CoLLECTIVE WISDOM

Brian Hayes

A reprint from

American Scientist

the magazine of Sigma Xi, the Scientific Research Society

Volume 86, Number 2
March-April, 1998
pages 118-122

This reprint is provided for personal and noncommercial use. For any other use, please send a
request to Permissions, American Scientist, P.O. Box 13975, Research Triangle Park, NC, 27709,
U.S.A,, or by electronic mail to perms@amsci.org. Entire contents © 1998 Brian Hayes.

CoOLLECTIVE WISDOM

Brian Hayes

he most powerful computer in the world,

according to a recent ranking, is a

machine called Janus, which has 9,216
Pentium Pro processors. That’s a lot of Pentia,
but it’s a pretty puny number in comparison
with the 20 million or more processors attached
to the global Internet. If you have a big problem
to solve, recruiting a few percent of the CPUs on
the Net would gain you more raw power than
any supercomputer on earth.

Of course the trick is to get all those millions
of scattered machines working on your problem.
The 9,216 Pentiums are all conveniently housed
in a single room at the Sandia National
Laboratory in Albuquerque. Setting them to
work on the task of your choice is a simple mat-
ter; all you need is an account on the machine, a
password, an allocation of CPU time, possibly a
security clearance, and a little knowledge of
programming in a specialized dialect of For-
TRAN or C. Persuading the Internet to do your
bidding is not so easy.

And yet it can be done. Consider the hunt for
trophy-quality prime numbers. For two decades,
the weapon of choice in this elite sport was a
supercomputer—preferably the latest model
from Cray Research. Beginning in 1979, the
prime-number pursuit was dominated by David
Slowinski and his colleagues at Cray (which is
now a division of Silicon Graphics). The Cray
team had to keep topping their own records,
because they had so little competition elsewhere.
In 1996, however, a new largest prime was
found with an unpretentious desktop PC. The
discoverer was a member of an Internet consor-
tium who attacked the problem collectively with
a few thousand computers. In August of 1997
another member of the same group found a still
larger prime, which stands as the current record.
Slowinski, being a good sport, offered one of his
supercomputers to verify the discoveries.

The rise of cooperative-computing projects on
the Internet is both a technical and a social phe-
nomenon. On the technical side, the key re-

Brian Hayes is a former editor of American Scentist.
Address: 211 Dacian Avenue, Durham, NC 27701. Internet:
bhayes@amsci.org.

118 American Scientist, Volume 86

quirement is to slice a problem into thousands
of tiny pieces that can be solved independently,
and then to reassemble the answers. The social
or logistical challenge is to find all those widely
dispersed computers and persuade their owners
to make them available.

Recycled Cycles
What’s most charming about collective comput-
ing is that it relies entirely on resources that
would otherwise go to waste. The computing is
done with spare CPU cycles on idling machines.

It is one of the wonders of our age that we
squander vast quantities of computational labor.
Forty years ago, when electronic computers
were rare and expensive, CPU time was sched-
uled and billed by the millisecond. Now, com-
puters spend most of their time displaying
zooming multicolored windowpanes or simu-
lating an aquarium. These ““screen saver” pro-
grams, which compute nothing, whose only
purpose is to stir up pixels on the display
screen, probably consume more of the world’s
computational capacity than any other kind of
software. Go into almost any office and you’ll
find machines busily saving their screens all
night and all weekend.

Even when a computer is ostensibly in use, it
is mostly idle. Typing furiously, you might pro-
duce 10 keystrokes per second; that’s not much
of a distraction for a processor that can execute
100 million instructions in a second. Under
these conditions the processor spends most of
its time going around in a tight little loop, ask-
ing over and over, like a fidgety toddler, “What
can | do now?”

This waste of computational machinery is not
something we need be ashamed of. The CPU
cycles we fritter away today will not be deduct-
ed from the legacy bequeathed to our grandchil-
dren. Still, every waste is also an opportunity,
and the cycles you have no use for may prove
valuable to someone else.

