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Computing Science

Space-time on a Seashell

Brian Hayes

. e prize the pearl, but in many ways the
/ more remarkable product of molluscan

manufacturing is the shell. Seashells
teach a geometry lesson on the variety of shapes
that can be generated from a single basic form: the
logarithmic spiral. Many shells also display in
triguing decorative patterns on their surface. The
stripes, wavy lines, chevrons, dots, triangles and
other motifs are of particular interest to students of
developmental biology and also to mathemati
cians and computer scientists. Although some of
the patterns are quite elaborate, they are now un
derstood in enough detail to reproduce their es
sential elements in computer simulations.

The modeling of shell forms and patterns is
the subject of a new book, The Algorithmic Beauty
of Sea Shells (1), by Hans Meinhardt of the Max-
Planck-Institut fur Entwicklungsbiologie in
Tubingen. This is the second volume in a series
begun five years ago with The Algorithmic Beauty
of Plants (2), by Przemyslaw Prusinkiewicz of the
University of Regina in Saskatchewan and the late
Aristid Lindenmayer. Prusinkiewicz is the series
editor, and he also contributes a chapter to the
seashell book (in collaboration with Deborah R.
Fowler, now of Hi Tech Toons).

In the earlier volume on plants, the algorithms
chosen to describe the ramified structures of roots
and stems and leaves were mostly based on re
cursive grammars, which model growth through
the repeated application of transformational rules.
Meinhardt's treatise on seashells draws on a quite
different suite of mathematical tools, namely dif
ferential equations describing the creation, decay
and diffusion of chemical factors that can either
enhance or inhibit pigmentation. Meinhardt's
mathematics is continuous where Prusinkiewicz's
was discrete; Meinhardt's models are closely tied
to details of biochemistry and physiology where
Prusinkiewicz's were more abstract. And yet the
two books share an important philosophical prin
ciple: They suggest that the way to understand a
pattern in nature is to re-create it in a simulation.
Meinhardt's book comes with software capable
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of reproducing all the simulations he discusses
(and many others as well).

Growth at the Margin
Here is the most important thing to know about
the pattern on a mollusk shell: It is a two-dimen
sional record of a one-dimensional process. The
shell grows along one edge only, where material is
laid down by a row of cells at the margin of the an
imal's mantle. Pigment deposited at the growing
edge forms patterns that (with few exceptions) are
never altered thereafter. If you could unroll a shell
and flatten it out into a rectangle, the pattern
would form a space-time diagram, with position in
space measured along one axis (say from left to
right) and sequence in time recorded along the oth
er axis (from top to bottom). A physicist would
look at the flattened shell and call it a Feynman di
agram; lines within the pattern are "world lines,"
tracing the entire history of motions through space.

Given this generating mechanism, some shell pat
terns are easy to understand. A series of vertical
stripes—that is, stripes running perpendicular to the
growing edge—implies a static distribution of pig
ment-secreting cells in the mantle margin. Where a
cell or a group of cells is permanently turned on,
there is a dark stripe of pigment, and where the cells
are dormant, there is an unpigmented space. The
complementary pattern—horizontal stripes, parallel
to the growing edge—results from a temporal rather
than a spatial oscillation. All the secretory cells
switch off and on in synchrony, so that light and
dark bands are left behind on the surface of the shell
as the growing edge moves on.

An oblique stripe records the passage of a trav
eling wave of excitation in the row of pigment
cells. Each cell is stimulated to a brief pulse of pig
ment secretion; then, as the cell's own activity
fades, it passes the excitation along to a neighbor
ing cell. The slope of the resulting line indicates the
velocity of the traveling wave: The steeper the
slope (that is, the more nearly vertical), the slower
the wave. Shells with a complex pattern of oblique
lines can look very much like the physicist's idea of
a space-time diagram. In some cases the diagonal
lines are created in pairs, like electrons and
positrons, with one line propagating to the left and
the other to the right; furthermore, lines moving
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in opposite directions annihilate each other when
they meet, just as matter and antimatter do.

