COMPUTING SCIENCE

SPEAKING OF M ATHEMATICS

Brian Hayes

A reprint from

American Scientist

the magazine of Sigma Xi, the Scientific Research Society

Volume 84, Number 2
March-April, 1996
pages 110-113

This reprint is provided for personal and noncommercial use. For any other use, please send a
request to Permissions, American Scientist, P.O. Box 13975, Research Triangle Park, NC, 27709,
U.S.A,, or by electronic mail to perms@amsci.org. Entire contents © 1996 Brian Hayes.

SPEAKING OF M ATHEMATICS

Brian Hayes

omputers, and networks of computers,

have opened up a new channel of commu-

nication for people who are blind or visu-
ally impaired. Much information stored and trans-
mitted in electronic form—including vast streams
of text that flow over the Internet—can be made
accessible to the visually impaired reader through
a computer equipped with a nonvisual output de-
vice. This device commonly takes the form of a
text-to-speech transducer that reads aloud the con-
tent of a display screen. Compared with other me-
dia such as tape-recorded books and Braille publi-
cations, computerized sources of information offer
the important advantages of immediacy and in-
dependence: Visually disabled readers get the in-
formation as soon as anyone else does, and they
can get at it without assistance.

Text-to-speech systems work reasonably well
with plain, linear prose, like that found in most
newspaper articles and electronic-mail messages.
But what about the visually impaired student of
mathematics or computer science or engineering,
whose reading matter may well include more-chal-
lenging constructs? Take a look at this equation:

w2, T
. e dy= >
Now try to visualize it without seeing it. A text-
to-speech system is likely to stumble badly when
trying to read such an expression. For one thing,
the usual left-to-right convention of English fails
here; in some places within the equation the nat-
ural sequence is from top to bottom, and else-
where from bottom to top. Furthermore, reading
the symbols in any fixed sequence yields a pho-
netic string so long that you've forgotten the be-
ginning by the time you reach the end.

The challenges of teaching a computer to read
mathematics aloud are taken up in a thoughtful
series of papers by T. V. Raman, and in a software
system called ASTER, which Raman developed
while he was a doctoral candidate at Cornell Uni-
versity. AGTER performs audio formatting and
rendering of mathematical notation, and it allows
the listener to browse actively through complex

lim

X0

Brian Hayes is a former editor of American Scientist.
Address: 211 Dacian Avenue, Durham, NC 27701. Internet:
bhayes@amsci.org.

110 American Scientist, Volume 84

mathematical expressions and other forms of
structured text. Systems like ASTER are obviously
important to the specific community that needs
them most, but they have a wider significance as
well. ASIER illustrates some subtle principles
about how best to encode and present informa-
tion, principles of value to everyone.

A Two-Dimensional Language
Mathematics is an unusual language. In ordinary
languages speech is primary, and the written form
is a later addition, devised as a way of recording
what is said. Hence there is a reasonably direct,
one-to-one mapping between written and spoken
language. Of particular importance, both forms
are one-dimensional, at least in their surface struc-
ture: One word follows another in a definite se-
quence. When reading aloud from a written text,
you don’t even need to know the meaning of the
words; you need only know the rules of pronun-
ciation and prosody. That’s what makes text-to-
speech systems possible; if a computer had to un-
derstand a sentence before it could read it aloud,
the listener would have a long wait.

Mathematical notation is different. Mathemat-
ics is first of all a written language, with a few
speech conventions imposed on it after the fact.
When mathematicians talk shop, they do so at
the blackboard; in a more formal setting, a math-
ematician giving a talk comes equipped with
transparencies to project. Perhaps the clearest
sign that mathematical notation evolved initially
as a system of writing rather than speaking is its
reliance on the two dimensions of the written
page. Superscripts and subscripts, to cite a com-
monplace example, derive their meaning from
their position above or below the baseline, a con-
cept that has no immedjiate oral counterpart. And
it would be hard to imagine anything more
patently two-dimensional than the notation for a
matrix. If ordinary language is linear, then math-
ematical writing is planar.

The two-dimensional nature of mathematical
notation leads to awkwardness in at least one
other context besides spoken communication.
The context is that of writing equations on a
computer. A computer text file is strictly one-
dimensional; it is a sequence of characters, typi-
cally represented as eight-bit bytes, with no

higher-level structure. In the computer’s memo-
ry you cannot place one symbol “above” anoth-
er, nor can you arrange to shift one byte a little
below the baseline. It’s an ironic situation: The
most mathematical of machines cannot accom-
modate the language of mathematics.

