Fermat’s Last Theorem
and Modern Arithmetic

Pierre de Fermat's famous conjecture may have been proved at last. Ironically,
it turns out to be a marginal note in a body of work with wider significance

Kenneth A. Ribet and Brian Hayes

Eric‘Temple Bell, the mathematician
and biographer of mathematicians,
believed that Fermat’s last theorem
would be one of the questions left un-
resolved when human civilization de-
stroyed itself in nuclear war. Bell made
this prediction shortly before his own
death in 1960. If he had lived a few
decades longer, it is an interesting
question whether he would have been
more surprised at humanity’s continu-
ing survival or at the announcement,
on June 23, 1993, of a proof of Fermat’s
last theorem.

The theorem itself is easily stated.
Pierre de Fermat asserted that if a, b
and c are integers greater than 0, and if
n is an integer greater than 2, then
there are no solutions to the equation:

an + b =en,

The simplicity of the statement is de-
ceptive: The proposition resisted all at-
tempts at proof for more than 350 years.
And the recent proof, devised by An-
drew Wiles of Princeton University, re-
quires an extraordinary arsenal of math-
ematical tools and techniques to attack
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the problem. Wiles’s proof is embodied
in a dense and difficult manuscript,
which incorporates by reference a vastly
larger body of mathematical work de-
veloped over the past 30 years or more.

As this article is being written, the
status of Wiles’s proof is uncertain.
Checking by referees revealed a few
problems, most of which were quickly
resolved, but one gap in the argument
appears to be more serious. Wiles has
said he is confident the gap can be
filled, but until the proof is published
and reviewed by the larger mathemat-
ical community, the issue will remain
unsettled. Indeed, the proof is not a
proof and the theorem is not a theorem
until all the outstanding problems have
been resolved. (Nevertheless, in this ar-
ticle we shall continue to speak of the
proof and the theorem as a matter of
convenience.)

It is important to understand the
true place of Fermat’s last theorem in
modern mathematics: It is a much-cel-
ebrated puzzle, but it is hardly a cen-
tral or crucial proposition. Having a
proof of the theorem may not lead to
much else of great interest. On the oth-
er hand, the pursuit of a proof has con-
tributed to the development of much
important mathematics. In particular,
Wiles approached the problem by set-
ting out to prove another proposition,
called the Taniyama-Shimura conjec-
ture, from which Fermat’s last theorem
follows as a corollary.

The Taniyama-Shimura conjecture is
deeper and potentially more significant
than Fermat's last theorem itself. It be-
longs to a realm of mathematics that
has been developing rapidly over the
past three decades without attracting
much notice outside the mathematics

profession. This realm is called “arith-
metic algebraic geometry,” or “modern
arithmetic.” It grew out of an attempt to
apply the methods of modern mathe-
matics to the study of problems, called
Diophantine problems, in which the
goal is to find all solutions in whole
numbers to a family of equations. Mod-
ern arithmetic has a rich structure of its
own, and it seems to be connected in
one way or another to every other
branch of mathematics. It is remarkable
that the abstract machinery of this dis-
cipline has led to a new understanding
of the most famous of all Diophantine
problems—Fermat’s last theorem.

Marginalia

The story of how Fermat proposed his
“last theorem” has been told many
times, but it is too good a story to forgo
telling it again. Pierre de Fermat was
born in the south of France in 1601 and
spent most of his life in Toulouse, where
he was a prominent jurist in the bureau-
cracy serving Louis XIV. As a mathe-
matician he was an amateur, but a well-
connected one; he carried on extensive
correspondence with René Descartes,
Blaise Pascal and other luminaries of the
age. Indeed, the main source of knowl-
edge about his mathematical work is his
correspondence—and his annotations
in the margins of books.

Sometime in the 1630s Fermat was
reading the Arithmetic of Diophantus
of Alexandria, a work probably writ-
ten in the third century C.E., which
discusses various problems to be
solved in whole numbers or in rational
numbers (ratios of whole numbers).
Fermat made numerous notes in his
copy of the Arithmetic; the particular
marginal comment of interest here per-
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Figure 1. Fermat's last theorem, which asserts that the equation a* + b” = ¢ has no integer solutions when # > 2 and abc # 0, can be given a
simple geometric interpretation. For any given value of #, the function f(a,b) = a" + b" defines a smooth surface in three-dimensional space.
In the case of # = 1 (upper left) the surface is a plane that passes through infinitely many points with integer coordinates; indeed, at every
point where a and b are integers, the third coordinate a + b is also an integer. Integer points where a or b is equal to zero are marked by black
dots; other integer points are shown as red dots. For n = 2 (upper right) the surface is a paraboloid, and the only integer points are those that
satisfy the Pythagorean equation a? + b? = c% Apart from points along the axes where a = 0 or b = 0, there are only four such points on the
small section of the surface visible here; they correspond to the equations 32 + 42 = 52 and 62 + 82 = 102. On the entire surface, the number of
integer points is infinite. Sections of the surfaces for n = 3 (lower left) and 1 = 5 (lower right) have no integer points (except along the a =0
and b = 0 axes). Fermat’s last theorem implies these surfaces can be extended to infinity without ever intersecting a point with three integer
coordinates, Moreover, the theorem states that the same is true of the surfaces corresponding to all other values of n greater than 2.

tained to Question 8 in Book 2, where
Diophantus asked, “Given a number
that is a square, write it as a sum of two
other squares.” Fermat’s note, translat-
ed from the Latin, reads: “It is impossi-
ble to separate a cube into two cubes or

a fourth power into two fourth powers
or, in general, any power greater than
the second into powers of like degree. I
have discovered a truly marvelous
demonstration, which this margin is
too narrow to contain.”

The tantalizing suggestion of a proof
once known and then lost to posterity
has doubtless contributed to the popu-
lar romance of Fermat’s last theorem.
So has the designation “last,” although
Fermat had nothing to do with that.
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The theorem was surely not the last
one he proposed in his lifetime; he
lived on until 1665 and made many
further contributions to mathematics.
The label “last” arose in the 18th or
19th century and was apparently
meant to identify the theorem as the
last of Fermat’s propositions to remain
neither proved nor disproved.

