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ON THE TEETH OF WHEELS

Brian Hayes

or many years, the basic raw material of the

computer industry was not silicon but brass.

The calculators of Wilhelm Schickard, Blaise
Pascal and Gottfried Wilhelm Leibniz were all
based on the meshing of metal gears. Later,
Charles Babbage conceived elaborate fantasies of
gearwork for his calculating engines. Later still,
Vannevar Bush put gears and other rotating parts
at the heart of his differential analyzer. And all of
these inventors were foreshadowed by anony-
mous artisans in the city of Rhodes in the first cen-
tury B.c., who assembled more than 30 gears in a
remarkable calendrical computer known as the
Antikythera mechanism.

These examples testify to the importance of
gears in the history of computing. Less obvious is
the importance of computing in the history of
gears. | was ignorant of the connection myself un-
til quite recently, when | went looking in the li-
brary for a work on number theory and found
myself making a detour into the engineering
shelves. | learned there that the designers of gear
trains have not merely borrowed ideas from math-
ematics but have also developed some of those
ideas on their own and lent them back to the
mathematicians. Mechanical engineers doubtless
know all about this two-way traffic between math
and mechanism, but others may find the compu-
tational roots of gear design as surprising as | did.

The Stern-Brocot Tree

The story begins a year ago, when | was writing
in this space about the work of Divakar
Viswanath (now at the University of Chicago) on
a randomized version of the Fibonacci numbers.
In the ordinary Fibonacci sequence (1, 1, 2, 3, 5, 8,
13,...) you form each term by adding the two
previous terms. In the “Vibonacci” series, you ei-
ther add or subtract, with each operation chosen
at random. You might guess that random addi-
tions and subtractions would tend to cancel each
other out, but Viswanath proved that the terms
grow steadily in absolute value.

Viswanath’s proof makes use of an object from
number theory called the Stern-Brocot tree, which is

Brian Hayes is a former editor of American Scientist. Address:
211 Dacian Avenue, Durham, NC 27701. Internet:
bhayes@amsci.org

296 American Scientist, Volume 88

constructed as follows. Take any two rational num-
bers, % and %, and insert between them a third val-
ue, called the mediant, equal to (a+c)/(b+d). For ex-
ample, starting with 73 and % yields the mediant
(2+3)/(3+4), or ¥7. Now, with three numbers in
hand, construct mediants between the first and sec-
ond and between the second and third, so that the
next level of the tree has five members. The process
can continue indefinitely. Note that on each level
the numbers are always in order.

The canonical version of the Stern-Brocot tree
starts with the numbers % and %. (The second of
these “numbers” is admittedly peculiar; some-
body has said it is “infinity reduced to lowest
terms.”) With these starting values, the second
level of the tree consists of %1, %1 and %, and the
third level becomes %, Y2, ¥1, %1 and %. (See Fig-
ure 2.) The remarkable thing about the tree is that
every rational number appears somewhere among
its leaves, but no number appears more than once.

When | described the Stern-Brocot tree in my
earlier article, | mentioned that it is named for “the
mathematician Moriz Stern and the watchmaker
Achille Brocot.” Now | must make a confession.
Although Viswanath’s paper cited the works of
Stern and Brocot, | did not look up those refer-
ences. At the time, | excused this lapse of diligence
on the grounds that Viswanath himself gave a lu-
cid account of the tree’s construction, and | also
had an excellent secondary source, namely the
textbook Concrete Mathematics, by Ronald L. Gra-
ham, Donald E. Knuth and Oren Patashnik. |
knew what | needed to know of the tree without
tracking down two obscure 19th-century papers
written in German and French. Or | thought |
knew. In fact | didn’t know what | was missing.

The Professor and the Watchmaker
Thus the situation might have remained but for
the prompting of a friend and longtime reader of
this department, Horacio A. Caruso of La Plata,
Argentina. Caruso and his colleague Sebastian M.
Marotta were sufficiently interested in the Vi-
bonacci phenomenon to undertake investigations
of their own. For example, they applied the Vi-
bonacci algorithm to complex numbers, creating
an intriguing series of fractal images. When Caru-
so inquired about the works of Stern and Brocot, |
was belatedly inspired to go look them up.