The study of pattern formation in living or
ganisms has long been one of the more mathe
matically sophisticated areas of biology. D'Arcy
Wentworth Thompson set the standard in his
thousand-page survey On Growth and Form (3),
which included an extensive discussion of
seashells. Alan M. Turing is known as a pioneer of
computer science, but in 1952 he published a pa
per on biological morphogenesis (4) that is still
taken seriously today. In 1969 C H. Waddington
(a biologist) and Russell J. Cowe (a computer sci
entist) collaborated on a computer simulation of
certain mollusk-shell patterns (5). A few years lat
er, computer studies of one-dimensional cellular
automata (6, 7) yielded patterns that were strik
ingly reminiscent of shell pigmentation.

Hans Meinhardt reports that his interest in shell
patterns was aroused during dinner at an Italian
restaurant, when he noticed a shell bearing W-
shaped red lines. "To my surprise," he writes, "it
seemed that the mathematical models we had de
veloped to describe elementary steps in the devel
opment of higher organisms were also able to ac
count for the red lines on my shell." Meinhardt's
earlier work (done in collaboration with Alfred
Gierer) had focused on fundamental events in bi
ological development and differentiation, such as
the emergence of "polarity," or spatial orientation,
in the embryo. The primary tools for understand

ing these events were differential equations de
scribing gradients and fluctuations in chemical
concentration. Now he found that the same equa
tions could generate shell patterns as well.

Activators and Inhibitors
The root idea from which Meinhardt's models
spring is the interplay of activators and inhibitors:
substances produced in the pigment cells and also
acting on those same cells. Specifically, he considers
a hypothetical activator molecule that promotes not
only pigment production but also its own synthe
sis—that is, the more activator is present in a cell, the
more the cell makes. This positive feedback loop is
kept in check by an inhibitor, whose synthesis also
depends on the activator concentration. The rates
of synthesis, decay and diffusion of the activator
and the inhibitor determine the pattern generated as
the shell grows. Small changes in these rates can
cause major reorganizations of the pattern.

Suppose the inhibitor diffuses much more rapid
ly along the mantle margin than the activator does.
Under these conditions, if a small group of cells has
a slightly higher activator concentration than its
neighbors, the disparity will increase still further as
the activator enhances its own production. The in
hibitor will also be made copiously in these cells,
but it will diffuse away and spread its effect over a
wider area; as a result the neighboring cells, where
activator levels were already low, will be further
suppressed. In this way random spatial variations

Figure 1. "Vertical" stripes, perpendicular to the growing edge of a mollusk shell, result from a stable spatial pattern
of alternating active and dormant pigment-secreting cells. In the simulation (right) the pattern emerges
spontaneously. The shell (left) is a specimen of Lyra taiwanica. (All photographs courtesy of Hans Meinhardt.)
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Figure 2. "Horizontal" stripes, parallel to the growing edge, reflect a temporal oscillation in pigment-cell activity,
in which all the cells turn on and off almost simultaneously. The shell is Amoria dampieria.
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tivity is extinguished. The record of these events on
the surface of the shell is a A-shaped pair of lines
radiating from the site of the first excitation.

When two of these traveling waves collide, there
is a further interesting consequence. A wave can
survive only by continually invading fresh territo
ry, or in other words by moving into cells that have
not been poisoned by an accumulation of inhibitor.
But an eastbound wave has nowhere to go when it
meets a westbound wave. The cells in the wake of
each wave have been left in the refractory state, so
that the wave cannot reverse direction; nor can it
continue ahead because the cells there have been
poisoned by the oncoming wave. Hence both
waves are annihilated in a V-shaped vertex.

in activator concentration and pigment production
are amplified and then become "frozen in/' re
maining stable over long intervals, hi other words,
the mollusk creates a shell with vertical stripes.

The temporal oscillations that give rise to hori
zontal stripes can also be explained by a model of
this kind. If inliibitor production lags behind acti
vator production, the delay allows the activator to
overshoot its equilibrium level. When the inhibitor
eventually catches up, it also overshoots and thus
deeply suppresses activator output. Now the in
liibitor level also falls, and so the activator begins to
recover. The cycle repeats indefinitely with a peri
od determined by the rates of synthesis and decay.