Did Fermat really have a “mar-
velous” proof that he could have writ-
ten out if only the margin had been a
little wider? The question is another one
that has a good chance of outlasting hu-
man civilization. A likely answer is that
Fermat thought he had a proof but later
discovered a flaw in it. In subsequent
letters to colleagues he referred to
proofs of the specific cases where n = 3
and n = 4, but the general proof was
never mentioned again.

Early Efforts

There is no trouble finding integer so-
lutions to a" + b" = ¢" when n is 1, since
the equation then reduces to the simple
form a + b = c. Because the sum of any
two integers is also an integer, for any a
and b there is always a c satisfying the

equation. When n is equal to 2 (the case
considered by Diophantus) the prob-
lem is only a little harder. The equation
a? + b? = c?is of course the Pythagorean
formula for the sides and hypotenuse
of a right triangle; it has infinitely
many integer solutions, starting with
the familiar 32 + 42 = 52, Euclid, cen-
turies before Diophantus, gave a
method for generating all sets of such
Pythagorean triples.

Given the infinity of solutions when
n=1orn =2, it seems surprising that
there should be no integer solutions
whatever for all n = 3, but that is Fer-
mat’s assertion. The theorem has a geo-
metric interpretation. For each value of
n, the equation a” + b" = ¢" defines a
surface in three-dimensional space.
The surfaces for n =1 and 1 = 2 pass
through infinitely many points that
have three integer coordinates, but the
surfaces for all higher values of 1 pass
through no such points (except along
the planes where a =0 and b = 0).

Fermat himself proved the theorem
for the case n =4 (and this time he wrote
down his argument, in another marginal
note). In fact Fermat proved a slightly
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Figure 2. Famous marginal note in which Pierre de Fermat stated his “last theorem” is pre-
served in an edition of the Arithmetic of Diophantus published by Fermat's son Samuel.
Fermat read the Arithmetic in the first modern edition, published in 1621 by Claude-Gaspar
Bachet, but the copy with his annotations has not been found. In Samuel Fermat’s edition
the note is transcribed below the Latin and Greek texts of Question 8 in Book 2. It reads: “It
is impossible to separate a cube into two cubes or a fourth power into two fourth powers or,
in general, any power greater than the second into powers of like degree. I have discovered a
truly marvelous demonstration, which this margin is too narrow to contain.” (Photograph
courtesy of the Duke University Special Collections Library.)
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more general proposition, showing that
there are no integer solutions to the equa-
tion a* + I* = ¢2; since any perfect fourth
power is also a perfect square, this result
implies the truth of the original theorem
for n = 4. Put another way, Fermat
showed that there are no Pythagorean
triples a% + b2 = c2 where a and b are
themselves perfect squares. The idea un-
derlying the proof is a technique Fermat
invented, called the method of infinite
descent. Begin by assuming there are in-
deed integer solutions of the equation
a* + b* = c2. Fermat found a sequence of
operations that, given any such solu-
tion, generates a smaller one. From the
new solution the same sequence of op-
erations yields a still smaller solution.
The process can be continued without
limit, creating an infinite series of ever-
smaller solutions. But such a series of
continually diminishing numbers can-
not exist in the positive integers, which
have a well-defined lower bound (the
number 1). The only way to avoid the
impossibility is to abandon the initial as-
sumption that an integer solution exists.

The case of 1 = 3 was undertaken by
Leonhard Euler, the great 18th-century
Swiss mathematician. His proof also re-
lies on infinite descent, but it is more
convoluted than the proof for n = 4. In
the years that followed, several more
individual cases of Fermat's last theo-
rem were proved. In the 1820s the
French mathematician Adrien-Marie
Legendre and the German P. G. Lejeune
Dirichlet produced proofs for n = 5.
Dirichlet went on to attempt a proof for
n =7, but he was able to complete the
proof only for n = 14; a proof for n =7
was subsequently devised by Gabriel
Lamé of France. Then in 1847 a major
advance was reported by the German
Ernst E. Kummer, who came tantaliz-
ingly close to a general proof. Kum-
mer’s work implies that Fermat’s last
theorem is true for an infinite class of
exponents, namely all values of n that
are divisible by “regular” primes,
which are a subset of the prime num-
bers (positive integers divisible only by
themselves and by 1). The only non-
regular primes less than 100 are 37, 59
and 67, and Kummer was subsequent-
ly able to supply a proof for these spe-
cific values as well. Thus Fermat's last
theorem was proved for all n < 100.

In recent years computer-aided
studies have pushed the lower limit
of any possible counterexample suc-
cessively higher. A result published
last July (Buhler, Crandall, Ernvall



and Metsankyld 1993) implies that Fer-
mat’s last theorem must be true for all
exponents 1 less than 4 million, and so
any integer solution to a" + b" = ¢*
would have to consist of astronomical-
ly large integers. (It turns out the small-
est possible value of ¢" would be a num-
ber of more than 26 million decimal
digits.) Still, no mathematician could
consider the question settled just because
a finite range of cases has been dis-
missed. There are infinitely many of
Kummer’s nonregular primes, and so no
extension of the case-by-case analysis can
ever be complete.

What Needs to Be Proved

The modern approach to Fermat’s last
theorem is an indirect one. It does not at-
tack Fermat's equation 2" + b" = ¢ itself
but instead analyzes a new equation of a
different form, in which the numbers a"
and b have an essential role.

In broad outline, the argument goes
as follows. Suppose there is a counter-
example to Fermat's last theorem, or in
other words a pair of integers a" and b"
whose sum is also a perfect nth power.
Then there must exist a mathematical
object called an elliptic curve specified
by an equation whose coefficients are
determined by a" and 4. Call the ellip-
tic curve E. One of us (Ribet) proved in
1986 that the curve E cannot have a cer-
tain property called modularity. What
Wiles announced last June is that all el-
liptic curves in a class that includes E
are modular. From this contradiction it
follows that E cannot exist, and neither
can the supposed counterexample to
Fermat's last theorem.

In this article we shall fill in a few
details of this argument. In particular
we shall explain what an elliptic curve
is and what it means to be modular. A
rigorous account of the entire proof
and its background would be very de-
manding indeed, and so we shall only
illuminate the main points.

