
Computing Science

Waiting for 01-01-00

Brian Hayes

/hen I was a boy growing up in Tole
do, Ohio, my best friend was Jimmy
Liccata, whose father owned Tony's

Gulf Station a few blocks away. One day Jimmy
and I were snooping in the Liccata garage,
doubtless up to no good, and discovered a car
ton of blank receipt pads from the gas station—
the kind with alternating white and yellow

pages, and a purple sheet of carbon paper to
slip between them. The tablets were an irre
sistible attraction to a couple of first graders

just beginning their initiation into the mysteries
of the written word. I was enchanted by the

magic of seeing all my scribbles reproduced in
duplicate. But what I remember most vividly
about those long-lost gas-station forms (im

printed with an orange-and-blue emblem that
has itself disappeared from the American land

scape) is the space for filling in the date. It read:
" , 195 . " See ing t ha t i nsc r i p t i on

gave me my first hint of the alarming velocity of
time. All my life it had been the 1950s, and up to
that moment the decade had seemed absolutely
endless. Now I realized that the Fifties would

eventually pass away, and all that stationery
would be made obsolete. The close of the
decade still seemed unimaginably far off—these
events took place in the summer of 1956—but
even if I could not quite see myself living in the
new world of 196 , I knew it was coming, in

exorably. Perhaps I even foresaw that stationery
i m p r i n t e d " , 1 9 " w o u l d s o m e
day expire. What a thought! A new millennium.

The calendrical milestone that seemed so

astronomically remote to a boy in 1956 is now
bearing down on us at a sure and steady speed
of 3,600 seconds per hour. We have only five

years left before a certain Friday night brings to
an end, all at once, a month, a year, a decade, a

century and a millennium. On the following
Saturday morning it is not just preprinted sta
tionery that will become obsolete. Among all
the other transformations to be expected as the
new age dawns, it seems likely that many com-

Brian Hayes is a former editor of American Scientist.
Address: 111 Dncian Avenue, Durham, NC 27701. Internet:

bhayes©mercur\j.inlerpalh.nei.

puter programs will begin acting a bit strangely
that day. Here are some hypothetical examples:

Shortly after midnight on January 1, 2000, a
program meant to make automatic back-up
copies of computer files starts replacing docu
ments dated 01-01-00 with versions from 12-31-
99 or earlier. Similarly, a programmer's tool that

automatically links together the latest compo
nents of software under development begins in

cluding outdated modules.
Because many computers interpret 01-01-00 as

the first day of 1900 rather than 2000, they also
take it to be a Monday rather than a Saturday. As a
result, traffic signals and school bells operate on
their weekday schedule, and the display of ar
rivals and departures at the railroad station shows
the Monday-morning commuter trains. Some
where in the nation a bank is robbed because a
time lock allows a vault to open on Saturday.

At the airport, all flights are canceled. A com

puter in the maintenance department has
grounded the aircraft because they are 99 years
overdue for airframe and engine overhauls. Fur

thermore, some pilots appear to have been on
duty for 875,000 hours, in violation of union and
FAA work rules.

At the local dairy, the oldest milk on hand is

supposed to be shipped first, but in the early
weeks of the new millennium milk from the

year 00 is given precedence. Indeed, any milk
remaining from December 1999 will not be
scheduled for shipment until the end of 2099.
Meanwhile at the bakery across town a comput
er calculates that bread dated 01-01-00 must be
a century old, and sends it to the landfill.

The next time you open up your computer
ized laboratory notebook, the software informs

you haughtily that all entries must have mono-
tonically increasing time stamps. Then it accuses
you of tampering with the system clock.

When you get your first bank statement of
the new year, you find transactions listed in a
curious nonchronological sequence, with all
those from 2000 preceding those from 1999.
Moreover, your $1,000 deposit made in late De
cember has earned almost 100 years of interest,
and so you have a balance of $400,000. Don't be
too quick to spend it, however. The next day

12 American Scientist, Volume 83

your Visa bill arrives, and you owe $136 mil
lion. And when the phone bill comes in, that

Happy New Year call you placed just before
midnight has been charged as 53 million min
utes. Then the library sends you a notice of
some serbush/ overdue books.