One way of forming oblique lines is with an ac
tivator that diffuses faster than the inhibitor. When
a single cell becomes spontaneously active, the dif- Imperfections and Irregularities
fusion of the activator molecule soon turns on the Concocting models to account for the most con-
two adjacent cells (to the left and the right). Mean- spicuous features of these patterns is not really dif-
while, the buildup of inliibitor in the central cell ficult. The simplest cellular automata will do nice-
shuts down pigment production there and leaves ly for creating stripes at any rational slope between
the cell in a refractory state where it cannot be stim- vertical and horizontal. Such models dispense with
ulated again for a time. The neighboring cells even- all the messy chemistry of activators and in-
tually meet the same fate: They pass on the wave hibitors. They require only abstract computational
of activation to the next cells in line as their own ac- "cells" that make transitions from one discrete state

to another according to straightforward rules.
Meinhardt's aim, however, goes beyond mod

eling the rudiments of a few selected shell pat
terns. The goal is to devise a coherent set of bio
logically plausible models that can account for all

r^B shell patterns—or at least as many as possible.
Moreover, the models should reproduce not just
the gross outlines of the patterns but also the mi
nor imperfections and irregularities, which can be
very revealing of underlying mechanisms. (Isn't it
ironic that what distinguishes the artificial from
the natural is too much perfection?)

The shell of the gastropod Amoria tumeri has hor-
i^aJWi izontal stripes that tend to remain straight and par-

mmm^mimMmmmm allel even though the diameter of the sheU varies
mmWmW&MmWmimWt alon§the shells lerx&h-m the fatter, middle, part of

8riwin̂ )wi-roiiiii the shell/ there mi§ht be ten stripes inscrted during
iwiiiiriirtff̂ iiwiin îriiiiiiftiij a cf fT Penod, °J -rowth'but ̂ owayd thc taPereda**iiii1ĵ «/ifcKx**iI- -■•■-,-i''-y" end only nine stripes are created in the same mter-

val. Somewhere between these two regimes there
must be a discontinuity, like a dislocation in a crys
tal lattice. Inspection of the shell reveals that the
disturbance caused by the mismatched stripes is
confined to a small region both spatially and tem
porally. Meinhardt writes: "Attempts to simulate
this phenomenon turned out to be more difficult
than expected.... If a diffusing inliibitor is involved

iMiytil^iliiiyiliStiiijIi m tne synchronization, line termination can occur
lilr^CTfn^tMM due to lateral inhibition- • • • However, the resulting

^j^^v^^j^j^vij^^ pattern differs substantially from the natural pat-
'wj^m-mmw.k^.m:™.,-,.™,- tern. It requires several oscillations in the zone of

„_ , . , . . . . . . . , . , „ „ . , , , . . con f l i c t be fore synchron iza t ion is re -es tab l i shed. "Figure 3. Dislocation in the striped pattern of Amoria tnrneri (top) is .- . , ,„ / , ,, , ,. , ., . , . .
a challenge to the simulation scheme. A single oscillator whose Meillhardf S tentative solution to t US puzzle IS to
frequency varies across the width of the shell (left), produces several Postulate another oscillating chemical system, in ad-
discontinuous stripes, whereas the natural pattern is quickly <&&>* to the pigment-secreting one. Hie substances
resynchronized. Adding a central hormonelike oscillator (shown forming the second oscillator are distributed global-
here in green, although its actual products are presumed to be ly throughout the mollusk's tissues in a "hormone-
invisible) yields a more realistic output (right). like" way, meaning that they can transmit signals
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Figure 4. Oblique stripes on Oliva porphyria (left) record the passage of traveling waves in the line of pigment cells.
The stripes are created and annihilated in pairs, like particles of matter and antimatter. To account for the frequent
synchronization of creation events, the model (right) includes a global hormone-like signal (green). A larger sample
of the output of this simulation, without the green hormone, is shown on the cover of this issue.

