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. e have it on good authority (Adams
/ 1979) that the earth is a gigantic comput

er, built to calculate the answer to some
ultimate question (or vice versa). When you look
around at the world, the idea seems plausible
enough. There are certainly lots of things going on
that look like computational processes. Ice feathers
condense on a cold windowpane; lightning traces a
jagged path across the sky; rivers carve the land
scape into a network of bifurcating channels. In all
of these phenomena there seems to be an algorithm
at work, a set of rules telling the water molecules
where to freeze next or telling the Ughtning bolt
when to zig and when to zag. Biological systems of
fer still more examples of algorithmically generated
patterns—the leopard's spots; the branching struc
tures of tree limbs, corals and antlers; the fairy rings
of fungi. All this computing in the great outdoors
suggests an intriguing possibility: If nature has an
algorithm, perhaps it can be adapted to a lesser
computer, one that we know how to program.

In the past decade there has been substantial
progress in finding algorithms for various kinds
of growth, aggregation and deposition. In most
of these algorithms a particle travels through a
medium until it comes into contact with another
particle or cluster of particles; then the roving par
ticle sticks fast, becoming a member of the cluster.
The process is repeated thousands of times, build
ing up a connected aggregate whose geometry—
dense or wispy, compact or ramified—depends
on the motions that brought the particles together.
The procedure serves as a model of many physi
cal and biological processes, including crystal
lization, the condensation of colloids and poly
mers, the deposition of ions and molecules during
the fabrication of integrated circuits, the "viscous
fingering" of interpenetrating fluids, the break
down of dielectrics, cracking and fracturing in
solids, and the growth of rumors and bacterial
colonies. The same methods might even be ap
plied to the accretion of the solar nebula and to
the filaments and sheets that make up the largest
visible structures in the universe, not to mention
the dust bunnies in the corner I haven't swept.
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Experiments and mathematical analysis have
had roles to play in studies of aggregation, but the
main tool has been computer simulation. Some
of the simulations do not require outrageous
amounts of computing power or great program
ming ingenuity, and so they are open to the enthu
siastic amateur. The illustrations that accompany
this article are souvenirs of my own recent adven
tures. They contribute nothing new to the world's
knowledge of aggregation algorithms, but they
have taught me much. The main lesson is one that
I did not anticipate: Even as I have seen how suc
cessfully a simple program can mimic the effects of
nature's algorithms, I have been made more aware
of the differences between physics and computa
tion. What comes naturally in nature is sometimes
very unnatural for man and machine.

Particle Ballistics
My experiments have focused on deposition
rather than aggregation per se; that is, I have con
sidered particles falling onto a solid substrate
rather than forming free-floating clusters. The
deposition problem is somewhat easier to deal
with in terms of both program complexity and
computing time. As a further simplification I have
looked only at two-dimensional systems, and I
have imposed a lattice structure on the simulated
space, so that the particles move discontinuously
on a rectilinear grid, like pieces on a chessboard.

The simplest simulation carried out with this ap
paratus resembles a gentle snowfall. Particles are
released one at a time at the top of the lattice and
fall straight down until they touch another particle
or else come to rest on the substrate at the bottom.
The horizontal coordinate of each successive parti
cle is chosen randomly, with a uniform distribu
tion over all the columns. A particle is considered
to be touching the substrate or the existing cluster
if any of its four nearest-neighbor sites (north,
south, east or west) are occupied. Once a particle
has been deposited, it never moves again.

Figure 1 is an example of the pattern created
when 40,000 particles are deposited in this way.
The color coding indicates the sequence in which
the particles were laid down. The earliest parti
cles are violet, then later ones are red and orange,
and the final ones are bright yellow. The struc
ture is spongy, with many small voids. The bot-
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Figure 1. Spongelike texture evolves when particles descend vertically and stick as soon as they touch another particle.

tommost strata are slightly denser than average,
probably because of the solid substrate under
them, but beyond that boundary layer the tex
ture appears to be statistically uniform.

The smooth vertical descent of particles in this
simulation brings to mind a number of natural
phenomena, such as the settling of sediments in
still water. It also resembles an important industri
al process: molecular-beam epitaxy (MBE), a kind
of molecular-scale spray-painting in which thin
layers of material are laid down on semiconductor
surfaces. Because MBE is done in a vacuum cham
ber, the molecules in the beam are not scattered
by collisions with air molecules; they follow par
allel ballistic trajectories, like the particles in the
simulation. At low temperatures and high deposi
tion rates MBE films have the spongy texture seen
in the model; creating smooth films requires high
er temperatures and slower deposition, so that the
molecules have a chance to rearrange themselves
on the surface before sticking permanently.