It is best to begin by refining some-
what the question of what is to be
proved. Specifically, several constraints
can be put on the values of a, b, c and n
in the Fermat equation a” + b = ¢,
First, we can confine our attention to
cases where 11 is an odd prime number.
Only prime exponents need be consid-
ered because any counterexample to
the theorem in which n is composite
would imply the existence of a smaller
counterexample with a prime expo-
nent. In other words, if aPi + bri = i
has a solution in integers, then so must

Figure 3. Pierre de Fermat (1601-65) was a successful lawyer and judge, but he is known
today almost entirely for his activities in a realm where he was an amateur: mathematics.
Although he did not publish his mathematical work, he carried on an extensive correspon-
dence with other savants, and made major contributions to number theory and the study
of probability. This engraving appears in his son’s edition of Diophantus.

both a? + bP = ¢ and a% + b9 = 4. The
only composite values of 1 that escape
this reasoning are powers of 2, since
they have no odd factors. However, all
powers of 2 greater than the first pow-
er are divisible by 4, and Fermat’s own
proof dispenses with this case. Indeed,
strictly speaking there is no need to
worry about any multiples of 3, 4, 5,7
and all primes less than 4 million, but
exploiting these known results offers
no advantage in devising a general
proof. Wiles’s proof applies to all prime
values of 1 greater than or equal to 5.
A similar line of argument elimi-
nates all cases except those where a, b
and c are relatively prime—that is to
say, they have no factors in common.
Again, if you knew a counterexample
in which a, b and ¢ had a common fac-

tor, you could divide both sides of the
equation by that factor to produce a
smaller solution.

We shall state two further facts
about the values of a", b* and ¢ with-
out explaining them in detail. Exactly
one of a, b and ¢ must be even; we shall
assume that the even number is b.
Since n is at least 5, b must be divisible
not only by 2 but also by 23, or 32.
Among the two odd values, one must
be congruent to 1 modulo 4 (that is, it
must leave a remainder of 1 when di-
vided by 4), and the other must be con-
gruent to 3 modulo 4. Here we shall as-
sume that 4" is 3 modulo 4.

From here on we can essentially
leave behind Fermat’s equation and
work with new variables A, B and C,
which represent a”, b and " respec-
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tively. The new variables must satisfy
all the constraints we have just estab-
lished. In particular:

A+B=C

ABC#0

A, Band C are relatively prime

B is divisible by 32

A =3 modulo 4 and C =1 modulo 4.

A final property of A, B and C should not
be left unstated: To serve as a counter-
example to Fermat’s last theorem, A, B
and C must be perfect nth powers,
where 7 is a prime 25. Hence the prod-
uct ABC is also a perfect nth power,
since a"b"c" = (abc).

It is at this point that elliptic curves
enter the story. The curve of interest is
described by the equation

y2=x(x— A)(x + B)

where the numbers A and B are de-
rived from the hypothetical counterex-
ample to Fermat's last theorem intro-
duced above. (Although C does not
appear in the equation, no information
is lost because C can be represented by

y2=x(x—3)(x+32)

Y2 =x3+29x2 — 96x:‘

Figure 4. Elliptic curve is the locus of points
that satisfy a certain cubic equation. Such
curves have a deep connection with Fermat's
last theorem. Specifically, if there were a
counterexample to the theorem, it would
imply the existence of an elliptic curve with
some highly distinctive properties. The
curve shown here is defined by the equation
y? = x3 + 29x2 - 96x, or in factored form
y? =x(x - 3)(x + 32).
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the sum A + B.) The strategy of the
proof will be to show that the curve
specified by this equation has the prop-
erty that it is not modular, and then to
show that all elliptic curves in a class
that includes this one must be modular.
The only escape from the contradiction
is to acknowledge that numbers with all
of the properties attributed to A, B and
A + B cannot exist.

Elliptic Curves

Before proceeding with our account of
the proof, we must pause to introduce
these interesting mathematical objects
called elliptic curves. To begin with, an
elliptic curve is nof an ellipse. The
name reflects a connection with elliptic
functions (which were devised to help
calculate the perimeter of an ellipse,
but which have turned out to have oth-
er uses as well). Elliptic curves are
plane curves defined by a certain class
of cubic equations, and their shape is
not even vaguely elliptical.

We can construct a specific elliptic
curve by choosing values for the num-
bers A and B in the equation given
above. The constraints on these num-
bers require that A be congruent to 3
modulo 4, and so a straightforward as-
signment is A = 3. Similarly, B must be
divisible by 32, and so a logical choice
is B = 32. (Of course A =3 and B = 32
do not actually constitute a counterex-
ample to Fermat's last theorem; they
are merely numbers that satisfy some
of the criteria that would have to be
met by any such counterexample.)
With these substitutions, the equation
becomes:

Y= x(x - 3)(x + 32).

Multiplying the three factors on the
right-hand side of the equation yields
an equivalent expression:

Y2 =23 + 29x2 - 96x.

Note that this is a cubic equation, or
an equation of degree 3, since the high-
est power of any variable is a cube;
more specifically the equation relates
the square of y to a cubic polynomial in
x. Also note that the coefficients of the
equation are integers; in general the co-
efficients of an elliptic curve can be
numbers of any kind, but the curves
we shall consider here will be assumed
to have integer coefficients unless stat-
ed otherwise.

The equation we have just construct-
ed defines a curve in the x, y plane. The
curve is the locus of all points whose x

and y coordinates satisfy the equation.
For example, the point (0, 0) is clearly
on the curve, since the substitution
x =0, y = 0 makes the equation a true
statement. The curve defined by the
equation is sketched in Figure 4. It
consists of two disconnected pieces: a
closed loop to the left of the i axis and
an infinitely long open segment to the
right. The precise form of the curve de-
pends on the values of the coefficients,
and in some cases it is a single con-
nected piece.

Not every cubic equation generates
an elliptic curve. To qualify, a curve
must be smooth, or nonsingular, a con-
cept that can be made more precise by
saying that the curve must have a well-
defined tangent at every point along its
length. The curve may not have any
cusps, where there is no defined tan-
gent; nor may it cross itself, creating a
nodal point with two or more tangents.
Figure 5 shows a few examples of
smooth elliptic curves and of other cu-
bic curves having singularities.

From an algebraic point of view, re-
quiring that the curve be nonsingular
is equivalent to requiring that the
equation have three distinct roots, or in
other words that three different values
of x make the expression x(x - A)(x + B)
equal to zero. Obviously one of the
roots is x = 0, and the othersare x = A
and x = -B. Hence to generate a proper
elliptic curve, the values of A and B must
satisfy three constraints: A #0, B # 0 and
A # —B. The last constraint can be re-
phrased as A + B # 0, or equivalently
C#0, and so the overall requirement
is ABC #0.