The idea of scavenging unused cycles arose
almost as soon as computers were linked by net-
works. A few early experiments with distributed
computing, including a pair of programs called
Creeper and Reaper, ran on the ARPAnet, the

1970s predecessor of today’s Internet. Later,
when the Xerox Palo Alto Research Center
(PARC) installed the first Ethernet, a program
cruised the network at night, commandeering
idle computers for CPU-intensive tasks. This
early cycle recycler was the creation of John F.
Shoch and Jon A. Hupp, who called it a “worm,”
citing the inspiration of John Brunner’s novel
Shockwave Rider. (A colleague, noting the pro-
gram’s nocturnal habits, suggested the alterna-
tive name “vampire.”) A later scavenger system
called Condor, developed by Miron Livny and
his colleagues at the University of Wisconsin at
Madison, is now running at more than a dozen
universities and other sites. Condor roams with-
in clusters of Unix workstations, usually con-
fined to a single laboratory or department.

Going out over the public Internet to scrounge
cycles is more difficult because the machines are
more diverse and the network connecting them
is more tenuous. Furthermore, communicating
with the machines is only part of the problem;
making connections with the machines’ owners
is also harder. Nevertheless, Internet “metacom-
puting” has been going on for at least a decade.
Here are some of the notable projects.

Success Stories
Factoring. Finding the prime factors of a com-
posite integer is a classic among computational-
ly hard problems. The inverse process—multi-
plication—has an efficient algorithm we expect
children to master, but factoring seems to be
intractable when numbers get big. Adding three
decimal digits to the length of a number dou-
bles the effort needed to factor it.

But if factoring is hard, it is also ideally suited
to parallel computation. Splitting the work
among k computers produces an answer very
nearly k times faster.

The first Internet factoring project was orga-
nized in 1988 by Arjen K. Lenstra (now of
Citibank) and Mark S. Manasse of the DEC
System Research Center in Palo Alto. They and
their colleagues had written software to distrib-
ute factoring tasks among workstations within
the DEC laboratory, and they extended this sys-
tem so that computers elsewhere could con-
tribute to the effort. The infrastructure was sim-
ple: Factoring tasks were parceled out by elec-
tronic mail, and results came back the same way.

As early as 1989 Lenstra and Manasse had
already given an astute analysis of the economics
of collective computing. They could get equivalent
performance, they estimated, from 300 worksta-
tions or 1,200 PCs or a single high-speed machine
designed especially for factoring. If they had to
buy all the hardware, the last option was clearly
the best choice. But if the owners of workstations
or PCs could be induced to donate CPU cycles free
of charge, that price would be hard to beat.

By 1990 Lenstra and Manasse and about a
hundred e-mail collaborators from around the

world were routinely factoring numbers of 100
decimal digits. In 1993 a larger group was
assembled to take on a number known as RSA-
129. Some 600 volunteers labored for eight
months to factor this 129-digit number, winning
a prize of $100 for their efforts. Two years later
RSA-130 (a digit longer) succumbed to another
army of factorers. This time some of the work
was coordinated not by e-mail but through a
World Wide Web interface designed by James
Cowie of Cooperating Systems Corporation.

Primes. A counterpoint to factoring is the
search for primes—numbers that cannot be fac-
tored. Primes of 100 or 200 decimal digits no
longer attract much notice; with the right soft-
ware any modern computer can find examples of
such numbers in a few seconds. The frontier of
knowledge for primes is now out near a million
digits. Even the mathematically jaded may mar-
vel at a prime of such magnitude: Think of all the
smaller numbers that might divide it, but don’t.

Most of the largest known primes are
Mersenne primes, named for the 17th-century
friar Marin Mersenne. A Mersenne number has
the form 2"-1, but not all such numbers are
prime. In the first place, for 2"-1 to be prime, n
itself must be prime, but even that is only a nec-
essary condition, not a sufficient one. (Try n = 11.)
To find Mersenne primes, you must first calcu-
late 2" -1 for each prime value of n, then test the
result for primality. Algorithms based on the
work of Edouard Lucas and D. H. Lehmer great-
ly speed up the primality tests.