Stern’s paper was not hard to find. Moritz
Abraham Stern (my earlier spelling Moriz was
erroneous) was a prominent figure in the mathe-
matical world of his day, a colleague of Carl
Friedrich Gauss who succeeded Gauss as Ordi-
nary Professor of Mathematics at the University
of Gottingen. According to Peter Pulzer, Stern
was “the first Jew to be appointed to a full pro-
fessorship at a German university without first
converting to Christianity.”

Stern’s paper appeared in the Journal fir die
Reine und angewandte Mathematik, also known as
Crelle’s Journal, after its first editor, August
Leopold Crelle. When the journal was founded in
1826, its title reflected the growing division in
mathematics between Reine and angewandte—
“pure” and “applied.” Stern’s paper, “On a num-
ber-theoretical function,” is of the pure persuasion.
He discusses several versions of the procedure for
forming mediants and relates the sequence of me-
diants to other ways of constructing the set of ra-
tional numbers, such as continued fractions.
Nowhere does he hint that his number-theoretical
function might be of use to the makers of gears.

Finding Brocot’s contribution was more chal-
lenging. His article was published in the Revue
Chronométrique, a French journal that commenced
publication in 1855 and ceased in 1914. Only
when | began searching for the Revue did it occur
to me to wonder why a work on number theory
was appearing in a clockmakers’ journal.

None of the libraries within easy reach had the
Revue Chronométrique, but a catalogue search at
Duke University did return one hit for the term
“Brocot.” | was referred to a 1947 work by Henry
Edward Merritt, titled Gear Trains: Including a Bro-
cot Table of Decimal Equivalents and a Table of Fac-
tors of All Useful Numbers up to 200,000. A Brocot
table? Useful numbers? What was this all about?
I walked from the mathematics library to the en-
gineering library next door and soon had a worn
blue volume in my hands. When | opened to the
preface, | knew | would have to read the rest of
the book. Merritt begins:

Prefaces are not what they were. Who
could resist the opening phrases of the edi-
tor’s preface to the second edition of Camus
on the Teeth of Wheels, published in 1836—

“Always feeling annoyed at meeting with
a long preface to a book, labouring as it
were to beget a prepossession in favour of
the author, and standing between the reader
and the subject, like an impertinent porter,
who detains a visitor at the gate, instead of
giving him admission to the presence of the
master, the editor will confine himself to five
pages of preliminary remarks....”

Indeed, who could resist? And, furthermore,
what is this mysterious Camus on the Teeth of
Wheels? The title would have been an apt one for
the tormented existentialist Albert Camus, but it
comes from the wrong century.

Counting Teeth

Reading on in Merritt’s book, | soon learned why
aspects of number theory have attracted the inter-
est of gear makers. Here is an example of the basic
problem. Suppose you have a shaft that turns once
per minute, and you want to design gears that will
slow this motion to one revolution per day, which
works out to a speed ratio of 1,440 to 1. The first
law of gearwork says that the speed of a gear is in-
versely proportional to the number of its teeth.
Thus the most direct solution would be a driving
gear (a pinion) with just one tooth, meshing with a
driven gear (or wheel) of 1,440 teeth. But a one-
tooth gear would be extremely awkward, and a
1,440-tooth gear is inconveniently large. You could
solve the problem of the too-small pinion by mul-
tiplying both sides of the ratio by some convenient
number, say 10. You would then have a pinion of
10 teeth, but of course the already-too-large wheel
would be even larger, with 14,400 teeth.