Why have mathematicians focused
so much attention on this one family
of curves? After all, there are infinitely
many polynomial equations in x and y,
generating an endless variety of curves
in the plane. What is so special about
the elliptic curves? One answer is that
elliptic curves are the first nontrivial
family of curves from the Diophantine
point of view.

All plane curves—or the equations
that generate them—can be classified
according to their genus, which is a
number closely related to the equation’s
degree. Specifically, a nonsingular curve
defined by an equation of degree d has a
genus equal to (d — 1)(d — 2)/2. Lines
and conic sections—ellipses, parabolas
and hyperbolas—are defined by linear
equations (d = 1) or quadratic equations
(d = 2) and necessarily have genus 0. El-
liptic curves, which are nonsingular by



definition and have degree 3, are curves
of genus 1. Nonsingular equations of
the fourth, fifth or greater degree yield
curves of higher genus. In 1922 Louis J.
Mordell made an intriguing observa-
tion relating the genus of an equation
to the number of rational solutions it
has, or equivalently the number of
points with rational coordinates the
curve passes through. It was already
known that curves of genus 0 always
have either no rational solutions or in-
finitely many, and the infinite cases are
always easy to describe. Mordell con-
jectured that all curves of genus 2 or
greater have at most finitely many ra-
tional solutions. In 1983 Mordell’s con-
jecture was proved (to the surprise of
the mathematical community) by Gerd
Faltings, a young mathematician then
at the University of Wuppertal in Ger-
many. Curves of genus 1—namely the
elliptic curves—remain as an interme-
diate case with no simple way of telling
whether the number of solutions is fi-
nite or infinite.

Chords and Tangents

On an elliptic curve, the number of ra-
tional points can be either finite or infi-
nite, depending on the coefficients of
the specific equation. In all cases, how-
ever, the set of rational points has a rich
structure, allowing them to be explored
systematically.

If you draw a line, or chord, between
any two points on an elliptic curve—
whether the points are rational or irra-
tional—the line can be extended to in-
tersect the curve at a third point. Some
obvious exceptions to this rule are
chords drawn between points that
have the same x coordinate, so that the
chords are parallel to the y axis. These
“vertical” chords extend to infinity
without striking the curve again. The
exceptional nature of the vertical
chords can be eliminated by adding to
the curve a single extra point at infinity,
where all the vertical chords can be
imagined to converge. This extra point
is called the origin and is designated
by the symbol O; any vertical chord
must pass through O. Thus when the
origin is made a part of the curve,
every chord intersects the elliptic curve
at exactly three points.

There is a similar construction for
lines drawn tangent to an elliptic
curve: Every tangent intersects the
curve at one point in addition to the
point of tangency. In the special case of
vertical tangents, the additional point

elliptic curves

Figure 5. Cubic equations define curves of various forms, only some of which qualify as
elliptic curves. The curves shown in both of the upper graphs are elliptic curves; one of
them consists of two separate pieces, whereas the other is a single connected strand. The
curves in the lower graphs are not elliptic because they have singularities, or points where
the curve does not have a unique tangent. Both curves are singular at the point (0, 0).

of intersection is the origin O. A tan-
gent can be thought of as the limiting
case of a chord that gets shorter and
shorter until finally its end points coin-
cide. In effect, then, the tangent is a
chord that passes through the same
point twice. According to this line of
reasoning, every chord or tangent
drawn on an elliptic curve has exactly
three points of intersection. It is to pre-
serve this property that cubic curves
with singularities are excluded from

the category of elliptic curves, since
cusps or other singularities are points
that do not have a unique tangent.
The geometry that makes possible
the chord-and-tangent construction on
elliptic curves becomes more remark-
able when attention turns to the ratio-
nal points on the curve—the points
whose ¥ and y coordinates are both ra-
tional numbers. When a chord is drawn
through any two rational points, the
third point of intersection is also ratio-
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nal (see Figure 6). Similarly, a tangent to
the curve drawn at a rational point
strikes the curve at another rational
point. (For the purposes of this analysis,
the origin O is considered a rational
point.) Thus the chord-and-tangent
procedure offers a mechanism for gen-
erating rational points: Given any one
or two points known to be rational,
there is a direct method for construct-
ing more points. Indeed, it follows
from a theorem of Mordell that there is
a finite set of rational points from
which the chord-and-tangent mecha-
nism can generate all the rational
points on the curve.

With one further refinement, the set
- of rational points on an elliptic curve
takes on the structure of a mathemati-
cal group. A group consists of a set of
elements along with a “composition
law”—a way of combining two ele-
ments that always yields another ele-
ment of the group. The classic example
of a group is the set of integers with
the operation of addition; adding any
two integers yields another integer. A
group must have an identity element,
which in the case of integer addition is
zero; for any integer 1, n + 0 = n. Also,
each element n must have an inverse,
which combines with n to yield the

identity element; in the case of integer
addition, —# serves as the additive in-
verse of 1.

The rational points on an elliptic
curve form a group under a composi-
tion law just a little more complicated
than the chord-and-tangent process ex-
plained above. The composition proce-
dure works as follows (see Figure 7). In
order to “add” two points p and g, first
extend the chord between them to find
the third point of intersection, which
can be labeled r. Now form the chord
between the origin O and r, and extend
the chord to produce another point, r'.
This new point r' is the “sum” of p
and q. The reason for introducing the
point O into this operation is that it
serves as an identity element. For any
point p, p + O = p. Thus the group
composition law makes it possible to
perform a kind of arithmetic on the ra-
tional points of an elliptic curve.

An arithmetic operation of particu-
lar importance is adding a point to it-
self. Geometrically, this process is just
the case of point addition that makes
use of a tangent instead of a chord.
Arithmetically, it is a group-law ana-
logue of multiplication by an integer.
The sum P + P is equivalent to the
product 2P. Adding P yet again to the

result of these operations yields the
product 3P, and so on. For some points
this process can be continued indefi-
nitely without ever returning to a point
already visited; such points are said to
be of infinite order. Other points, of fi-
nite order, can be added to themselves
only a finite number of times before
they yield O as the product; after that,
adding P to O yields P again by defini-
tion, and the finite sequence of points
repeats. Figures 8 and 9 show some ex-
amples of finite-order and infinite-or-
der points.