In the program implementing this algorithm,
the lattice is represented by a two-dimensional ar
ray whose elements are specified by x and 1/ coor
dinates. Initially, all lattice sites are empty except in
the bottom row (the row where 1/ = 0), where the
sites are marked as filled in order to create an im
permeable substrate. The program is organized as
a loop witliin a loop. The outer loop selects a ran
dom x coordinate and places a particle in the cell at
the top of the corresponding column. Then control
passes to the inner loop, which has two phases.
First it examines the particle's neighborhood; ii any
adjacent sites are occupied, the particle's present
position is also marked as occupied. Otherwise, in
the second phase, the particle is moved one square
south, and the inner loop repeats. The inner loop is
guaranteed to terminate, since the downward-
moving particle must eventually reach the sub
strate at 1/ = 0 (if nothing else stops it first). When a
particle has been deposited, the outer loop
resumes, selecting a new random x coordinate.

One technical point in the program requires
close attention: boundary conditions. The lower
boundary of the lattice is supplied by the sub
strate, and the upper boundary is of no conse
quence because nothing ever crosses it, but the
two sides of the lattice are more problematic. If
these boundaries remain open, particles deposited
in the extreme left and right columns will have a
different environment from all other particles—
they will be missing one neighbor—and this
anomaly will be reflected in the configuration of
occupied cells. A solution is to make the boundary
conditions periodic by joining the left edge to the
right edge, as if the simulation space were
wrapped around a cylinder. Thus if a particle
moves out of the space by crossing the right-hand
edge, it immediately re-enters from the left.

What happens if the trajectories are not vertical
but oblique, as if the particles were driven by a
steady wind? Figure 2 shows a deposit formed
by particles on parallel ballistic paths inclined
about 30 degrees below the horizontal, moving
toward the right. The striated texture reminds me
of a kelp bed swaying in the tide.

The feathery pattern in Figure 3 was generated
by particles traveling on headings that varied
randomly from just south of due east to just
south of due west. Note that the most recently
deposited particles—the bright yellow ones—are
concentrated on the extremities of the tallest
plumes. This distribution is a clue to the mecha
nism of pattern formation, which appears to be a
kind of competitive growth. Once a cluster
emerges above its surroundings, it casts a shad
ow, capturing particles mat speed its own growth
at the expense of its neighbors'.

Taking a Random Walk
The common thread running through the three
simulations seen so far is that particles always
move in a straight line. Relaxing that constraint
leads to a new set of models with distinctly differ-
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Figure 2. Swaying kelp beds were created by paths with a slope of -1/2.

ent growth habits. Figure 4 is a deposition pattern
created by particles diffusing randomly through the
simulation space. At each time step a particle
moves one lattice unit in any of the four cardinal di
rections, with the direction being determined ran
domly and independently each time. As in the bal
listic models, the random walk ends whenever the
particle comes in contact with the substrate or with
another particle that is already part of the deposit.

This process of ''diffusion-limited deposition" is
an appealing model for many real-world phenom-

Figure 3. Feathery patterns grow from random ballistic trajectories.

ena. An example is electrochemical deposition,
where ions diffusing through a liquid in response
to an electric field are ultimately deposited on one
of the electrodes. Microscopic examination of such
deposits reveals treelike structures much like those
seen in the simulations. The closely related process
of diffusion-limited aggregation (which creates free
clusters instead of deposits on a substrate) simu
lates a variety of other physical systems where par
ticles are in random motion, such as the condensa
tion of gold black from colloidal gold and the

coagulation of smoke particles to form soot. In
many instances the clusters themselves can move
and form aggregates of aggregates.