The two largest known primes were found by
participants in the Great Internet Mersenne
Prime Search, or GIMPS. The founder of this
project is George Woltman, a computer scientist
who wrote efficient software for Lucas-Lehmer
primality tests and made it available on a Web
site. (You need not understand the mathematics
of the Lucas-Lehmer test to run the software.)
Some 4,000 volunteers have contributed to the
search so far. In November 1996 Joel Armen-
gaud discovered that 213982691 js prime. Then
in August 1997 Gordon Spence proved the pri-
mality of 229762211 This number, which has
895,932 decimal digits, is the 36th Mersenne
prime to be discovered. (It may not be 36th in
the numerical sequence of Mersenne primes,
however, because there are exponents less than
2,976,221 that have not yet been checked.)

Code-breaking. The collective-computing projects
that have attracted the most participants have
been attempts to decipher encrypted messages—
but the volunteers are not snooping into anyone’s
confidential e-mail. RSA Data Security, a company
in the secrecy business, has posted a number of
cryptographic puzzles, with cash prizes for those
who solve them. The company’s aim is to test the
security of their own products and to demonstrate
the vulnerability of encryption schemes they con-
sider inadequate. The factoring of RSA-129 and
RSA-130 was part of this program. Other RSA

1998

March-April 119

© 00N O O WN PP

B
P o

— O
—_—

challenges don’t involve factoring but call for a
direct attack on an encrypted text.

In one challenge the message was encoded
with DES, the Data Encryption Standard, a
cipher developed in the 1970s under U.S. gov-
ernment sponsorship. The key that unlocks a
DES message is a binary number of 56 bits. In
general the only way to crack the code is to try
all possible keys, of which there are 256, or about
7 x 106, This task was undertaken by an Internet
collaboration called DESCHALL, organized by
Rocke Verser, Matt Curtin and Justin Dolske. In
June of 1997 they got lucky, discovering the cor-
rect key after checking just 18 percent of the pos-
sibilities, and won the $10,000 prize.

Another RSA challenge also employed a 56-bit
key, but with an encryption algorithm called RCS5.
Three groups, known as Bovine, Infinite Monkeys
and Cyberian, all began recruiting volunteers for
the RC5 attack. Bovine eventually attracted the
most helpers, and it was they who found the key
and deciphered the message in October 1997, after
exhausting 47 percent of the key space, or 34
quadrillion keys. Bovine was organized by Adam
L. Beberg, Jeff Lawson and David McNett.

Compared with earlier distributed-comput-
ing projects, the RC5 efforts were not only tech-
nically sophisticated but also reached a new
level of promotional and motivational slickness.
For example, the Bovine software kept statistics
on the contributions of individuals and teams,
adding an element of competition within the
Bovine ranks as well as between Bovine and the
other groups. In the team standings, Macintosh
militants finally prevailed over partisans of the
Linux operating system. By the end of the con-
test some 4,000 active teams were processing 7
billion keys per second, a rate equivalent to the
work of 26,000 Pentium computers.

On completing RC5-56, the Bovine collabora-
tion turned to RC5-64, a cipher with a 64-bit key.
The effort needed to break this code will be 256
times greater, which suggests it could be a labor
of decades. It's worth pausing to ask whether the

N
=
=

Figure 1. Optimal five-mark Golomb ruler is 11 units long and measures
10 of 11 possible distances; the ruler has no pair of marks six units apart.

120 American Scientist, Volume 86

brute-force testing of 18,446,744,073,709,551,616
cryptographic keys is really a better use of
resources than displaying pretty fish in an aquar-
ium. Beberg and his colleagues are considering
other possible projects. Meanwhile, RSA has
announced a new challenge. This time the mes-
sage is encoded with the same DES algorithm
broken last spring, but the contest rules are
altered to reward speed of decryption. The initial
prize of $10,000 drops to zero after 67.5 days.
Bovine has taken up the challenge.

Golomb rulers. Imagine a six-inch ruler with
marks inscribed not at the usual equal intervals
but at 0, 1, 4 and 6 inches. Taking all possible
pairs of marks, you can measure six distinct dis-
tances: 1, 2, 3, 4, 5 and 6 inches. A ruler on which
no two pairs of marks measure the same dis-
tance is called a Golomb ruler, after Solomon W.
Golomb of the University of Southern California,
who described the concept 25 years ago. The 0-1-
4-6 example is a perfect Golomb ruler, in that all
integer intervals from 1 to the length of the ruler
are represented. On rulers with more than four
marks, perfection is not possible; the best you
can do is an optimal Golomb ruler, which for a
given number of marks is the shortest ruler on
which no intervals are duplicated.

