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L
ife would be so much simpler if only we
lived in 

 

Z3 instead of R3. Here at home in R3,
every point in space has coordinates drawn

from the set of real numbers, R (a set that encom-
passes the integers, the rationals and the irra-
tionals). Nature seems content with this arrange-
ment, but ever since the time of Zeno, people
trying to understand the structure of the physical
world have puzzled over the way points get
squished together at infinite density on the real-
number line. This numerical overcrowding is
particularly troublesome when you try to simu-
late nature with a digital computer. Computer
programs have a hard time with the continuum
of real numbers; they trip over concepts such as
the identity 0.999... = 1.0.

Z3 is a more computer-friendly place. Here all
points have integer coordinates (drawn from the
set of positive and negative whole numbers, Z).
You can think of Z3 as a cubic lattice, like a crystal
of salt. The nodes of the lattice—the spots occu-
pied by atoms in the crystal—are the only points
that exist. To move through the lattice, you jump
from node to node, without ever passing through
intermediate positions. Where R3 is a jungle whose
dense undergrowth has to be hacked away, Z3 is a
tidy urban space, where everything is discrete and
countable, arranged in rows and columns.

A lattice is an especially good place for doing
computational science, because the discrete space
maps so readily onto the discrete structures of
the computer. In models based on cellular au-
tomata, for example, each node of the lattice is
imagined as a separate computer, programmed
with the local laws of nature. Cellular automata
can simulate fluids, fields, phase transitions, bio-
logical populations and even computers.

Here I want to describe the uses of lattice meth-
ods in another realm, the mathematical theory of
knots. Knot theory is a department of topology,
which studies properties that remain unchanged
when an object is continuously deformed in certain
ways, such as by stretching or twisting (but not
cutting). Continuity is an essential aspect of these
deformations, and so knot theory might seem an

unlikely candidate for the discrete-lattice treat-
ment. Nevertheless, tying knots in Z3 turns out to
be a useful exercise; it allows you to ask some
questions that would be harder to formulate in R3.

 

Knots and Not Knots
To a topologist, the knots you get in your shoe-
laces do not count as knots at all, since with
enough patience and dexterity you could always
untie them. A topologist’s knot has to be cap-
tured in a closed loop. For example, open a key-
chain and tie a simple overhand knot in it, then
snap the ends together. Now the knot cannot be
undone except by cutting the chain.

The overhand knot in the loop of keychain is
called a trefoil, and it is the simplest nontrivial
knot. If you spread a trefoil on a tabletop, the
path of the knot crosses over itself at least three
times. There may be additional crossings where
lobes overlap, but they can be removed by gently
pushing or pulling. No amount of prodding will
eliminate the three essential intersections, and so
the trefoil is classified as a knot of three cross-
ings. As a matter of fact, it is the only three-cross-
ing knot. There is no way to tie a knot with one
or two crossings. A loop with no crossings is
called the unknot.

In the standard catalogue of knots, the trefoil is
followed by the figure-eight knot, which has four
crossings. There are two different knots with five
crossings, and three with six crossings. Beyond
this point, the number of distinct knots grows
steeply, and identifying them all soon becomes
an arduous undertaking. For some years the clas-
sification was known in detail only through the
knots of 13 crossings, of which there are 9,988.
Now Morwen Thistlethwaite of the University of
Tennessee and his colleagues have counted the
knots with 14, 15 and 16 crossings. In this last
group there are more than a million knots.

The trefoil and the other catalogued knots are
“prime” knots, meaning they cannot be decom-
posed into smaller or simpler knots, just as prime
numbers cannot be broken down into smaller
factors. The prime knots combine to form com-
posite knots. For example, a loop with two tre-
foils is either a granny knot or a square knot de-
pending on whether the trefoils are identical or
are mirror images.
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Although knot theory is now mainly the turf of
mathematicians, it actually began among the
chemists. The instigating event was Lord Kelvin’s
brilliant (though utterly wrong) conjecture that
atoms are knots in the ether. It’s a curious coinci-
dence that knots are still of interest to chemists,
though for different reasons. The focus now is not
on individual atomic knots but on long poly-
mers—including such notable biopolymers as
DNA—which can form knotted loops.