Much of the recent interest in growth models
can be traced back to an experiment on smoke-
particle aggregates reported in 1979 by S. R. For
rest and T A. Witten, Jr., who were then both at
the University of Michigan (Forrest and Witten
1979). Two years later Witten and L. M. Sander,
also of Michigan, introduced a computer simula
tion of diffusion-limited aggregation (Witten and
Sander 1981). Hundreds of others have con
tributed to the subsequent elaboration and analy
sis of various growth and aggregation models,
but three investigators have been so prominent in
these studies that their work needs to be men
tioned individually. They are Paul Meakin of E. I.
du Pont de Nemours and Company (now at the
University of Oslo), Fereydoon Family of Emory
University and Tamas Vicsek of Eotvos Universi
ty in Hungary. In addition to publications de
scribing their own work, Meakin, Family and
Vicsek have written useful review articles (Fami
ly and Vicsek 1990, Meakin 1991a, 1991b). Vic-
sek's recent book (Vicsek 1992) is the most com
prehensive and up-to-date survey of work in the
field. Dynamics of Fractal Surfaces (Family and Vic
sek 1991) describes recent studies of deposition.

The structures formed by diffusion-limited
growth are of particular interest because of their
mathematical properties: They are fractals, or ob
jects of fractional dimensionality. One way of
measuring dimensionality is to examine how
mass increases as a function of size. For a one-di
mensional object, such as a line, mass increases as
the first power of the size, and for a two-dimen
sional object, such as a disk or a square, mass
varies as the second power of size. Measure
ments of the 10 largest trees in Figure 4 reveal
that their mass (as represented by the number of
particles) is proportional to their height raised to
a power of approximately 1.64. More careful
studies with much larger samples indicate that
the true average exponent is about 1.7; in other
words, the trees are 1.7-dimensional objects.

Fractals have the interesting property of scale-
invariance, or self-similarity: Each part repro
duces the structure of the whole, so that the pat
tern looks the same no matter how much it is
magnified or reduced. For finite objects made of
finite subunits there must be limits to this invari-
ance, but the trees of Figure 4 do appear to be
geometrically similar over a broad range of sizes.

A straightforward program for diffusion-limit
ed deposition is easy to describe. Start each par
ticle somewhere above the highest occupied lat
tice site, then at each time step move the particle
one unit to the north, south, east or west, choos
ing the direction at random. Stop when the parti
cle arrives at a site neighboring an occupied site
or the substrate. A theorem guarantees that the
random walk will eventually reach a terminat
ing site. Unfortunately, the theorem makes this
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guarantee by stating that eventually the walk
will visit every site on the lattice, and so the par
ticle may wander arbitrarily far before returning
to the vicinity of the substrate. If no measures are
taken to speed the process, the guarantee of ter
mination could well be a lifetime guarantee.

There is a strategy for addressing this problem.
Whenever a particle wanders too far from the sub
strate, pick it up and put it down again closer to
the growing cluster, at a randomly chosen x coor
dinate. The justification for this shortcut is that
when the particle eventually returns on its own, it
will have equal probability of appearing at any x
coordinate. Even with this strategy, however, the
algorithm is painfully slow; in my experiments
depositing 10,000 particles took 30 hours. To make
the program practical, the particle must be al
lowed to take longer strides when it is far from
the cluster, instead of moving one square at a time.
With this improvement, execution time for 10,000
particles came down to a few minutes.

Organic Growth
Another kind of growth model was explored
long before experiments began with ballistic and
diffusive aggregation. In 1960 Murray Eden of
the Massachusetts Institute of Technology intro
duced a model of what might be called organic
growth (Eden 1961). It is growth from within
rather than by accretion from without, and it is
meant to represent the proliferation of bacteria
in a culture medium. Instead of shooting parti
cles at a growing cluster, each site on the periph
ery of the cluster is given a chance to spawn a
new occupied site. In the simplest of several vari
ations, every site on the periphery has an equal
chance of being selected as the next growth site.
Figure 5 shows what develops when the Eden
rule is applied to growth on a horizontal sub
strate: a compact mass with a mottled internal
structure and a somewhat rough surface.

A close comparison of the Eden model and rite
various accretion models suggests they are not
quite as different as they seem. An accretion model
exhibits Eden growth if every peripheral site has
an equal probability of being struck by an incoming
particle. Likewise, the Eden mechanism could re
produce all the effects of a random-walk model if
the peripheral sites could be assigned growth prob
abilities proportional to the expected flux of incom
ing particles at each site. Surprisingly, the calcula
tion of these probabilities is entirely feasible; it turns
out to be a matter of solving the equation for an
electrostatic field (Mandelbrot and Evertsz 1990).
In this calculation the substrate and the clusters at
tached to it are assumed to be perfect conductors at
a potential of zero volts. Well above the tallest clus
ter, the horizontal line where diffusing particles are
released is taken to be an electrode with a fixed po
tential of one volt. The potential field at each point
in tine intervening space corresponds to the proba
bility of finding a randomly moving particle at that
point. The flux of particles onto the substrate is

Figure 4. Particles on random walks yield a forest of fractal trees.

equal to the gradient of this field, or in other words
to its spatial rate of change.