The Millennium Cruise
Events like these are awaited with anxiety—and

perhaps also a hint of mischievous glee, as long
as no one gets hurt—by the small band of com

puter professionals who track the hazards of in
formation technology. The main gathering place
for this band is the Risks Forum CD, an Internet

mailing list and newsgroup moderated by Peter
G. Neumann of SRI International. The foibles of

computer clocks and calendars are a favorite top
ic in the forum. Most of the imaginary calamities
mentioned above are based on speculations pub
lished in Risks over the past few years (2). In
deed, the perils of 01-01-00 have been so often

anticipated in the forum that one contributor has
proposed a turn-of-the-century cruise (3) for
those who want to be out of harm's way when
the calendar "rolls over." While the rest of us are
stuck ashore, arguing over whether the 21st cen

tury begins in 2000 or 2001, the canny Risks
readers will slip away aboard a craft with non
electronic controls and no computer-aided navi

gational equipment.
Most of the problems cited above arise from

representing calendar dates with just six deci
mal digits, in a format that allows only two dig
its for the year. A program that adopts this rep
resentation is necessarily limited to a 100-year

span. Most such programs interpret the years
00 through 99 as 1900 through 1999. Thus when
the calendar rolls over from 99 to 00, the date
does not advance into the next century but re
turns to 1900 again. Computers that rely on a
calendar of this kind are destined to repeat the
20th century over and over; they live in a cyclic
universe, where the future wraps around to be
come the past again.

The concepts of "before" and "after" are cir
cular in such a world. A chronological sorting of
bank transactions or batches of milk is sure to

yield some strange results near the turn of the
century. Similarly, the Office of Vital Statistics
should not be surprised a few years from now
to register an entire generation of newborn chil
dren who are older than their parents and

grandparents. All these oddities are simple con
sequences of the arithmetic of the cyclic calen
dar, in which 99 + 1 = 00, but 00 < 99.

When the arithmetic is more complex than
numeric comparison, the exact effect of calendar
rollover depends on the details of how the arith
metic is done. Consider the case of a bank calcu

lating interest on a sum of money deposited on
12-20-99 and withdrawn on 01-10-00. Subtract

ing 12-20-99 from 01-10-00 ought to yield not

Figure 1. The Last Judgment, as envisioned circa 1000, when the
end of time seemed near. At 2000, apocalypse will be computer
ized. (From Georg Leidinger, Miniatttri'it der Staatsbibliotek
Miinchen.)

quite -100 years, or more precisely -36,503 days.
On getting such a result, one thing a computer

might do is—to use the technical term—barf. A
negative interval makes no sense in this context,
and a prudently written program might well in
clude an explicit check for this possibility; on

finding a negative value, the program would
stop and signal an error. Even without explicit
error-checking, the negative number of days
might bring the program to a halt; for example,
the program might at some point attempt to take
the logarithm of this number, which is an im

possible operation. Or, the unexpected negative
value might have just the opposite effect, caus

ing the program not to halt but instead to enter
an infinite loop. In all of these cases the program

ultimately refuses to produce an answer, which
may be the most benign failure mode available
in the circumstances.

There are lots of other possible outcomes.
Because a negative period of deposit is not to
be expected, a programmer might write the in

terest-calculating procedure in such a way that
it ignores the sign of the result when subtracting
dates. This is the kind of arithmetic assumed in
several of the hypothetical events cited above. A
related but subtly different approach is to do the
arithmetic with unsigned integers, a system of
numbers in which negative values simply do

1995 January-February 13

not exist. In one common implementation of

unsigned computer arithmetic, 0 - 99 is equal
to 65,437; if your bank uses this number of

years in the interest calculation, it had better
leave room on your statement for a 1,650-digit
dollar amount.

Another possibility is that the minus sign
would propagate all the way through the com

putation, so that you would be credited with,
say, -$397,000 in interest. This result has a cer
tain logic to it, since the bank thinks you with
drew your money in 1900 but did not deposit it
until 1999. Happily, interest on credit-card bal
ances and loans might also cross over to the oth
er side of the ledger, so that you would receive a
fabulous refund.

In still another variation, a negative number
could turn up as the exponent in the formula
for compound interest. In this case both your
assets and your liabilities would dwindle away
to trivial sums; at -6 percent per year, a $1,000

deposit would be reduced to $2.95. Here's one
more amusing prospect: If the bogus negative
value creeps into the computation in two places,

your interest could be either a debit or a credit
depending on whether the money was on de
posit for an odd or an even number of days.