The world is not panting in desperate need of
better Golomb rulers, and yet these combinatori-
al curiosities do have practical uses. For exam-
ple, in setting up an interferometer for radio
astronomy, placing the antennas on the marks of
a Golomb ruler maximizes the recovery of infor-
mation about the phases of the signals received.

Many good Golomb rulers have been found
by trial-and-error, but proving them optimal (or
finding a better ruler if one exists) is computa-
tionally expensive. In 1995 a dozen workstations
took four CPU-years to prove there is no 19-mark
ruler shorter than 246 units. The computation
was done by Apostolos Dollas, William T. Rankin
and David McCracken of Duke University.

In 1996 David Vanderschel and Mark Garry,
who had both worked on Golomb rulers inde-
pendently, merged their ideas in a program
called GVANT, which turned out to be signifi-
cantly more efficient than earlier programs. They
quickly confirmed the known results for rulers of
up to 19 marks, but even with their highly opti-
mized algorithm a search for the best 20-mark
ruler was a formidable undertaking. They there-
fore sought Internet collaborators. With seven
helpers it took about half a year to prove that a
20-mark ruler of length 283 is optimal.

In the spring of 1997 Vanderschel and Garry
turned to the 21-mark ruler, for which the short-
est known arrangement is 333 units long. For
this ruler a naive algorithm would have to check
more than 1030 arrangements of the marks;
GVANT prunes the number of cases to about
1015, Roughly 100 volunteers have pitched in to
help, but after a year’s searching there is still
plenty of work left for latecomers. Out of 1,200

trillion arrangements to be checked, fewer than
200 trillion have been examined so far.

Aliens. If the prospect of finding a bigger
Mersenne prime or a smaller Golomb ruler won’t
induce you to pledge your CPU, perhaps you
would like to discover an extragalactic civiliza-
tion. A proposal called SETI@home would put
thousands of computers to work sifting for signs
of life in signals recorded with the radio tele-
scope of the Arecibo Observatory in Puerto Rico.

A search for extraterrestrial intelligence has
been going on at Arecibo for almost two decades.
The telescope slowly scans the sky, detecting emis-
sions over a broad range of radio wavelengths. A
special-purpose signal-processing computer
applies a Fourier transform to the data to pick out
narrow-bandwidth signals, which could be the
alien equivalent of “I Love Lucy.” The astronomers
would like to put the data through a more thor-
ough analysis, but computing capacity is a bottle-
neck. That’s where SETI@home comes in.

With enough computers on the job, the
Arecibo data could be sliced into finer divisions
of bandwidth and frequency. Moreover, the
analysis software could check for other kinds of
regularities, such as signals that pulsate or that
“chirp” through a sequence of frequencies. The
task is well suited to Internet computing in that
only small blocks of data need to be passed back
and forth over the network, but a great deal of
computing is needed on each block.

SETI@home is the project of Dan Werthimer
of the University of California at Berkeley and
several colleagues. Their plans are ambitious;
they seek a mass audience. The client software
they envision would run as a screen saver, start-
ing up automatically whenever a machine is left
idle. As the program churned away on the data
analysis, it would also display a series of images
related to the project, such as a representation of
the data currently being examined or a map
showing the progress of the sky survey.

Some 70,000 people have signed up for
SETI@home. Unfortunately, the project is on hold
for lack of funding.

Unparalleled Parallelism
Factors, primes, codes, rulers—some of these pro-
jects sound like they might belong in the Guinness
Book of World Records. They’re not frivolous, but
they’re not quite in the mainstream either.

There are plenty of other areas of science and
engineering that could benefit from cheap and
abundant computing. The traditional big con-
sumers of CPU cycles include the analysis of seis-
mic data, simulations of many-body systems,
studies of protein folding and other kinds of com-
putational chemistry, studies of turbulent fluid
flow, and lattice models of quantum field theo-
ries. Could such tasks be shared over the Net?