The answer to this quandary is a compound
gear train, where two or more pairs of mating
gears progressively reduce the rotational speed.
In a two-stage train, a pinion a meshes with a
wheel A; then a second pinion b, mounted on the

Figure 1. Antikythera mechanism exhibited mathematical as well as
mechanical sophistication 2,000 years ago. For example, it employed
the excellent approximation 235/19 for the ratio of years to months.
This working model was constructed by John Gleave, a British
orrery-maker (see http://www.orreries.freeserve.co.uk).
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same shaft as A, turns wheel B. The overall gear
ratio is % X %, and so you can choose any conve-
nient values of a, A, b and B that yield the correct
product. For example, compound gears with the
ratios %200 and %216 form the product %3200,
which reduces to the required Y1440. If wheels of
200 and 216 teeth are still too large, then a three-
stage train with ratios of %72, %0 and ¥s0 would
yield the same result. (I ignore the fact that each
pair of gears reverses the sense of rotation.)

The next question is: Where do numbers like
%00 and Y216 come from? It’s easy to verify that
they produce the correct ratio, but how do you
find such numbers in the first place? The answer
comes straight from number theory: factoring. In
the ratio %3200, the numerator has the prime fac-
tors 2x3x5, and the denominator breaks down
into eleven factors: 2x2x2x2x2x2x3x3x3x5x5,
The Fundamental Theorem of Arithmetic guaran-
tees that no matter how you group these factors,
their product will always be the same. The factors
of the numerator can be partitioned into two
groups in just three ways: 6x5, 3x10 and 2x15. The
factors of the denominator 43,200 can be parti-
tioned into two groups in 41 distinguishable ways.

This application of factoring explains the pres-
ence in Merritt’s book of a “table of factors of use-
ful numbers up to 200,000.” The “useful” num-
bers turn out to be those whose largest factor is no
greater than 127, which Merritt suggests is a rea-
sonable upper limit for the number of teeth on a
gear. Number theorists have another word for the
same concept: Integers that have many small fac-
tors are called “smooth” numbers.

Does the need to factor numbers make the de-
sign of compound gear trains a hard computa-
tional problem? Factoring has an enigmatic sta-
tus in computer science: For conventional
computer hardware, the only known factoring
algorithms are inefficient, and therefore slow in
the worst case, but no one has proved that better
algorithms cannot exist. For gear design, howev-
er, the issue of algorithmic intractability simply
does not arise, because the factoring of smooth
numbers is always easy. Even the crudest algo-
rithm—trial division—works quickly with num-
bers that have only small factors.
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Figure 2. Stern-Brocot tree imposes a total ordering on all the rational
numbers. Each entry in the tree is formed by adding the numerators
and the denominators of the left and right neighbors.
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Gear Geeks

Converting minutes into days is a problem that
gears can solve exactly, but what if the ratio of
two speeds is 1? Here the first law of gearwork
fails because it runs up against the zeroth law—
that the number of teeth on a gear must be an in-
teger. No ratio of integers can be equal to 1t The
best one can hope for is a good rational approxi-
mation. This is where Merritt’s “Brocot table” en-
ters the story, and it put me back on the trail of
Brocot’s original paper.

A visit to the New York Public Library proved
tantalizing; | found several volumes of the Revue
Chronométrique, but not the volume | needed. On
the other hand, the library was able to supply the
enigmatic Camus on the Teeth of Wheels. Camus
turned out to be Charles-Etienne-Louis Camus,
1699-1768, author of a Cours de Mathématique
published in 1749. The section of this textbook
dealing with gearwork was extracted and trans-
lated into English by John Isaac Hawkins, a civil
engineer, and published under the title A Treatise
on the Teeth of Wheels, Demonstrating the Best Forms
Which Can Be Given to Them for the Purposes of Ma-
chinery; Such as Mill-work and Clock-work, and the
Art of Finding Their Numbers.

The first part of Camus’s treatise deals with a
geometrical rather than a number-theoretical
question: What is the ideal shape for a gear tooth?
This issue engaged the talents of mathematicians
and other savants for generations. Robert Hooke,
Thomas Young, Leonhard Euler and Josiah
Willard Gibbs all debated the merits of epicycloids
and involutes. It’s a fascinating problem, but I
turned to Part 11 of the treatise, where Camus takes
up the numerical aspects of gear design.