What does the arithmetic of elliptic
curves have to do with Fermat's last
theorem? The connection is through
the concept of a curve’s being modular,
or associated with a modular form,
which we turn to next.

What It Means to Be Modular

The study of elliptic curves can be
traced back to Fermat and even to Dio-
phantus, and modular forms have
their origins in the 19th century, but the
two areas have been deeply linked
only since 1955. In that year Yutaka
Taniyama, a young Japanese mathe-
matician, made a bold conjecture,
which initially took the form of a series
of problems presented at a conference.

Figure 6. Chord-and-tangent process illuminates the relations of rational points on an elliptic curve. The procedure works as follows.
Given any two points on the curve with rational coordinates, construct a line connecting them and extend it to infinity in both directions.
The line will either be a chord that intersects the curve at a third rational point (left diagram), or it will be tangent to the curve at one of
the selected points (middle diagram). A tangent can be thought of as a kind of degenerate chord that intersects the curve twice at the same
point, so that the tangent, too, effectively touches the curve at three rational points. The only apparent exceptions to this rule are chords
and tangents parallel to the y axis (right diagram). To cope with these exceptions, an extra point, called the origin, is added to the curve;
the origin is a point at infinity, but it is shown here as a line at the top of each diagram. The origin becomes a third point on all vertical

chords and tangents, which accordingly have the same geometry as other chords and tangents.
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Figure 7. Rational points on an elliptic curve form a mathematical group under a slightly more elaborate version of the chord-and-tangent
process. The group composition law provides a means of “adding” two points (left diagram): First draw a chord connecting them and find
the third point of intersection; then construct another chord between this third point and the origin. The third point on this latter chord is
the sum of the original two pomts To add a point to itself (middle diagram), construct a tangent rather than a chord in the first step, then
again draw a line from the origin through the third point identified by the tangent. The importance of the origin in these procedures is
that it serves as the identity element of the group. Adding any point to the origin (right diagram) yields the same point again.

The conjecture was made more precise
by Goro Shimura of Princeton Univer-
sity, and it is now known as the Taniya-
ma-Shimura conjecture. It contends
that all elliptic curves with rational co-
efficients are modular. At the time, this
proposal was viewed with a certain
skepticism, but it has grown in credi-
bility over the years. Even before Wiles
undertook to prove the Taniyama-
Shimura conjecture, many mathemati-
cians had come to believe that it is
probably true.

One reason the Taniyama-Shimura
conjecture seemed so unlikely at first
is that elliptic curves and modular
forms are very different kinds of ob-
jects. To see how they are connected,
consider again the set of rational points
on an elliptic curve. There are various
questions one might ask about these
points for any given curve. How many
are there? If the number is finite, is
there a method for counting them? Are
there any patterns that govern where
they appear along the curve? Can they
be classified?

A fruitful approach to such questions
is to think of the equation defining an el-

liptic curve not as an equivalence but as a
congruence modulo some prime num-
ber p. In other words, “reduce” the equa-
tion by dividing all values of x and y by
p. saving only the remainder. We can il-
lustrate this process for the elliptic curve
defined by the equation 12 + y =x3 -2
The curve has just five rational points,
name]-y (O.r 0): (01 _l)r (11 O)i (1l _1) and
the origin. Now consider the equation
as a congruence modulo 7. All of the
five points listed above remain solu-
tions of the equation modulo 7. What is
more, additional points, which do not
lie on the curve itself, become solutions
when the equation is reduced modulo
7. For example, the point (5, 1) becomes
a solution because 12 + 1 modulo 7 is
congruent to 5 — 52 modulo 7 (they
both leave a remainder of 2). Reducing
modulo 5 yields a different set of solu-
tion points, and reducing by 13 gener-
ates still another set.

In general, reduction is not possible
for all primes. After the reduction, the
equation must still specify a nonsingular
curve, which means that the three roots
must remain distinct modulo p. For an
equation of the form 32 = x(x - A)(x + B),

with A and B meeting the various crite-
ria set forth above, this condition is sat-
isfied for all p that do not divide the
product AB(A + B), or equivalently ABC.
For the specific curve 12 = x(x — 3)(x + 32)
the admissible primes are those that
do not divide 3 x 32 x 35 = 3,360.
Hence the curve cannot be reduced by
the primes 2, 3, 5 and 7, since they all
divide 3,360. The product of the
primes that divide ABC—in this case
2 X3 x5x7 =210—is called the con-
ductor of the elliptic curve; it specifies
the set of primes that give such “bad
reductions.”

What is gained by reducing an ellip-
tic curve modulo p? There is one imme-
diate benefit: The number of rational
points on the reduced curve is guaran-
teed to be finite. Exploring a finite object
is often easier than studying an infinite
one. Beyond this consideration, there is
the hope that “local” solutions, relative
to a specific prime, may reveal some-
thing about the “global” solutions to the
original equation. In particular, one can
study an elliptic curve by counting the
number of solutions modulo p for many
primes p (always excluding those that
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Figure 8. Repeated addition under the group law reveals the “order” of a point. Here, on the elliptic curve defined by the equation y2 + y =
23 + a2, the point (0, 0) is added to itself, then to the result of that operation, then to the next sum, and so on. The first addition (far left)
yields the sum (1, 1), then adding (0, 0) to (1, -1) (second from left) yields (1, 0). The next sum (third from left) is (0, -1), but adding this

divide ABC). Observing how the num-
ber of points increases as p increases re-
veals information about the curve and
especially about the group law for the
rational points. The information is en-
coded in a mathematical object called
an L-series, made up from a recipe that
begins with numbers designated a,,
which measure how many points mod-
ulo p there are for each prime p. The ex-
act relation between the L-series and the
size of the group of rational points is the
subject of an unproved conjecture; the
basic idea is that a curve with many ra-
tional points should have many points
modulo p for various p. The converse
should also be true.

The complete L-series is an infinite
product, incorporating information from
infinitely many primes, but finite ap-
proximations can be calculated to any
desired accuracy for any specific elliptic
curve by the direct method of counting
rational points modulo many primes.
This process is an arduous one, however,
and the resulting L-series is in a format
that makes it hard to use in further cal-
culations. Modular forms offer a remark-
able shortcut—at least for certain elliptic
curves, and possibly for all of them.