Among the various remedies for this problem,
the most thoroughgoing and also the most widely
adopted is the TEX formatting language, devel-
oped by Donald E. Knuth of Stanford University.
TEX was extended by Leslie Lamport of the Digital
Equipment Corporation to create a somewhat
higher-level language called IATEX. (The names
are pronounced tech and lah-tech. As for their odd
typographical treatment, there is a rationale for it,
but the reader might be forgiven for suspecting
that the original purpose was to show off what
the systems are capable of doing.)

TEX linearizes the two-dimensional layout of
an equation. Here is the IATEX encoding of the
equation given on the opposite page:

$$\lim_{x \to \infty}\int_0"x eN-y 2}]\dy =
\frac{\sqrt{\pi}}{2}$$

Terms that begin with a backslash are “control se-
quences,” most of which are easy to figure out.
For instance, the sequence \infty generates the
sign oo, \int is the integral sign [, and \frac makes
a fraction out of the two groups of symbols that
follow it. The underscore and caret (_ and /) des-
ignate subscripts and superscripts respectively. Of
course no one would want to read mathematics in
this form, but raw TEX is not meant for human
consumption. It is processed by a computer pro-
gram that renders it in a more palatable form on a
display screen or on the printed page.

AGIER is also a computer program that accepts
TEX notation as input and produces a rendering
as output, but the rendering is audible rather
than visual. The program does not simply read
out the TEX code literally; a rendering that began
“dollar dollar backslash lim underscore left-
bracket x ...” would be incomprehensible. What
is needed is an approximation to the oral render-
ing that would be given by a mathematically
knowledgeable human reader, perhaps some-
thing like: “The limit, as x goes to infinity, of the
integral, from y equals zero to x, of e to the minus
y squared, dy, equals the square root of pi, over
2.” (I have had a hard time punctuating this sen-
tence, because of the unusual pattern of pauses
that readers employ to indicate the grouping of
mathematical expressions. Perhaps this difficulty
is another sign of the tenuous connection be-
tween written and spoken mathematics.)

The Making of Tools
The name ASTER stands for Audio System for
Technical Readings, but it is no coincidence that
Raman has a guide dog named Aster, “a big,
friendly black Labrador.” The typographical
treatment of the term ASIER is obviously mod-
eled on that of TEX and IATEX, but how is it ren-

dered audibly? How does AGIER say ASIER? By
speaking the word with a dog’s bark in the back-
ground. Raman adds a disclaimer: “The bark is
that of a generic dog. Aster is too well trained to
bark, and could not therefore be recorded.”

There is a demonstration of ASTER on the
World Wide Web (see the bibliography below for
the URL), where mathematical expressions are
rendered graphically as well as in TEX and in
sound files that reproduce AGIER’s output. The
Web site also supplies copies of Raman’s papers
and his dissertation. And the dissertation is also
distributed by Recordings for the Blind in a ver-
sion read by AGTER itself—the first computer-
spoken book to be made available in this way.

The dissertation includes a biographical
sketch. “T. V. Raman was born and raised in
Pune, India. He was partially sighted (sufficient
to be able to read and write) until he was 14.
Thereafter, he learned with the help of his broth-
er, who spent a great deal of time as his first read-
er/tutor.... Raman received his B.A. in Mathe-
matics at Nowrosjee Wadia College in Pune and
his Masters in Math and Computer Science at the
Indian Institute of Technology, Bombay. For his
final-year project, he developed CONGRATS, a pro-
gram that allowed the user to visualize curves
by listening to them....”

Raman entered the doctoral program in ap-
plied mathematics at Cornell in 1989 and re-
ceived his Ph.D. in 1994. His dissertation, super-
vised by David Gries, won the Distinguished
Doctoral Dissertation Award of the Association
for Computing Machinery that year. After tak-
ing his degree, he held a research position at the
Digital Equipment Corporation and is now with
Adobe Systems.

Raman’s primary motive for developing
AGTER was to facilitate his own reading, particu-
larly for his studies at Cornell. Various textbooks
and course notes were available as TEX or IATEX
documents, and Raman needed a tool to read
them with. He decided to build his own, starting
with a simpler program called TEXTALK, then go-
ing on to AGTER. It is interesting to note that TEX
also began as a project meant purely to satisfy
the author’s own needs. Knuth was frustrated
with the cumbersome process of typesetting for
his magnum opus, the multivolume Art of Com-
puter Programming, and so he took a decade off to
do something about it.

Parsing Mathematics

AGTER has three main components. A recognizer
parses IATEX notation and creates an internal rep-
resentation that is easier for the program to ma-
nipulate. An audio formatting language, called
AFL, renders the parsed text using both speech
and nonspeech sounds. The third component is a
facility for audio browsing, or actively travers-
ing the structure of a document.