Imagine a long and flexible molecule wriggling
around in solution like a hyperactive strand of
cooked spaghetti. In its random motions the mol-
ecule might spontaneously tie itself in a knot;
then, if the two ends of the polymer chain bonded
together, the knot would be trapped in a closed
loop. Such an event seems physically possible,
but how likely is it? This question was first raised
in the early 1960s by the chemists H. L. Frisch and
Edel Wasserman and independently by the physi-
cist-turned-biologist Max Delbrück. They rea-
soned that the probability of knotting should de-
pend on the length of the polymer. A very short
molecule could not wrap around itself far enough
to form a knot at all; as the molecular length in-
creased, so would the opportunities for knot-ty-
ing. Frisch, Wasserman and Delbrück conjectured
that as the length of a polymer chain tends to in-
finity, the probability of knotting approaches 1. In
other words, any sufficiently long polymer loop is
almost certain to be knotted.

Conventional topology in R3 is poorly equipped
to address questions about knotting as a function
of loop length. The reason is that “length” is not a
topological concept. If you ask how many knots
can be tied in a cord one meter long, everyday ex-
perience suggests that the answer depends on the
nature of the cord—more knots in a fine silk
thread, fewer in a heavy hawser. But topologists
tie their knots in a cord of zero thickness and per-
fect flexibility. Thus the knots can be made arbi-
trarily tight and small.

The questions are easier to answer in Z3. A lat-
tice defines a natural scale of length—the unit dis-
tance between adjacent nodes—which means
there is a smallest knot in Z3. Thus it makes sense
to ask how many lattice knots will fit in a loop of a
given length. In principle a lattice topologist could
count all the knots and unknots that could possi-
bly be tied at each loop length, and could thereby
compile statistics on topics such as the distribu-
tion of knot types and the proportions of prime
and composite knots. Here I shall consider only
the simplest issue: how the probability of forming
a knot or an unknot varies with loop length.

Tie Me Up, Tie Me Down
A lattice knot is a special instance of a “self-avoid-
ing walk.” To construct a self-avoiding walk
through a three-dimensional lattice, start at any
node and then take a step in any of the six avail-
able directions (north, south, east, west, up, down)
to one of the neighboring nodes. From there pick

another direction and take a second step, and so
on. The directions are chosen at random, but with
the important constraint that you may never re-
turn to a node you have already visited. This self-
avoiding property of the path is necessary to mod-
el the physics of a polymer, because no two parts of
a molecule can occupy the same point in space.

For knot-tying purposes the self-avoiding rule
is modified slightly: The walk is allowed (indeed
required) to return to its starting point, thereby
closing the path. The closed loop is called a self-
avoiding polygon. Its length or perimeter is sim-
ply the number of edges, n.

To tie itself in a knot, a self-avoiding walk has to
form a partial loop, then, in the course of further
meandering, thread itself through that loop before
finally returning to the starting node. The ques-
tion is: What is the likelihood of this process, and
how does the probability vary as a function of n?
The question has been answered with the certain-
ty of mathematical proof for both the smallest and
the largest values of n. Filling in the details be-
tween these extremes is an ongoing project. 

The smallest possible closed path on a cubic
lattice is a square with n = 4. Topologically this
path is the unknot. What is the smallest nontriv-
ial knot? Figure 1 shows the answer: It is a trefoil
24 units long. This knot (along with others of the
same length) was proved minimal in 1993 by
Yuanan Diao, now of the University of North
Carolina at Charlotte. Thus the knotting proba-
bility is immediately known for one small range
of n: If n is less than 24, the probability is zero. 

At the opposite end of the range, the Frisch-
Wasserman-Delbrück conjecture proposes that
the knotting probability approaches 1 for arbi-
trarily large n. The conjecture was settled in the
affirmative in 1988 by De Witt L. Sumners of
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Figure 1. Smallest knot on the cubic lattice is a trefoil 24 units long. 