Modular forms come from a rather
different realm of mathematics: They
are analytic functions defined on the
complex numbers. (A complex number
has both a real and an imaginary part;
the imaginary part is a multiple of , the
square root of —1.) Just as the real num-
bers can be arranged on a continuous
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line, the complex numbers form a con-
tinuous plane, where every point has
coordinates written as x + iy. Modular
forms are defined on the complex up-
per half-plane, the part of the complex
plane with y > 0. In other words, a
modular form is a function that takes
each complex number from the upper
half-plane and returns as its value an-
other complex number (or possibly the
same number).

A salient characteristic that distin-
guishes modular forms among the
functions of complex analysis is that
they are essentially invariant under cer-
tain transformations of the upper half-
plane. These transformations, defined
by square integer matrices, are known
as fractional-linear transformations. For
example, each modular form fis invari-
ant under integer translations: The val-
ue of f at the complex number z is the
same as its value at z + 1. In other cases
the modular form is not strictly invari-
ant but is multiplied by a simple factor.

‘The “level” of a modular form fis a pos-

itive integer that determines the set of
fractional-linear transformations that
leave finvariant. Roughly speaking, the
space of modular forms of level N
grows as N grows. For example, there
are no nonzero modular forms of level
12 or of level smaller than 10, but there
is a nonzero form of level 11; it is unique
up to multiplication by a constant.

In connection with Fermat's last the-
orem and the Taniyama-Shimura con-
jecture, an important property of mod-

ular forms is that they give rise to L-
series analogous to those coming from
elliptic curves. Because modular forms
and L-series both belong to the realm
of complex analysis, studying the L-se-
ries attached to an elliptic curve be-
comes easier once it is known that the
same L-series is also attached to a mod-
ular form. And it is the content of the
Taniyama-Shimura conjecture that for
each elliptic curve there is a modular
form whose L-series is the same as that
of the elliptic curve.

Since elliptic curves are algebraic ob-
jects, the Taniyama-Shimura conjecture
represents a deep connection between
algebra and complex analysis. Implau-
sible as the conjecture seemed at first, it
is now supported by a vast amount of
numerical and philosophical evidence.
Wiles’s proof of the conjecture for a
major class of elliptic curves can be
viewed as further support for this re-
markable connection.

Proving E Is Not Modular

The sequence of events leading up to
Wiles’s announcement last summer
was set in motion in 1985 with a con-
jecture by Gerhard Frey of the Univer-
sity of the Saarlands in Germany. It
was Frey who drew attention to equa-
tions of the form y? = x(x — A)(x + B),
where A and B are supposed to come
from a counterexample to Fermat’s
last theorem. The corresponding ellip-
tic curve is now often called the Frey
curve. Because of constraints on the
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point to (0, 0) (fourth from left) leads to the origin. Since the origin is the identity element, adding (0, 0) to the origin (fifth from left) neces-
sarily returns the process to (0, 0) again. The point (0, 0) is said to be of order five, since five additions bring it back to the starting posi-
tion. The sequence of operations is summarized in the diagram at far right.

numerical values of A and B, Frey
understood that the elliptic curve
y? = x(x — A)(x + B) cannot be modular.
He was unable to give a rigorous
proof, but Jean-Pierre Serre of the Col-
lege de France soon clarified precisely
what was needed to justify Frey’s in-
sight: He formulated an explicit conjec-
ture about modular forms whose truth
would imply that Frey was correct. A
year later one of us (Ribet) supplied the
proof. This result established a direct
link between elliptic curves and Fer-
mat’s last theorem, since the Taniyama-
Shimura conjecture asserts that all el-
liptic curves are modular.

How can one demonstrate that an el-
liptic curve is or is not modular? For a
specific equation with known, numeri-
cal coefficients, there are computation-
al methods of answering such ques-
tions; the methods are arduous but
reliable. The computational methods
cannot be employed in this instance,
however, because the object of study is
a curve whose existence is hypotheti-
cal. We can write down Frey’s equation
as 2 = x(x — A)(x + B), but unless we
know of a counterexample to Fermat's
last theorem, we cannot fill in numeri-
cal values for A and B; and if the theo-
rem is true, of course, there are no such
values. Since there is no hope of calcu-
lating the properties of a curve we can-
not exhibit, the only recourse is to
choose a less direct strategy.

The first stage in this process is to
examine a special subgroup of the

points on an elliptic curve. For a curve
E and a chosen integer m, this sub-
group is designated E[m], and it con-
sists of those points of order dividing
m; such points are called the m-divi-
sion points. Recall that the order of a
point is the number of times it must be
added to itself before the result is
equal to the origin O. Thus the group
E[m] is made up of all points that after
multiplication by m (or equivalently
after being added to themselves m
times) yield the origin. There is a rea-
son for scrutinizing this rather curious
set of points. If the elliptic curve E is
modular, then a study of E[m] reveals
information about the modular form
associated with E. Moreover, there is a
sense in which E[m] itself can be mod-
ular, and if you can show that E[m] is
modular for an infinite number of m,
then you can show that E is modular.
Conversely, if you can show that E[m]
is not modular for some value of i,
then you know that E cannot be mod-
ular either.

A couple of caveats need to be men-
tioned here. First, on some elliptic
curves there are points of infinite or-
der, which will not be included in the
set E[m] for any finite value of m. Sec-
ond, the points in E[m] do not neces-
sarily have integer coordinates or
even rational coordinates. The most
that can be said of the coordinates is
that they are algebraic numbers: solu-
tions of algebraic equations with ra-
tional coefficients.

How can one prove that E[m] is not
modular for some m? The key is to set
m equal to 1, the exponent in the hy-
pothetical counterexample to Fermat's
last theorem. As noted above, in any
such counterexample the product ABC
is necessarily a perfect nth power. But
making ABC an nth power gives the
group E[n] some unusual properties,
akin to those of the n-division points
on an elliptic curve of conductor 2. It is
already known, however, that no ellip-
tic curve of conductor 2 can possibly
exist; the smallest conductor is 11. The
suggested connection with curves of
conductor 2 comes very near to being
a contradiction that would prove Fer-
mat’s last theorem directly, without
reference to the Taniyama-Shimura
conjecture. Unfortunately, no one has
yet found a way to turn the hint into a
rigorous demonstration. The actual
proof that E[#] is not modular follows
a more circuitous path. On the hypoth-
esis that E[#] is modular, it must be as-
sociated with a modular form of some
minimal level. The essential point of
the proof is to show that this level is 2,
which is impossible since there are no
nonzero modular forms of level 2.