The recognizer extracts structure and ideally
even meaning from the TEX-encoded text. When

1996 March-April

111

given a mathematical expression, it parses the en-
tire input before the audio rendering begins.
Looking ahead in the text is something that even
simple speech-synthesis systems may have to
do—for example, a question mark at the end of a
sentence can alter the intonation of the begin-
ning—but those systems never rearrange the
words spoken. AGIER must carry out some deep-
er transformations.

A simple example is the audio formatting of
the expression log;, x, which a listener might pre-
fer to hear spoken as “the logarithm of x to the
base 10.” In creating this rendering, AGIER can-
not simply process the symbols in their original
sequence. Integrals present a similar challenge,
because the listener needs to know the variable of
integration as soon as possible. Thus

J’O e dx

might be read as “the integral with respect to x,
from zero to infinity, of e to the minus x, dx.” The
IATEX encoding is $$\int_0M\infty {e-x}}\dx$$,
which requires ASTER to search out the \dx at
the end of the expression before it can render the
\int at the beginning. To generate renderings for
texts like these, AGTER must break the expression
down into its component pieces and then re-
assemble them in a different order.

Mathematical expressions have a treelike
structure. The equation y = x +2 can be under-
stood as a tree that has the = operator as its root,
with two branches. One of the branches consists
of the symbol y, whereas the other branch is a
subtree with the operator + as its root and with
further branches x and 2. The tree can be rep-
resented in prefix notation as (= y (+ x 2)).
AGIER employs a similar notation internally.

Parsing is a straightforward matter for mathe-
matical expressions written in a programming lan-
guage such as Fortran or Pascal. But real mathe-
matical writing, including its TEX representation,
is highly ambiguous. An expression such as
flx +y) might mean “the product of fand x +y,” or
it might mean “the function f applied to x +y.”
Similarly, cos x sin y could be parsed as either
(% (cos x) (sin y)) or as (cos (x x (sin y))). Super-
scripts are another construct that can have multi-
ple meanings: x~1 means 1/x, but sin-! refers to the
inverse sine function; AT is probably the transpose
of a matrix and D? may be a second derivative.
AGIER’s recognizer is able to resolve many of these
ambiguities; those that remain are left until the
rendering phase, when the user can specify how a
particular notation is to be interpreted.

Speaking Mathematics
When the recognizer has done its work, the sec-
ond component of ASTER takes over to render the
parsed expression in sound. It does so by applying
rules written in AFL, the audio formatting lan-
guage. The rules determine not only what words
are spoken but also how they are spoken, control-
ling the pitch and speed of the voice and a variety

112 American Scientist, Volume 84

of other qualities such as breathiness and smooth-
ness. The rules also invoke nonspeech audio cues.

AGTER’s standard rule for rendering fractions
reads a simple expression such as a/b as “a over
b,” but a more complicated instance such as
(x+y)/(x—y) is given as “the fraction with nu-
merator x + i and denominator x—y.” A few spe-
cial cases are recognized, so that 1/2 can be ren-
dered as “one-half” rather than “one over two.”
All of the AFL rules are subject to modification.

The rendering of superscripts and subscripts is
an area where changes in voice quality provide
an intuitive vocal analogue of the visual render-
ing. Superscripts are read at a higher pitch and
subscripts at a lower pitch. Such voice cues can
help to resolve ambiguities in an audio render-
ing. For instance, x"+ 1 is readily distinguished
from x"+1, even without an explicit verbal mark-
er of where the exponent ends.

An even more direct mapping from visual
space to auditory space helps the listener to dis-
cern the structure of tables and matrices. With
stereophonic output, ASTER can vary the relative
loudness of the left and right sound channels
while reading the rows of a matrix, so that the
voice seems to be moving through the structure.

Nonspeech sounds provide a concise and unob-
trusive way of conveying certain other textual fea-
tures. In a bulleted list, a brief tone can announce
each new item, rather than repeating the word
“bullet.” Sounds played continuously in the back-
ground while speech continues can serve to em-
phasize or highlight a passage of text, providing an
audio equivalent of italic type and boldface.

The aim of these various devices is to create a
true audio notation for mathematics. In written
mathematics, succinct notation allows the overall
structure of an expression to be taken in at a glance,
whereas the same concepts expressed in words
would have to be laboriously parsed. ASIER seeks
in a similar way to shift some of the work of listen-
ing from the cognitive to the perceptual domain.