Figure 6 shows the electric field surrounding a
structure grown by diffusion-limited deposition.
The skeleton of the deposit, at zero volts, is
white, and the top row of the lattice, at one volt,
is dark blue. The field is draped like a tissue of
cobwebs over the gaps between clusters, show
ing how these areas are screened from further
growth. The field gradient is highest at the ex
posed tips of the clusters, which are the regions

Figure 5. The Eden model resembles the growth of a bacterial colony.

of fastest growth. Lighter areas are depleted of
particles and so will grow slowly.

The calculation of probability fields could in
principle replace the entire methodology of
launching and following particles on random tra
jectories, but it is not clear there is anything to be
gained by such a change in technique. Solving
the field equations takes far longer than a ran
dom walk. Indeed, the random walk can be
viewed as a shortcut method of calculating the
distribution of growth probabilities.
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Figure 6. Field surrounding a cluster predicts its growth probability.

Bugs Bunny Dynamics
In this article I have given more attention to de
tails of program implementation than is usual in
accounts of these algorithms. I believe the details
are important. Merely saying "particles execute a
random walk until they reach a site adjacent to
an occupied site" may give the misleading im
pression that random walks and the concept of
adjacency are simple, built-in faculties of the
computer. While it's true that in nature's comput
er they do seem to be primitive operations, in the
man-made digital computer they must be fabri
cated through elaborate and often cumbersome
sequences of logical and arithmetic operations.

The detection of adjacency illustrates one source
of the problem. In nature a particle never seems to
have any trouble knowing when it has run into
an obstacle; it stops or rebounds automatically, as
appropriate. In the computer this behavior must
be painstakingly reconstructed. A particle moving
on a lattice must stop to survey its surroundings
after every step, or else it risks running right
through another particle without ever detecting
its presence. If the simulation were done without a
lattice, the problem would be far more severe. In
the simplest off-lattice algorithm a particle moves
by no more than its own diameter in one stride.
After every such step it checks the neighborhood
for any obstacles witliin one radius of its own po
sition. If an overlap is found, the particle must
back up until it is just touching the obstacle. This
method of blundering through things and then re
treating gives correct results, but it hardly seems a
natural representation of particle dynamics in the
physical world. It is more like the cartoon world
where Bugs Bunny doesn't begin falling until he
notices that he has stepped off the cliff.

Simulations done with a lattice are more efficient
than those without (largely because it is easier to
detect collisions), but they are also one step further
removed from reality. There is always the worry
that the geometry of the lattice will "show through"
in the geometry of the aggregates. Simulations us

ing 10,000 or even 100,000 particles show no obvi
ous signs of lattice influence, but this finding does
not stand up to larger-scale testing. Through prodi
gious feats of computing Meakin has shown that
clusters of several million particles on a square lat
tice form diamond or cross shapes aligned with the
axes of the lattice; the shapes do not appear in sim
ulations done on a triangular or hexagonal lattice,
or with no lattice at all (Meakin 1986a).

In calling attention to the various difficulties of
imitating nature I do not mean to question the le
gitimacy of computer simulation as a means of
studying aggregation (or anything else). As a mat
ter of fact, the difficulties may be where we stand
to learn the most. A concept like adjacency seems
so simple and self-evident mat you are not likely
to think clearly about it until you try Living in a
world where it does not exist. Simulations of frac
tal growth offer many such opportunities to learn
things you thought you always knew.

Looking at the bizarre contortions needed to
make a digital computer deal with continuous mo
tion, one might conclude that present-day compu
tational science must be in a feeble and primitive
state. That may turn out to be a fair assessment,
and yet it is only part of the story. The other part is
that the continuum of space and time really is a
deep mystery, as Zeno of Elea knew. We become
most aware of how singular mat continuum is only
when we set out to construct a world of our own
inside the computer—only when we formulate
and make fully explicit our own laws of nature.
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