The argument supporting this con-
clusion is an intricate one, which wan-
ders into still denser thickets of modern
arithmetic. The place to begin is to look
at the action of a group of transforma-
tions, called a Galois group, on the ele-
ments of E[m], for each value of n. The
definition of the Galois group will not

1994  March-April 153



be given here; it is enough to say that
each element of the group induces a
permutation that “mixes up” the points
in E[m] but nonetheless preserves the
addition law of points. In symbols, sup-
pose that ¢ is an element of the Galois
group and P a point in E[m]: Then just
as mP =0, so m(cP) = O.

The permutations induced by the ele-
ments of the Galois group can be repre-
sented by 2 x 2 matrices whose entries
are integers modulo m. The trans-
formation arising from ¢ is thus a ma-
trix p(o). It is possible to view the points
of E[m] as column vectors of integers
modulo m in such a way that the per-
mutation induced by ¢ becomes ma-
trix multiplication by p(c). One says
that the matrices form a representation
of the Galois group. It is noteworthy
that the representation preserves the

composition law of the Galois group;
if 6 and 1 are elements of the group
that combine to form a transformation
v, then p(v) is just the product of the
matrices p(c) and p(T).

Let us pause to look back over our
path so far. We began with the elliptic
curve E, defined by an equation in
which the numbers A and B are sup-
posed to come from a counterexample
to Fermat’s last theorem. We turned
then to the discrete set of points E[n1],
defined to include just those points
whose order divides the integer m. We
examined how a certain Galois group
acts on E[m], and in particular looked
at the 2 x 2 matrices that form a repre-
sentation of this group. Now at last we
can make a connection with the ques-
tion of modularity. It turns out that the
group of transformations we have

Figure 9. Some points of certain elliptic curves have infinite order: They can be added an
unlimited number of times without ever reaching the origin. On the curve defined by
y* = x(x = 3)(x + 32) all rational points except the three points on the x axis—(0, -32), (0, 0)
and (0, 3)—are of infinite order. The diagram shows the first few points in the sequence of
points generated by repeated addition of (-4, 28). The first sum is (4, 12); then adding
(4, 28) to this point yields (25, -70). The progression of sums can be continued indefinite-
ly without ever reaching the origin and thereby entering a cycle.
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reached through this tortuous argu-
ment supplies information on the ele-
ments of the L-series for the curve E.
The existence of a formula for generat-
ing this series is one way of defining
modularity.

The connection between the L-series
and the Galois group comes about as
follows. As noted above, the coeffi-
cients of the L-series are calculated by
reducing the curve E modulo p for var-
ious primes p. Each p yields one term
in the series; specifically, the L-series
coefficient a, is equal to the difference
between 1 + p and the number of ratio-
nal points on E reduced modulo p. But
now the set E[m] of m-division points
provides another way of interpreting
a,, at least for most prime numbers p.
gi:recifically, for each p there is a distin-
guished element o, of the Galois group
and a corresponding matrix p(c,) that
depends on m and p. The sum of the
two diagonal elements of this matrix is
a number modulo m that is congruent
to the integer a,.

The ability to recapture , modulo n
via Galois theory is the starting point
of Ribet’s proof that Frey’s elliptic
curve E cannot be modular. If you
adopt the hypothesis that E is indeed
modular, then the unusual properties
of E[n] mentioned above allow you to
find a nonzero modular form of level 2
that is related modulo  to the form as-
sociated with E. But there is no such
form of level 2, contradicting the origi-
nal supposition that E is modular. In
this way the argument reaches its final
conclusion: If there is a counterexam-
ple to Fermat's last theorem, then there
must be at least one elliptic curve that
is not modular, contrary to the Taniya-
ma-Shimura conjecture.

Proving E Is Modular

Wiles has said that he began work on a
proof of the Taniyama-Shimura conjec-
ture as soon as he learned that it would
imply a proof of Fermat's last theorem.
His campaign to solve the problem
was to last seven years—and perhaps
it has not ended yet.

Wiles’s proof does not quite encom-
pass the full Taniyama-Shimura conjec-
ture; it excludes certain cases. When a
curve is reduced modulo p, it is possi-
ble for all three roots to coalesce into a
single numerical value. An example is
the equation y2 = x(x — 10)(x + 15),
where the three roots 0, 10 and -15 are
all congruent to zero modulo 5. Wiles’s
proof does not apply to curves of this
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kind. It is restricted to semistable elliptic
curves, which are those with the prop-
erty that whenever two of the roots co-
alesce modulo p, the third root remains
distinct. For an equation of the form
¥? = x(x — A)(x + B), the curve is semi-
stable if no prime p divides both A and
B. This condition clearly holds for the
example 2 = x(x - 3)(x + 32). In fact it
holds for any equation derived from a
counterexample to Fermat's last theo-
rem, because of the congruences mod-
ulo 4 and modulo 32 imposed on A
and B. Hence the elliptic curve E de-
rived from the counterexample must
be semistable.

In setting out to prove that all semi-
stable elliptic curves are modular,
Wiles worked with the same mathe-
matical tools employed in Ribet’s
proof, and many more in addition—in-
cluding some that did not yet exist
when Wiles began in 1986. Like Ribet,
Wiles considers the set of points E[m]
for which mP = O, and the resulting
representations of the Galois group.
But in a crucial respect Wiles's task is a
harder one. Where exhibiting a single
counterexample was enough to com-
plete Ribet’s proof, Wiles must estab-
lish that E[m] is modular for an infinite
set of integers .

Wiles’s basic strategy is to study the
family of sets E[3], E[9], E[27], etc., or in
other words the family defined by E[m"],
where v is any positive integer. There is
a good reason for choosing this particu-
lar series: In about 1980 Robert . Lang-
lands of the Institute for Advanced
Study and Jerrold B. Tunnell of Rutgers
University proved that E[3] itself is mod-
ular (Langlands 1980; Tunnell 1981).
What the Langlands-Tunnell theorem
means is that for any elliptic curve E, the
set of points of order 3 forms a group
that has an associated modular form.
The trick is to extend that result to the
entire family of sets E[3].