Florida State University and Stuart G. Whitting-
ton of the University of Toronto and indepen-
dently by Nicholas Pippenger of the University of
British Columbia. What they actually showed is
that the probability of the unknot tends toward 0
as n increases. Hence the complementary proba-
bility—that of finding at least one knot in an n-
step polygon—must approach 1 as n goes to in-
finity. Furthermore, the knot probability is an
exponential function of n, so that its convergence
on the limiting value should be rapid. And it
turns out that most long loops are not merely
knotted but tied in elaborate composite knots.

How to Find a Knot
If all paths with n < 24 are unknotted, and almost
all of those with very large n are a tangled mess,
where is the transition between these two
regimes? Questions of this kind are unlikely to
yield to formal analysis. The way to settle them is
to measure the knotting probability for selected
values of n. This is where knot theory becomes a
computational science.

The most rigorous approach to collecting knot
statistics is exhaustive enumeration: Generate all
possible closed self-avoiding paths for each value
of n, and count how many are knotted. Unfortu-
nately, this plan is entirely too rigorous and ex-
haustive. Even for n = 20 (too small for knot-ty-
ing), there are some 70 billion self-avoiding
polygons. For larger values of n, no one has even
counted the polygons, much less generated them
all and checked them for knots. Some kind of sta-
tistical sampling is needed.

Among the first to attempt a sampling study
were A. V. Vologodskii and his colleagues at the
Kurchatov Institute in Moscow. In the early 1970s,
using a computer called the BESM-6, they gener-
ated random self-avoiding lattice polygons with
up to 140 sides. The results showed that n = 140 is
still somewhere below the threshold where knots
become abundant; at most one in a thousand of
the polygons were knotted.

In recent years, faster machinery and superior
algorithms have extended the computational

studies to larger values of n. Prominent workers
in this endeavor have included Whittington and
Sumners as well as Neal Madras and E. J. Janse
van Rensburg of York University, E. Orlandini
and M. C. Tesi of the University of Oxford, and
Christine E. Soteros of the University of Sas-
katchewan. Their numerical experiments have ex-
plored the topology of lattice polygons with up to
1,600 sides. Knots remain rare. Even at n = 1,600
hardly more than 1 percent of the random poly-
gons are knotted. Among the knots that do ap-
pear, most are simple trefoils, with a handful of
figure-eight knots. It seems the fabled asymptotic
realm where almost all paths are topologically
tangled is still some distance off.

How to Tie a Knot
Running a computer experiment in lattice knot
theory is a two-stage process. First you generate a
bunch of self-avoiding polygons of size n, ideally
chosen uniformly from the universe of all n-step
self-avoiding polygons. Then you check each
polygon to see if it’s a knot or not, and perhaps
carry out a more precise evaluation of knot type.
Both steps have their travails.

Generating an ordinary random walk—one
that doesn’t worry about crossing its own path—is
easy. All you need do is produce a stream of ran-
dom numbers to select the direction of each step,
and keep track of the walker’s current position as
the path blunders through the lattice. Imposing
the condition of self-avoidance seems like a fairly
innocent change, but in the end it requires a com-
plete rethinking of the process. For one thing, a
program for a self-avoiding walk must have a
sense of history; it must keep track of all the sites
visited, so that it knows which ones to avoid.

The obvious algorithm for self-avoiding walks
is the blind-worm method: The worm chews its
way through the interior of an apple, twisting
and turning randomly, but it must be careful to
back up if it suddenly tastes worm instead of
fruit. At each step the procedure is to choose a di-
rection at random, then check to see if the chosen
node is already occupied; if it is, back off and try
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Figure 2. Stereoscopic images fuse to give a three-dimensional view of a 116-step knot—a plus-plus double trefoil, more
familiarly known as a granny knot. (Data courtesy of Tereza Vrbova and Stuart G. Whittington of the University of Toronto.)



another direction. This algorithm presents two
problems. In the first place, it generates a skewed
sample of walks, with statistics different from
those of a uniform distribution. To correct the im-
balance, the procedure has to be altered in a sub-
tle but important way: Instead of merely trying
another direction when a conflict arises, the algo-
rithm must throw away the entire walk generat-
ed up to that point, and start over. The second
problem is even more serious. The advancing
end of the walk can stumble into a cul de sac sur-
rounded on all sides by occupied sites, from
which it cannot escape. Again there is no choice
but to discard the path and start fresh.