Active Listening

Audio formatting makes much information acces-
sible, but not necessarily digestible. Raman writes:
“The passive printed document is processed by an
active reader, who can view it in many different
ways—read only section titles, skip a piece of math-
ematics, temporarily skip to a different page to read
a referenced theorem, reread an interesting passage,
and so on.... When it comes to audio, on the other
hand, the document is the active player and the hu-
man is the passive one. The speaker (perhaps on an
audio cassette) actively reads in a relentlessly linear
fashion, from beginning to end, and the listener
simply listens, with little control over the process.”

AQTER gives a measure of control back to the
listener. The key to this capability is the treelike
internal representation of the text, which describes
both the details of mathematical expressions and
the larger-scale architecture of the entire docu-
ment, with its headings and subheadings and oth-

er structural markers. Keyboard commands allow
for quick navigation through this tree, with much
greater flexibility than the fast-forward and
rewind controls of a tape player. You can skip
from one subhead to the next within an article, or
from one term to the next within an equation, then
delve into any selected structure in greater detail.

Writing as Programming

AGTER is based on what the computing profes-
sions would recognize as a “client-server” model
of the publication process. The author or publish-
er, taking the role of server, encodes the content of
a document; the reader, as client, decides how the
content will be presented. For this model to work
well, the server must choose a style of encoding
that captures the underlying meaning of a docu-
ment, not just its graphic layout.

A markup language like TEX can be used in ei-
ther way. It has low-level primitives that simply
define the appearance of objects. The superscript
operator is one of these: It indicates that a charac-
ter is to be raised above the baseline, without giv-
ing a clue to whether the character is an exponent,
a limit, or something else. But other commands
specify structure more than layout; they include
\title and \footnote as well as \frac and \sqrt.

Unfortunately, authors do not always distin-
guish between content and layout. A particularly
troublesome practice is the overloading of opera-
tors to give them multiple meanings. On the
printed page, notations for a fraction, a Legendre
symbol and a logical inference might all look
alike, but if they are all built with the \frac control
sequence, ASTER and other rendering programs
will be unable to distinguish them. The overload-
ing is needless, because TEX makes it easy to de-
fine a new control sequence for each concept.

Authors and publishers would be well ad-
vised to avoid overloading and ambiguity—and
not just for the convenience of certain readers
with special needs. Authors cannot know in ad-
vance how their works will eventually be put to
use, and there may be occasion later to give
thanks for extra care taken now. Witness the cur-
rent scramble to convert documents in dozens of
haphazard formats to HTML, the markup lan-

guage for the World Wide Web. The job would be
easier if authors had not written with the thought
that the printed page is the final product.

Knuth has argued that the writing of computer
programs is first of all a kind of writing, and
ought to be judged by literary standards. Today
the opposite assertion also holds: Writing is a
kind of computer programming, in which you
prepare not just a printed document but the
source code that will generate many renderings
of that document. And thus the writer may need
to learn some lessons from the software engineer.

Even if AGIER could fluently read all IATEX doc-
uments, most of the world's literature would still
remain out of reach. A few documents are encod-
ed in formats that lend themselves even better
than TEX does to flexible renderings, such as
SGML, the Standard Generalized Markup Lan-
guage. But most documents exist only on paper or
in electronic formats that preserve only layout in-
formation. Among these formats the most impor-
tant are Postscript and PDF (Portable Document
Format), both of which were invented by Adobe
Systems. Adobe has recently announced a plan to
address this issue. They have someone on the staff
who is certainly well qualified to do so.

Bibliography

Note: The publications of T. V. Raman are available at the World

Wide Web site <http://www.research.digital.com/CRL/

personal/raman/ramanhtml>. The demonstration of ASTER

is at the URL <http://www.cs.cornell.edu/Info/People/
raman/aster/aster-toplevel.html>.

Knuth, Donald E. 1984. The TgXbook. Reading, Mass.:
Addison-Wesley.

Knuth, Donald E. 1992. Literate Programming. Stanford,
Calif.: Center for the Study of Language and Information.

Lamport, Leslie. 1986. IATEX: A Document Preparation Sys-
tem. Reading, Mass.: Addison-Wesley.

McQuarrie, Liz. 1995. “The Accessibility of PDF and Adobe
Acrobat Viewers for the Visually Disabled.” Adobe Sys-
tems. <http://www.adobe.com/ Acrobat/Access.html>

Raman, T. V. 1994. Audio System for Technical Readings. Ph.D.
Dissertation. Cornell University. Audio edition distrib-
uted by Recordings for the Blind, order number FB190.

Raman, T. V,, and David Gries. 1994. “Documents Mean
More Than Just Paper!” In Proceedings of the Second Inter-
national Workshop on the Principles of Document Processing.

Raman, T. V. 1995. “AgIER—Towards Modality-Indepen-
dent Electronic Documents.”

1996 March-April

113