And there are yet more ways for this simple-

seeming calculation to go awry. Much computer
arithmetic is done with 16-bit numbers, which
can represent a total of 65,536 (i.e., 216) distinct
values. A widely adopted convention for 16-bit
arithmetic allows the integers from 0 through

32,767 to represent themselves, whereas the re

maining values are interpreted as the negative
integers from -32,767 through -1. The 36,503
days between 01-10-00 and 12-20-99 exceed the
maximum positive value in this system and
would therefore be interpreted as a negative in

teger, namely -29,033.
It would be easy to dream up still more error

mechanisms. Indeed, it begins to appear that
with enough ingenuity virtually any result
could be gotten from this calculation—even the

right result. Most programs on most computers
will probably continue to operate normally in
the new millennium. But there will also be a

great blooming of bugs on that Saturday morn
ing five years from now.

The Centenarian's Complaint
There is a quick fix for some of the difficulties
noted above. Although two decimal digits can

represent no more than 100 years, any 100-year
span could be chosen. For example, a program
could be designed to interpret the years from 30

through 99 as 1930 through 1999, yet see 00
through 29 as 2000 through 2029. In this way the
program might be able to survive the millennial
crisis, or at least postpone it for a few decades.
But the fix has a cost: The system would become
more vulnerable to other faults. In particular,

anyone whose birthdate is before 1930 might find
the software distinctly unfriendly.

No matter how the dates are shifted or re

arranged, a calendrical system that covers only
a finite period is bound to bump up against a
limit at some point. We do not even have to wait
for a magic midnight such as 01-01-00 before
the trouble starts. Computations done with six-

digit dates already cause occasional bewilder
ment. For example, in 1992 Mary Bandar of
Winona, Minn., was invited to join kindergarten
classes when her name turned up among others
identified in a database search for people born
in "88"; at the time Bandar was 104 years old (4).

Similarly, C. G. Blodgett's auto-insurance pre
mium tripled after his 101st birthday, apparent

ly because he was classified as a high-risk
youthful driver (5). (There is something particu
larly disturbing about this story, even apart
from the idea of insuring a one-year-old driver:

Why did the company wait until his hundred-
and-///'sf birthday to raise the premium?) An
other Risks anecdote tells of the hospital com

puter that interpreted the blood count of a
99-year-old man by standards appropriate to
that of a newborn (6).

There are also computer systems whose built-
in time bombs have a fuse shorter than 100

years. On September 19,1989, dozens of hospi
tals found that computers used for bookkeep

ing and administration had ceased to function
(7); it was not a coincidence that September 19,
1989, was the 32,768th day after January 1,1900.
A few weeks later computers running the

Michigan Terminal System began to fail (8); the
date was November 16,1989, which was 32,767

days after March 1, 1900. The satellites of the
Global Positioning System keep track of the
date by counting the weeks since January 6,
1980. The count is maintained as a 10-bit value,
and thus it has a maximum range of 1,024
weeks. It follows that on December 21,1999, the
counter will roll over, and GPS receivers will
think it is 1980 all over again (9). And the grand

prize for planned obsolescence goes to a per
sonal computer sold in the mid-1980s by AT&T
(10): It had a clock that ran out of ticks at the
end of 1990.

Even systems that will outlast the 1900s will
not get very far into the new millennium. The
clock runs out on the Unix operating system in
2038, on the Macintosh in 2040 and on ms-dos in
2048. Many other computer systems span the
interval from 1901 through 2099; the likely rea
son for choosing these particular boundary
dates is that they simplify leap-year calculations
(2000 is a normal leap year, but 1900 and 2100
are not).

The Dusty Deck
Abbreviated date formats were adopted for rea
sons that doubtless seemed compelling at the

14 American Scientist, Volume 83

time. Why waste storage on digits that are al

ways 1 and 9? Likewise, why force people to
type four digits when the first two are always
the same? Furthermore, some of the tools that

programmers rely on encourage or even enforce
a limited temporal horizon. The COBOL pro

gramming language, used for many business
and financial applications, defines a year as a
two-character data type. Ada, the language
mandated for most Department of Defense soft
ware, is one of the 1901-to-2099 systems. Every
one knew, when these decisions were made, that
time would undo them, but the day of reckon

ing was remote. To the programmer cobbling to
gether a bank accounting system in 1962 it
would have seemed comically pretentious to

imagine that the program might still be in use in
2000. Given the brevity of the human life span,
and the rapid pace of technological evolution,

building a machine with a design life of 100
years should not earn you criticism for short
sightedness.

Yet here comes 01-01-00. Risks Forum read
ers know how the day will go. The first trouble

reports will come from New Zealand, which Pe
ter Neumann calls the "king's taster" for com

puter clock problems. Then the wave of failures
will wash over Asia, Africa and Europe; those of
us in the Americas will see it coming hours in

advance, and yet we will probably be unable to
do much of anything to stop it.