Wiles effects this extension via argu-
ments that hinge on representations of
the Galois group. But there is a further
complication, albeit a minor one. For
the proof to work, the representation
defined by the 3-division points of E
must be irreducible, in the sense that it
cannot be built out of smaller represen-
tations. Wiles sidesteps this problem
through a clever tactic. He shows that
if E is semistable, then either the repre-
sentation coming from the 3-division
points of E is irreducible, or else the
representation arising from the 5-divi-
sion points of E is irreducible. He then

Figure 10. “Reducing” the equation of an elliptic curve modulo a prime number p yields a
new set of points that can be regarded as solutions of the equation modulo p. For the equa-
tion 12 + i = x3 + »? there are only five rational solutions: (0, 0), (1, 0), (0, -1), (1, -1) and the
origin (left diagram). When the equation is reduced modulo 7 (right diagram), five more
points satisfy the resulting congruence (biue dots). The original five points also remain solu-
tions (red dots), although (0, -1) and (1, -1) are transformed into (0, 6) and (1, 6) by the modu-
lo operation. Reduction modulo p is allowed only if the equation does not become singular.

Fermat equation
an+ bn=en

l

Elliptic curve E
¥2 = X(x= an)(x-+ b)

A b

E{p) E[m]
Rational points Points whose order
of E modulo p divides m

#E(p) p(o)
Number of rational Representations of

points on E modulo p the Galois group

l l

a,=1+p—+#E(p) a, mod m = trace p(c,)
pth coefficient pth coefficient modulo m
of the L-series of the L-series for E

L-series

encodes information
about rational points of E

Figure 11. L-series is a mathematical object that has a crucial role in the proof of Fermat's last
theorem. One route to calculating the L-series (left branch of diagram) is to reduce the elliptic
curve E modulo p for many primes p; a formula relates the number of rational points on E mod-
ulo p to the pth coefficient of the L-series. The other route (right branch of diagram) examines
the set E[s] of points whose order divides i for various integers m; a group of transformations
that act on this set yields information modulo m about the coefficients of the L-series.
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supplies an elegant argument that al-
lows him to work with the 5-division
points when necessary, even though
E[5] is not covered by the Langlands-
Tunnell theorem.

At this point in the proof Wiles has
several collections of representations.
Some of them come from modular
forms and are therefore modular by
definition. Others come from the ellip-
tic curve E, and the aim is to prove that
they are modular. It is possible to link
up the various collections by means of
a technique called deformation theory,
introduced by Barry Mazur of Harvard
University. For this scheme to work,
Wiles must show that every “deforma-
tion” of a representation p that might
plausibly be modular really is modular.
His approach is based on counting: He
endeavors to show that there are no
more deformations than there are
modular forms. This is the most diffi-
cult and technical part of the proof. It
entails calculating an upper bound on
the size of an object called a Selmer
group. And it is in this part of the proof
that weaknesses have been reported.

Wiles announced his result at the
end of a series of three lectures deliv-
ered at the new Isaac Newton Institute
for Mathematical Sciences at the Uni-
versity of Cambridge. Having stated
his main theorem—the Taniyama-
Shimura conjecture applied to semi-
stable elliptic curves—he added a
corollary: If a* + b* = ¢, then abc = 0. It
seemed only appropriate that Fermat’s
last theorem be treated as an incidental

afterthought, as something to be men-
tioned in passing—as Fermat himself
had treated it 350 years earlier.

Wiles's proof (if it is confirmed) is a
positive, constructive result. If the proof
had pertained only to Fermat’s last the-
orem, it would have been a purely neg-
ative statement, denying the existence
of certain integers (those satisfying the
Fermat equation a* + b" = c). But by
proving a part of the Taniyama-Shimu-
ra conjecture, Wiles has also estab-
lished that certain objects do exist—
namely modular forms associated with
all semistable elliptic curves. For exam-
ple, Wiles’s result implies that the
equation y? = x(x - 3)(x + 32) has such
an associated form.

Wiles's proof is written out in a 200-
page manuscript submitted to the jour-
nal Inventiones Mathematicae. The paper
has five chapters, each of which has
ample content to stand up as a journal
article on its own. Most of the major re-
sults in arithmetic algebraic geometry
of the past 25 years are cited.

The manuscript was sent to half a
dozen referees soon after the Cam-
bridge talks but was not released for
any wider circulation. What did circu-
late widely were rumors of trouble with
the proof, and last December Wiles
posted a note of explanation in the
Usenet news group sci.math: “During
the review process a number of prob-
lems emerged, most of which have been
resolved, but one in particular I have
not yet settled. The key reduction of
(most cases of) the Taniyama-Shimura
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conjecture to the calculation of the
Selmer group is correct. However the fi-
nal calculation of a precise upper bound
for the Selmer group... is not yet com-
plete as it stands. I believe that I will be
able to finish this in the near future us-
ing the ideas explained in my Cam-
bridge lectures.” In February, when
Wiles began a series of lectures at
Princeton, the gap had not been filled.

The setback is naturally disappoint-
ing, but there is every reason to share
in Wiles's optimism. Moreover, even in
the worst-case scenario, if the flaw can-
not be repaired, the line of inquiry is
surely not exhausted. There is more yet
to come from modern arithmetic.
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Errata and Addendum

In the article “Fermat’s Last Theorem and
Modern Arithmetic” (March-April) certain
constraints imposed on the equation A + B=C
were expressed incorrectly. On page 148 the
article states that A = 3 modulo 4, C = 1 mod-
ulo 4 and B is divisible by 32. These condi-
tions are incompatible. They should have
been applied to the symmetrical variant of
the equation, A + B + C = 0, in which C is re-
placed by —C. (The replacement is permissible
because C represents c” in Fermat’s equation,
and 7 is odd.) One of the variables is divisible
by 32; since all three variables play identical
roles in the equation, no generality is lost by
supposing that this variable is B. Exactly one
of the remaining variables is 3 modulo 4, and
one can suppose that this variable is A. The
remaining variable, C, is 1 modulo 4.

In the article “The Predatory Behavior of
the White Shark” (March—April) the num-
ber of white-shark attacks analyzed on
videotape recordings should have been 129.

The authors of the article “Behaviorism,
Congitivism and the Neuropsychology of
Memory” (January-February), Herbert L.
Petri and Mortimer Mishkin, wish to cred-
it the seminal work on instrumental con-
ditioning by Ruth W. Colwill (see especial-
ly material in The Psychology of Learning and
Motivation, Academic Press, 1986).
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