When viewed as a massively parallel com-
puter, the Internet has a peculiar architecture. It
is extraordinarily rich in raw computing capaci-

Cycles to Spare?

Jussi Kallioniemi, the founder of the Cyberian consortium,
writes: “Every second billions of innocent assembler instruc-
tions are executed all over the world.” It seems there is no hope
of stopping the slaughter, but if you would like to make their
deaths more meaningful, here are some organizations that
accept donations of CPU cycles. In most cases software is avail-
able for computers running Microsoft Windowvs, for Macintosh
and for some varieties of Unix.

The Great Internet Mersenne Prime Search: George Woltman is
coordinating a search for all Mersenne primes with an
exponent less then 5,260,000. The Web site provides links to
excellent background on the mathematics of primes and
Mersenne numbers.

http://www.mersenne.org/

Golomb rulers: Mark Garry, David Vanderschel and about 100
volunteers are searching for a 21-mark Golomb ruler shorter
than 333 units; if no such ruler is found, that will constitute a
proof that the 333-unit example is optimal. The job should be
finished within a year.

http://members.aol.com/golomb20/index.html

distributed.net: This organization, whose slogan is “fastest
computer on earth,” formed Project Bovine to win the 56-bit
RC5 cipher challenge. As of January 1998 the members’
efforts are being directed into a short-term contest to read a
message encoded with the DES cipher. Following that,
work will resume on a 64-bit RC5 message.

http://wwwv.distributed.net/

SETI@home: 100,000 computers could be kept busy trying to
extend the reach of the global Internet (as if we didn’t have
enough trouble already running out of area codes and IP num-
bers). But the most urgent need is not for CPU cycles; the cur-
rent search is for a major funding source.

http://www.bigscience.com/

ty, with tens of millions of processors. But the
bandwidth for communication between the
processors is severely constrained. The 9,216
Pentiums of the Janus computer can talk to one
another at a rate of 6.4 billion bits per second;
for a node connected to the Internet by modem,
the channel is slower by a factor of 100,000.

The limits on bandwidth determine what
kinds of algorithms run smoothly when spread
out over the Net. Consider the case of an n-body
simulation, which describes the motion of parti-
cles in a force field, such as stars in a galaxy or
atoms in a fluid. One parallel n-body algorithm
assigns each particle to its own processor, which
then tracks the particle’s path in space. The trou-
ble is, each processor needs to consult all the
other processors to calculate the forces acting on
the particle, and so the volume of communica-
tion goes up as n2, That won’t fly on the Net.

Yet n-body problems are not necessarily unsuit-
ed to network computing. There are other n-body

1998 March-April 121

algorithms, and other ways of partitioning the
problem. In particular, “tree codes” organize the
computation hierarchically. At the bottom of the
hierarchy a processor calculates motions inside a
small cluster of particles, without reference to the
rest of the universe. At the next level several clus-
ters are combined, ignoring their internal dynam-
ics and looking only at the motions of their cen-
ters of mass. Then clusters of clusters are formed,
and so on. Tree codes are popular for n-body
computations, but whether they can be adapted
to Internet computing remains to be seen.

Memory capacity is another serious con-
straint. Computer owners who are willing to
give away CPU cycles may be less eager to let
someone fill up their machine’s memory or disk
drive. Both the bandwidth and the memory lim-
its will be difficult hurdles for programs that
operate on large volumes of data, as in seismic
analysis or weather prediction.

And yet there are powerful incentives for
clearing those hurdles. In round orders of mag-
nitude, a typical personal computer will soon
execute 100 million instructions per second; it
will have 100 megabytes of memory and a giga-
byte of disk storage; it will consume 100 watts
of electricity and cost $1,000; 100 million of
these machines will be attached to the Internet.
Multiply it out: 10 quadrillion instructions per
second, 10 billion megabytes of memory, 100
million gigabytes of disk storage, 10 gigawatts
of electric-power demand, a price tag of $100
billion. It's probably worth rewriting your soft-
ware to gain access to such a machine.

Collectivists and Capitalists

And what about incentives for the owners of
that $100 billion distributed computer? The
spirit of volunteerism is a wonderful thing, but
it doesn’t always scale well. If Internet comput-
ing ever catches on in a big way, we’ll probably
hear less about cooperatives and collectives, and
more about return on investment.