Because of these impediments, generating self-
avoiding walks is laborious and inefficient. A
blind-worm program wastes most of its time on
paths that will ultimately fail. And for polygons
the situation is even worse. The set of self-avoid-
ing walks that happen to return to their starting
point after n steps is a very small subset of all n-
step self-avoiding walks.

Accordingly, most work on the geometry and
topology of large lattice polygons has been done
by other means. Instead of trying to generate
many independent random walks, the alternative
methods take a single valid walk as a starting
point and repeatedly transform it into another
valid walk. Depending on what kinds of transfor-
mations are applied, the sequence of walks can
yield a statistically fair sample of walk configura-
tions, and it wastes no time on rejected paths.

For knot theory the most important method of
this kind is called the pivot algorithm. A version
for open-ended walks was invented in 1969 by
Moti Lal of the Unilever Research Laboratory, and
rediscovered by several others in later years. In
1990 the algorithm was adapted to lattice poly-
gons by Madras and A. Orlitsky and L. A. Shepp
of AT&T Bell Laboratories. For polygons the al-
gorithm works like this: Pick two vertices at ran-
dom, thereby dividing the polygon into two seg-
ments; then pick one of the segments. Now apply
one of several possible transformations to the cho-
sen segment. (The nature of the transformations
will be explained shortly.) Finally check to see if
the resulting path is still self-avoiding. If it is, ac-
cept the move and repeat the entire procedure;
otherwise restore the original state and try again
by choosing two more random pivot points.

The transformations applied in the pivot algo-
rithm can include rotating the selected segment
through some multiple of 90 degrees, or reflect-
ing it in a mirror plane, or inverting it end-for-
end. But not all these transformations are possi-
ble in all circumstances. For example, rotations
work only when the two chosen vertices happen
to lie on the same x, y or z axis in the lattice.

The pivot algorithm preserves the length of a
polygon but changes its geometry. Of particular
importance, the transformations can change the
knot type, altering the way strands cross and
thread through one another. In 1988 Madras and

Alan D. Sokal of New York University proved
that the algorithm is ergodic. What this means is
that if the algorithm were kept running long
enough, it would visit all possible configurations
of an n-step polygon. It thus promises a fair sam-
pling of walks. It is also an efficient method. The
number of operations needed to generate each
new configuration is proportional to n log n.

How to Know a Knot
The fundamental problem of knot theory, both
on and off the lattice, is determining whether two
knots are equivalent—whether one can be de-
formed so that it looks just like the other. After a
century of study the problem remains unsolved:
There is no foolproof algorithm for classifying
knots. This is rather awkward for computer pro-
grams that need to recognize knot types.

In practice, the programs make do with classi-
fication methods that are less than totally reli-
able. The most common method is to calculate a
knot’s Alexander polynomial. (The Alexander in
question here is not the one who famously cut
the Gordian knot; he is the American mathemati-
cian J. W. Alexander, who devised the polynomi-
al in the 1920s.) The Alexander polynomial is cal-
culated from a two-dimensional projection of a
three-dimensional knot. Think of the projection as
the shadow cast by the knot, but annotated wher-
ever two strands cross to show which strand pass-
es over and which under. The annotated projec-
tion incorporates all the essential information
about the knot, but a given knot can have many
different projections. The Alexander polynomial
provides an invariant: All the projections yield the
same polynomial. For example, any projection of
the trefoil has the Alexander polynomial t – 1 + t–1,
and the polynomial of the unknot is simply 1.

