has been solved exactly. This is a bit disappointing
for three-dimensional physicists who would like
to understand three-dimensional matter.

What is the essential difference between a 2D
and a 3D model? Obviously, one is flat and the
other isn’t, but there’s more to it than that. Geom-
etry per se never enters the Ising model; distances
and angles are simply not part of the problem de-
scription. All that matters is the topology—the
pattern of connections between nearest-neighbor
sites. If you were to build a three-dimensional cu-
bic framework out of infinitely stretchy rubber,
you could flatten this lattice by sliding layers of
sites apart and then smashing them down into a
plane. Now the 3D lattice would be geometrically
two-dimensional, and yet it would still differ topo-
logically from a true 2D lattice. The difference is
that many of the bonds would be nonplanar—
they would cross over one another—whereas a 2D
lattice can always be drawn without crossings.
This topological distinction seems to be at the root
of the difficulty of 3D Ising models.

Tullio Regge of the Politecnico di Torino and
Riccardo Zecchina of the Abdus Salam Interna-
tional Centre for Theoretical Physics in Trieste
have recently looked at what happens to the par-
tition function when you start with a two-dimen-
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Figure 2. Four-spin Ising model has just 16 states.
Magnetization is defined as the number of red spins
minus the number of green, and energy is the number of
unlike neighbors minus the number of like neighbors. 



sional lattice and add nonplanar bonds one by
one. In this way they explore the territory be-
tween 2D and 3D. Each added nonplanar bond
doubles the labor needed to solve the model—an
exponential increase. Whether or not this ap-
proach leads to a practical method for calculating
the 3D partition function, it shows more clearly
why that task is so hard.

Curiously, adding still more dimensions be-
yond three makes the Ising model simpler again
rather than harder. A four-dimensional lattice is
so densely connected that each spin responds to
the averaged magnetic field of all the other spins,
and analysis is easy. Thus it seems there’s some-
thing special about three dimensions; perhaps
the world we live in was created explicitly as a
vexation to Ising modelers.

I do not want to leave the impression that
nothing at all is known about the 3D Ising model.
An exact mathematical solution is still lacking,
but the region near the critical point has been ex-
plored by various methods of approximation.
One approach, called series expansion, would
have been familiar to Laplace. The idea is to start
with the known solutions at very high and very
low temperature and extrapolate into the more
problematic region between. Another approxi-
mation method has a name that makes it sound
like an organization of diplomats or economists:
the renormalization group. The simplest version
of this algorithm gathers sets of spins into blocks,
replaces each block with a single new spin, and
finally adjusts the couplings between spins to
compensate for the coarsening of the lattice.

Still another important technique for Ising
studies is the Monte Carlo method, which relies
on a random process to approximate the proba-
bility distribution of the spin states. I shall say a
little more about Monte Carlo methods below.

The Blinking Checkerboard Catastrophe
Subjecting the Ising model to all this industrial-
strength mathematics—from Onsager’s algebra
down through the renormalization group—has
produced a wealth of useful answers, and yet it
seems rather remote from Laplace’s simple no-
tion of understanding nature by following the mi-
croscopic events as they unfold. Isn’t there a more
direct way to learn what happens in the lattice?
Can’t we just program the system into a comput-
er and let it evolve under its own internal rules?

As it happens, the first computer program I
ever wrote was a naive attempt to do just that. It
was a two-dimensional Ising model implement-
ed in an early version of the spreadsheet Lotus
1-2-3. Each cell of the spreadsheet held an identical
evaluation rule, which examined the four sur-
rounding cells and calculated its own next state
accordingly. As I gradually cooled the model, I ex-
pected to see a magnetized phase spread across
the array. What I saw instead was perplexing. Al-
though some areas were magnetized, other re-
gions were taken over by a blinking checkerboard

pattern, with alternating up and down spins that
flipped at every time step. This pattern should be
the least favorable of all configurations. I suspect-
ed some elementary bug, such as a missing mi-
nus sign, but I wasn’t able to track it down.

The problem was quickly diagnosed by more
experienced friends: Tommaso Toffoli, Norman
Margolus and Gérard Vichniac, who were then
all at MIT. Without even looking at my code, they
recognized the symptoms. The bug was in fact a
fairly interesting one. Imagine you are an up spin
somewhere in the middle of a blinking-checker-
board area. Your four neighbors are all down, and
so you are strongly inclined to flip to the down
state and join them. But each of those neighbors
is surrounded by four up spins, and so they too
flip. Thus all the spins reverse on each step, and
the pattern is perpetuated.