Figure 5. Triangular pattern on Cymbiola innexa Reeve (left) also suggests the presence of some synchronizing
mechanism, since many secreting cells must shut off at once to form the upper edge of a white triangle. In the
simulation (right) another global signal is introduced for this purpose.

faster than any substance moving by simple diffu
sion. The second oscillator can therefore serve as a
master clock, keeping distant cells synchronized.
The frequencies of the two oscillators are close
enough that the pigmentation system becomes en
trained by the hormonal oscillator as long as the
phase difference is not too great; then, when an ad
justment is needed, the pigment-secreting oscillator
"skips a beat" and quickly resynchronizes. Simula
tions based on this model more closely match the
pattern observed on real Amoria turner/ shells.

Parsimony and Elegance
Introducing an entire system of chemical oscilla
tors just to explain one anomalous detail on the
shells of one mollusk species offends against the
principle of parsimony. The hypothesis of a hor
monelike pacemaker begins to seem more plausi
ble, however, when Meinhardt finds evidence of
similar mechanisms at work elsewhere. A case in
point is the shell of Oliva porphyria, one of the most
treasured finds of tropical shell collectors and also
one of the favorite subjects of mathematical shell
modelers. The shell of O. porphyria is distinguished
by oblique lines that have frequent branch points,
which implies that in the row of pigment-secreting
cells a wave of excitation moving to the right can

suddenly spawn a backward wave moving to the
left (or vice versa). What is more, the branch
points are often correlated over long distances:
When one line branches, there is a good chance
that others will also branch at about the same
time. Meinhardt's global control element could ex
plain this long-range synchronization.

The central clock is seen yet again in shells dec
orated with triangle patterns, where a pigmented
region begins at a single point and grows steadily
wider until all of the pigment-producing cells sud
denly shut off at the same time. "The sharply
straight lower edge of triangles indicates that ter
mination occurs strictly simultaneously. This ex
cludes the possibility of a signal being initiated at
a particular position and spreading by diffusion."

The appeal to a master timekeeper, and the as
sertion that such a central authority is needed for
long-range synchronization, brings up a curious
cultural issue1—a question of differing intellectual
habits and biases among the tribes of science. For
the developmental biologist, it seems, proposing a
new chemical oscillator is a natural and perhaps
obvious way of solving a problem. A mathemati
cian or computer scientist working on the same
puzzle—how to coordinate the activity of many
distant cells—might well be tempted by a different
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kind of explanation. In particular, someone im
mersed in the tropes and idioms of computer sci
ence would not be so quick to dismiss the possi
bility of synchronizing a row of cells with a signal
that spreads by diffusion.

One of the standard exercises of computer sci
ence is called the firing-squad problem, which asks
how a group of soldiers without a leader can
arrange to fire their weapons simultaneously. A
number of ingenious solutions have been worked
out, involving multiple signals passed up and
down the line and forming intricate fanlike pat
terns as they reflect and propagate. The problem
was originally intended to illuminate some of the
difficulties of synchronizing the multiple proces
sors of a distributed computing system, but the so
lutions can clearly be applied to the synchroniza
tion of seashell patterns as well. Indeed, G. T.
Herman and W. H. Liu propose a firing-squad
mechanism for shells with triangle patterns (6).

Which scheme is to be preferred—the extra bio
chemistry of a master oscillator or the computa
tional complexity of a firing-squad algorithm? By
mathematical criteria, the firing-squad solution
might well be judged the more elegant, if only be
cause it accomplishes the task with fewer re
sources. But the central oscillator has biological
plausibility and precedent on its side. "Inele
gance," Meinhardt writes, "is an aesthetic problem

only for theorists." Nature often seems blandly
content with the ugly answer that works.

Many more shell patterns are studied and simu
lated in these pages, including some where dual
oscillators are unquestionably present, since they
both leave visible trails. But I must leave off de
scribing shells in order to leave room for illustrat
ing a few of them.
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