For cases where an exact solution is possible,
Camus explains the method of reducing a num-
ber to its prime factors and then partitioning the
factors into as many groups as there are pairs of
gears. He then turns to the task of approximat-
ing a ratio when the numbers have no conve-
nient factorization. As an example he offers this
problem: “To find the number of the teeth...of
the wheels and pinions of a machine, which be-
ing moved by a pinion, placed on the hour
wheel, shall cause a wheel to make a revolution
in a mean year, supposed to consist of 365 days,
5 hours, 49 minutes.” Multiplying out the days
and hours yields a target ratio of "2¥s2s049. The
numerator of this fraction factors conveniently,
but the denominator is a prime. Thus the aim is
to find another fraction, as close as possible in
value to "*Ys25049, but with both a numerator and
a denominator that have small factors. Camus
remarks: “In general this is done by repeated tri-
als; but as this method is defective, we shall here
propose another, by which the problem may be
solved with more certainty.”

But the next 20 pages, which set forth the
method through worked examples, leave the
impression that it’s hardly much better than tri-
al and error. Camus’s procedure for finding ra-



tios close to the target is a fairly arduous alge-
braic process, made worse by awkward and
verbose notation. Furthermore, trial-and-error
is still required, because there is no guarantee
that a ratio generated by the method will be fac-
torable. Camus reports seven failures before he
hits on the ratio 1*%143175, which can be factored
as Y25 % s9% 83, It was Brocot, a century later,
who found a better way.

An Eminent Maker

I finally tracked down Brocot’s memoir in the Re-
vue Chronométrique at the Mariners’ Museum Li-
brary in Newport News, Virginia. (It’s not such
an unlikely place to go looking, given the close
connections between seafaring and horology.)
The library staff were able to help me find the ar-
ticle even though the citations | was working
from turned out to have errors in both the vol-
ume number and the date.

A reference work on clockmakers lists Achille
Brocot as “an eminent maker” and mentions his
mechanical contrivances, such as the Brocot es-
capement, but it says nothing of contributions
to mathematics. The article in the Revue Chrono-
métrique sticks to practicalities; the aim is to
build a gear train, not to construct the infinity of
rational numbers. And yet if theory is not em-
phasized, there is nonetheless something dis-
tinctly modern here. Brocot presents his method
as an algorithm, albeit one adapted to pencil-
and-paper methods rather than to programma-
ble machinery.

As a pedagogical example, Brocot invents the
problem of gearing a shaft that turns once in 23
minutes to another shaft that completes a revolu-
tion in three hours and eleven minutes, or in oth-
er words 191 minutes. Because 23 and 191 are
both primes, gears with fewer teeth can only ap-
proximate the true ratio. To find the best such ap-
proximations, Brocot begins by noting that %23
is greater than 8 but less than 9, so that the ratio
must lie somewhere in the interval between 8:1
and 9:1. Accordingly, he writes in a row at the
top of a sheet of paper:

8 1 -7

Here the first two numbers represent the ratio
8:1, and the third number is the error associated
with this initial approximation. The error is -7
because a ratio of %1 is equal to %23 rather than
19323, so that the slower wheel would complete its
revolution seven minutes early.

At the bottom of the same page, Brocot writes:

9 1 +16

Again the first two numbers are an approxima-
tion to the ratio, and the third number is an error
term, indicating that gears in a 9:1 ratio will take
16 minutes too long to complete a revolution, since
% is equal to 2%2s.