Whether or not this bug appears depends on
fine details of implementation, in particular on the
sequence in which the spins examine their neigh-
bors’ states and make decisions about their own
next state. My mentors suggested a remedy for
my particular situation: The problem would go
away if I updated the spreadsheet array in a
checkerboard sequence, first all the black squares
and then the white. It was an ingenious trick, and
it worked like a charm—but what would Laplace
think about such stratagems? Does a real ferro-
magnet require careful sequencing of operations
to avoid falling victim to a subtle bug? I find it
hard to believe that alternate iron atoms politely
take turns updating their spin states. And if nature
can get along without such artifice, why should it
be needed in a computer simulation of nature?

One answer to this question is that nature has a
better computer than we do. In particular, the
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Figure 3. Ising probabilities vary with temperature, favoring parallel
spins at T=2 but having a flatter distribution at T=16. Yellow lines
give calculated probabilities; bars are results of a single simulation.



checkerboard bug might be seen as an artifact of
mapping a parallel process onto a sequential ma-
chine. If we ran the program on a computer with
one processor per spin, the question of how to se-
quence the updates wouldn’t arise at all; the spins
would all be updated at once. But I’m not con-
vinced that parallelism solves the problem; rather,
it just converts a problem of sequencing into a
problem of synchronization. Figuring out what’s
supposed to happen when all the spins interro-
gate their neighbors at exactly the same instant
they are themselves being interrogated is an even
deeper conundrum than the sequential case.

The Monte Carlo method evades problems of
sequencing and synchronization by introducing
randomness. Each iteration of the algorithm se-
lects a single spin and looks at the effect of re-
versing it. If flipping the spin would lower the
system’s overall energy, the change is made. If
the energy would be increased, the spin may or
may not be flipped; the choice is made randomly,
with a probability determined by the change in
the Boltzmann weight. Repeating this process
many times should produce a statistical sample
of spin configurations whose frequencies are pro-
portional to their Boltzmann weights.

Most practitioners look upon the Monte Carlo
method as a tool for estimating the partition
function, and by this criterion all that matters is
that it produces correct answers. But the algo-
rithm seems so physical and mechanistic that it’s
tempting to view the Monte Carlo process as a
simulation of what might actually go on inside
an Ising system. Does this view stand up to
scrutiny? Laplace might raise an eyebrow at the
presence of random numbers in the algorithm,
but modern sensibilities seldom take offense at a
little randomness. What I find more unsettling is
the explicit use of Boltzmann weights to calculate
probabilities. I don’t want to have to imagine that
individual atoms know how to evaluate e–H/T.
Ideally, the Boltzmann probability distribution
would not be built into the model but would
emerge from some simpler rule for strictly local
interactions of spins.

Among all the computer implementations of
the Ising model, my personal favorite is one de-
vised in 1985 by Michael Creutz of Brookhaven
National Laboratory. It is strictly deterministic—
no random numbers are needed, except perhaps
to set the initial conditions—and individual spins
know only their energy, not their Boltzmann
weight. The model works by giving each spin a
kinetic energy as well as the energy associated
with nearest-neighbor interactions. The kinetic
term acts as a reserve, absorbing excess energy
and giving it back when needed. On each update
step, each spin is flipped if and only if the corre-
sponding kinetic reserve can accommodate the
change in the interaction energy. But even this
model is marred by the blemish of the blinking-
checkerboard bug, which Creutz avoids by im-
posing a checkerboard update sequence. Again:

Why should such strange and unphysical con-
tortions be necessary?

In a sense, asking a computer program to show
us what “actually” happens inside an Ising mod-
el is rather silly, because no one will ever build a
physical Ising system. The model is an idealiza-
tion. Everything about it is perfectly discrete and
symmetrical. In such a world of mathematical ex-
actitude, the blinking checkerboard may not be a
bug at all; it may be a genuine state of the system,
which we don’t see in real ferromagnets only be-
cause there are no perfect ones. Vichniac showed
that when Ising spins are allowed to wiggle even
slightly, the checkerboard bug is eradicated.
Breaking the spatial or the temporal symmetry
would surely have the same effect. In other
words, maybe what the model needs most is a lit-
tle imperfection, but  I don’t think Laplace would
be pleased with this thought.
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