It’s helpful that every projection of a knot has
the same polynomial, but what the knot theorist
would really like to hear is that every polynomi-
al corresponds to just one knot. Then calculating
the polynomial would unambiguously identify
the knot. Unfortunately, there are pairs of distinct
knots that share the same Alexander polynomial;
there are even knots with the same polynomial as
the unknot. Thus relying on the Alexander poly-
nomial to identify knots risks occasional error.
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Figure 3. Pivot algorithm chooses two vertices 

 

(yellow) and rotates or
reflects the intervening segment. Here the segment rotates 90 degrees.



Even if an exact algorithm for classifying all
knots is out of reach, perhaps one might at least be
able to distinguish knots from unknots? The
Alexander polynomial cannot do this with total re-
liability, but a polynomial introduced in 1985 by
Vaughan F. R. Jones of the University of California
at Berkeley may discriminate more finely. So far, no
one has found a nontrivial knot whose Jones poly-
nomial is the same as that of the unknot. But a proof
is lacking, and counterexamples are expected.

There is an algorithm guaranteed to determine
whether a given knot is the unknot, but it has
never been implemented in a computer program.
The algorithm was published in 1961 by Wolf-
gang Haken, now of the University of Illinois at
Urbana-Champaign (and the co-solver of another
famous problem in topology, the four-color-map
theorem). The paper describing the algorithm is
130 pages of German, which I do not read, and so
my knowledge of it has been limited to scraps
gleaned from secondary literature and lore.

Recently, Haken’s algorithm has been ana-
lyzed—and, incidentally, explicated—by Joel
Hass of the University of California at Davis,
Jeffrey C. Lagarias of AT&T Laboratories and
Pippenger. The essence of the algorithm is to ex-
amine the two-dimensional surface whose
boundary is the closed path being tested for
knottedness; if this surface is topologically equiv-
alent to a disk, then the path is the unknot. Hak-
en gave a procedure for determining whether or
not the surface is a disk. Hass, Lagarias and Pip-
penger find that the running time of a program
based on this procedure would be proportional
to 2cr2, where c is a constant and r is the number
of crossings in the knot diagram. They also de-
rived a modified algorithm with the running
time 2cr. Even with this improvement, however,
the algorithm is not one you would want in the
inner loop of a program.

Toto, I Have a Feeling We’re Not in Z3 Anymore
My preference for doing topology on a lattice
doubtless reflects my personal tastes and preju-
dices, as well as the limits of my imagination. But
perhaps the limits of computers are also a factor
here (if not their tastes and prejudices).

Consider how a computer program calculates
the Alexander polynomial of a knot. First it cre-
ates a two-dimensional projection, then it traces
through the projection, stopping at each crossing
point to write a term of the polynomial. When I
learned how the projection is made, I was ap-
palled. The first step is to rotate the lattice in R3

through angles with irrational cosines. There
goes the tidy world of integer coordinates!

There’s a good reason for the rotation. A knot
viewed along one of the lattice axes is incompre-
hensible, because points stack up on top of each
other. (Note that in the illustrations for this article,
knots are seen from oblique points of view.) The
irrational rotation ensures that all crossings in the
projection are “regular,” with no more than two

edges meeting at a point. But regularity has a
price: All the amenities of working with integer
coordinates are lost. On a lattice, every intersec-
tion of lines must lie at one of the nodes, and so
an algorithm for finding crossing points has only
to compare integers for numerical equality, an op-
eration that can generally be done with total ac-
curacy in a single machine instruction. Finding
intersections in R3 is more difficult, as it requires
solving simultaneous equations. Furthermore, the
solution found may be only an approximation to
the true point of intersection, especially if that
point has irrational coordinates. Janse van Rens-
burg and Whittington have reported that one of
their programs spends most of its time looking
for crossings in knot projections. 

A final irony is that the cosines in the rotation
matrix are not really irrational. For computation-
al convenience, the program employs a rational
approximation. So we never really leave the lat-
tice after all; we just see the world through a
much finer mesh.
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