Now the iterative part of the algorithm begins.
Brocot adds the numbers in all three columns and

writes the row of sums in the middle of the page:
17 2 +9

This result is a new and more refined approxi-
mation. At a ratio of 17:2, turning the faster shaft
in 23 minutes causes the slower shaft to complete
a revolution in 195.5 minutes, for an error of four
and a half minutes. In the table, the error term of
+9 is understood to represent the quantity %2.
Brocot now has the choice of adding the mid-
dle row of numbers to those at the top of the
page or to those at the bottom. The mediant be-
tween top and middle is preferable because it re-
duces the error term. The result is another row:

25 3 +2

With this ratio the slower wheel turns in 191.67
minutes, for an error of two-thirds of a minute.
Further approximations are constructed in the
same way, always adding the latest entry to
whichever of its neighbors reduces the error term.
The method is deterministic, with no need for
guesswork or trial and error. And, like any good
algorithm, it is sure to terminate eventually. The
end comes when the process converges on the
original ratio %23, which necessarily has an error
of zero. The final state of the table looks like this:

8 1 -7
33 4 -5
58 7 -3
83 10 -1
191 23 0
108 13 +1
25 3 +2
17 2 +9

9 1 +16

The two columns at the left, read as numerators
and denominators of rational numbers, make up
a small section of the complete Stern-Brocot tree.

Brocot’s algorithm reveals that the closest ap-
proximations to %23 are ratios of 810 (which
runs a tenth of a minute fast) and %43 (a thir-
teenth of a minute slow). To do better requires a
multistage gear train. Surprisingly, Brocot applies
exactly the same algorithm to the design of such
trains. He places one of the approximations at the
top of the page and the exact ratio at the bottom.
Then a series of additions produces successive ra-
tios with smaller errors and larger numbers of teeth:

83 10 -1
274 33 -1
465 56 -1
656 79 -1
191 23 0

But now trial-and-error does enter the process,
because it is necessary to find one of the approxi-
mations where both the numerator and the de-
nominator can be factored conveniently. In this

2000
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case, the third entry in the table can be factored as
¥7x%%s, yielding a train of four gears that ap-
proaches the correct speed to within a 56th of a
minute.

Brocot’s algorithm can be employed as needed
to find approximations to any given ratio, but
Brocot also recognized that all the computation
could be done beforehand and the results com-
piled into a table. This is the Brocot table included
in Merritt’s book; it is essentially a list of all frac-
tions with numerator and denominator no greater
than 100, ordered according to magnitude.

Shifting Gears

Just as Stern mentions no practical applications
of his number-theoretical function, Brocot gives
little attention to the mathematical foundations of
his gear-train algorithm. (In a longer essay, which
I have still not been able to lay hands on, Brocot
claims to provide more theoretical background.)
There is no sign that either man knew of the oth-
er’s work. After the fact, however, connections
between them are easy to see; they are doing the
same thing but describing it differently.

There is even a connection between Brocot’s al-
gorithm and the Fibonacci series, where this
whole quest began. To see the relation, just try us-
ing Brocot’s method to find ratios approximating
the constant known as phi, or the golden ratio,
an irrational number with a value of approxi-
mately 1.618. The series of approximants begins
n,%, %, 75, %, %4,.... Hidden within these ratios
is the complete sequence of Fibonacci numbers.

Working through examples of Brocot’s process
by hand, and leafing through the pages of the
printed Brocot table, leaves me feeling wistful
and uneasy. The ingenuity and diligence on ex-
hibit here are certainly admirable, and yet from a
modern point of view they are also tinged with a
horrifying futility. | am reminded of those prodi-
gies who spent years of their lives calculating
digits of the decimal expansion of T—a task that
is now a mere warmup exercise for computer
software. | cannot help wondering which of my
own labors will appear equally quaint and pa-
thetic to some future reader who ransacks li-
braries for old volumes of American Scientist.
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The fact is, the design of simple gear trains is
no longer a computationally interesting problem,
because computation itself has overwhelmed it.
With so much calculating power at your finger-
tips, it’s hardly worth the bother of being clever.
You can solve gearing problems by brute-force,
using methods that would have been unthink-
able for Camus or Brocot, or even for Merritt,
who was writing hardly more than 50 years ago.
If you need to approximate some ratio, just have
the computer try all pairs of gears with no more
than 100 teeth. There are only 10,000 combina-
tions; you can churn them out in an instant. For a
two-stage compound train, running through the
100 million possibilities is a labor of minutes.

The whirling gears of progress have put the
gearmakers out of work.
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