One way of paying for Internet computing is
through a commodity market in CPU cycles. If
you have 100 computers with nothing to do
nights and weekends, you offer the spare capac-
ity at an asking price expressed in millicents per
trillion instructions or dollars per Pentium-year,
or some such fabricated unit. Meanwhile some-
one with a big batch of humbers to crunch
enters a bid for a stated quantity of computa-
tion, measured in the same units. An automated
clearinghouse matches up buyers and sellers.

It could be fun to watch the fluctuations of
such a market. When Lucasfilms needs half the
processors in the galaxy to render scenes for the
next Star Wars saga, prices shoot up. Over acade-
mic holidays, excess capacity brings on a season-
al slump. The market is likely to be volatile,
because CPU cycles are like electricity or fresh
asparagus: You can’t stockpile them for later use.

Trading in CPU cycles is not a new idea. As

122 American Scientist, Volume 86

early as 1968 Ivan Sutherland wrote of a “futures
market in computer time”—although his market
consisted of only a whiteboard and colored
pens. The market mechanism was explored in
greater depth at Xerox PARC, in an experiment
described by Carl A. Waldspurger, Tad Hogg,
Bernardo A. Huberman, Jeffrey O. Kephart and
W. Scott Stornetta. For the most part their market
worked as economists would predict—each job’s
share of the total machine time was proportional
to its funding—but they did observe some inter-
esting undamped oscillations in prices.

Could a real market, backed by real money,
evolve on the Internet? Questions of security and
confidentiality would need to be addressed. When
I send you my program to run, how do | know
you won’t pry it open and steal my secrets? How
do you know my program won’t steal your
secrets? (The answer to both questions is probably
Java.) Another essential precondition is that CPU
cycles have to become what economists call a fun-
gible asset, meaning that cycles on one computer
are readily converted into those on any other. This
is a hard problem but not insurmountable.

In the end, though, the economics of the glob-
al metacomputer are probably less interesting
than the operation of the machine itself. Given a
free flow of computations through all those 100
million nodes, what would such a device wind
up computing? | hope that we as a civilization
can find a better use for this machine than we
have for Janus, whose primary function is to
simulate the explosion of nuclear weapons.

Bibliography

Dollas, Apostolos, William T. Rankin and David
McCracken. 1998. A new algorithm for Golomb ruler
derivation and proof of the 19 mark ruler. IEEE
Transactions on Information Theory 44:379-382. http://
www.ee.duke.edu/~wrankin/golomb/golomb.html

Golomb, Solomon W. 1972. How to number a graph. In
Graph Theory and Computing, ed. Ronald C. Read. New
York: Academic Press.

Greengard, Leslie. 1990. The numerical solution of the N-
body problem. Computers in Physics 3:142-152.

Hayes, Brian. 1994. The magic words are squeamish os-
sifrage. American Scientist 82:312-316.

Lenstra, Arjen K., and Mark S. Manasse. 1990. Factoring by
electronic mail. In Advances in Cryptology, Eurocrypt ‘89.
Lecture Notes in Computer Science Vol. 434. New York:
Springer-Verlag. pp. 355-371.

Litzkow, Michael J., Miron Livny and Matt W. Mutka. Con-
dor—a hunter of idle workstations. Eighth International
Conference on Distributed Computing Systems, San Jose,
California, June 13-17, 1988, pp. 104-111.

Mattson, Timothy G., and Greg Henry. 1998. The ASCI Op-
tion Red supercomputer. Intel Technical Journal, 1st quar-
ter 1998. http://developer.intel.com/technology/itj

Shoch, John F,, and Jon A. Hupp. 1982. The “Worm” pro-
grams—early experience with a distributed computa-
tion. Communications of the ACM 25:172-180.

Sutherland, lvan E. 1968. A futures market in computer
time. Communications of the ACM 11:449-451.

Waldspurger, Carl A., Tad Hogg, Bernardo A. Huberman,
Jeffrey O. Kephart and W. Scott Stornetta. 1992. Spawn: A
distributed computational economy. IEEE Transactions on
Software Engineering 18(2):103-117.