As computer bugs go, the problems connect
ed with truncated and cyclic dates are not very
subtle or obscure, and many of them can doubt
less be fixed by simple changes. Just leaving
room for four-digit years should hold us for an
other eight millennia. The challenge of averting

computer catastrophe on 01-01-00 is not in the
bugs themselves; the challenge is the "dusty-
deck problem." The term comes from the era of

punched cards—and so does some of the soft
ware still running today. That accounting sys
tem written in 1962 may still be at the heart of a
bank's daily operations, though by now it is en
crusted with thick layers of additions and patch
es, and no one has a clear idea of how it actually
works. "Legacy systems," they call such soft
ware. Altering a legacy system in an area as fun
damental as the format of dates is rather like

changing a tire without stopping the car. It's a
delicate operation, and now is not too soon to

get started.
The prevalence of calendar-related malfunc

tions among the reports appearing in the Risks
Forum suggests just how tricky it is to get date

computations right. I can offer further evidence.
In the first draft of this column I was off by 10 in

my calculation of the number of days between
12-20-99 and 01-10-00. David Schoonmaker, the

managing editor of American Scientist, caught
the error and showed me, with arithmetic of

convincing simplicity, how to derive the correct

answer. I had done the original calculation with
a spreadsheet program, which I considered
more trustworthy than my own arithmetical
skills. Part of the error turned out to be the result
of a careless typing mistake, but after correcting
that slip, a one-day discrepancy remained. The

puzzle was solved when I discovered that the
spreadsheet program treats 1900 as a leap year.

The last time the calendrical odometer turned
over a row of three zeroes, it was a turbulent
moment in social history, with much of Chris
tendom nervously awaiting the end of the
world (11). The millennium was thought to be
the time of apocalypse, the appointed Day of

Judgment. I cannot suppress the idea that many
were perplexed, perhaps even disappointed,
when 1000 came and went, and the sun contin
ued to rise and set so reliably. But there were no

computers then.

Notes
1. The Risks Forum is distributed through the Usenet

newsgroup comp.risks and is also available by elec
tronic mail, either through the bitnet listserv mecha
nism (send the message subscribe risks) or by request
ing a subscription from risks-request@csl.sri.com. An
archive of the forum is available through the anony
mous ftp protocol from crvax.sri.com. The archive can
be searched by means of the wais protocol, using the

risks-digest.src database on the wais server cmns-
moon.think.com. Excerpts from the forum appear in
Software Engineering Notes, the quarterly journal of the
ACM Special Interest Group for Software Engineer
ing, and in the Communications of the ACM. The Com
munications excerpts of January 1991 (Vol. 34, No. 1, p.
170) concern clocks and calendars. Much material
from the forum, with additional analysis and com

mentary, is collected in a recent book: Peter G. Neu
mann, 1995, Computer-Related Risks, New York: The
ACM Press and Reading, Mass.: Addison-Wesley Pub
lishing Company. See pp. 85-92 for a discussion of
clock and calendar problems.

2. See especially: Paul Robinson. The danger of six-digit
dates. Risks Forum 16:32, August 15,1994.

3. Steve Peterson. Re: Turn of the century date problems.
Risks Forum 14:45, March 29,1993.

4. Ed Ravin. Call for the class of '88. Risks Forum 14:44,
March 29,1993.

5. Lee F. Breisacher. Risk of aging. Risks Forum 4:9, No
vember 10,1986.

6. David B. Benson. Another 100-year computer saga.
Risks Forum 9:73, March 6,1990.

7. Joe Morris. Hospital problems due to software bug.
Risks Forum 9:26, September 20,1989. Will Martin. Re:
Hospital problems due to software bug. Risks Forum
9:27, September 21,1989. Steve VanDevender. Re: Hos
pital problems due to software bug. Risks Forum 9:28,
September 24,1989.

8. Brian Randell. Another foretaste of the millennium.
Risks Forum 9:45, November 17, 1989. Also corrigen
dum November 21,1989.

9. Marc Auslander. Not enough bytes bites again. Risks
Forum 16:48, October 21, 1994. Dave Moore. Re: Not
enough bytes bites again. Risks Forum 16:49, October
24,1994. '

10. Daniel J Yunnan. Re: AT&T machines and dates. Risks
Forum 13:05, January 21,1992.

11. Henri Focillon. 1969. The Year 1000. New York: Freder
ick Ungar Publishing Co.

1995 January-February 15

