
The Science of Computing

The Wheel of Fortune

Brian Hayes

Any one who considers arithmetical methods of producing random digits is, of course, in a state of sin." These
wry words were written 40 years ago by John von Neu
mann, the Hungarian-American mathematician and pio
neer of computing. He went on to explain: "As has been
pointed out several times, there is no such thing as a ran
dom number—there are only methods to produce random
numbers, and a strict arithmetic procedure of course is not
such a method."

Von Neumann's argument would seem to rule out any
possibility of having a computer generate random numbers.A properly functioning digital computer must at all mo
ments follow an algorithm—von Neumann's "strict arith
metic procedure"—which means the computer's actions are
entirely deterministic. The path taken by the algorithm maybe tangled and tortuous, but in prindple every step could be
predicted in advance; the outcome is never a matter ofchance or caprice. If you were to execute the algorithm
again and again from the same initial state, the result would
always be the same.

The computer's incomprehension of randomness is trou
blesome in certain areas of stientific computing, which de
mand vast quantities of chaos. One of the most voradous
consumers of random numbers is the technique called the
Monte Carlo method, named in honor of the well-known
generator of random integers (between 0 and 36) in the
Mediterranean prindpality. Securing an adequate supply of
high-grade disorder for Monte Carlo calculations has been a
challenge for some decades. Recent observations indicate
that the problems are not yet fully solved.

Divagations of a NeutronThe idea behind the Monte Carlo method goes back two
centuries or more, but the modern form of the technique
was invented at Los Alamos shortly after World War II. The
inventor was Stanislaw Ulam, who was working on a prob
lem in the diffusion of neutrons (Metropolis and Ulam
1949). Consider a neutron passing through a lump of urani
um. The neutron collides with many atomic nuclei, and in
each collision it can either bounce off the nudeus or else be
absorbed by it; in the latter case there is a chance the nude
us will undergo fission and thereby liberate more neutrons.
Ulam was trying to estimate how many neutrons would
eventually escape from the lump and how many would re-
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main behind to sustain a fission reaction. This is a question
of some practical interest.

When Ulam took up the problem of neutron diffusion,
the individual collision events were already well under
stood. For any single collision, experimental data gave the
probability of scattering or absorption or fission. Neverthe
less, working out the ultimate fate of the average neutron
was beyond the capacity of conventional mathematical
methods. The equations defining the sums and products of
all those probabilities were too large to be solved directly.

Ulam's answer was to play the part of a neutron. He
would imagine moving through the crystal lattice, occa
sionally colliding with atomic nudei. At each collision hewould dedde randomly what should happen next, based
on the known probabilities. One way to make these ran
dom dedsions is by spinning a roulette wheel. For example,
if scattering is twice as likely as absorption, and fission is
rather unlikely, then the following scheme might work.
Whenever the wheel produces a number between 1 and 24,
the neutron is scattered; a number from 25 through 36 indi
cates absorption; and a 0 predicts fission. (The real proba
bilities are more complicated, and they depend on factors
such as the neutron energy and whether the nudeus is ura
nium 235 or uranium 238.) By following a neutron for hun
dreds of collisions, and then repeating the calculation for
thousands of neutrons, one can estimate important statisti
cal properties of the neutron trajectories.

Ulam refined and developed his method in collaboration
with von Neumann, Nicholas Metropolis and other col
leagues at Los Alamos. Within a few years it had been ap
plied to a variety of problems in physics, statistical mechan
ics and chemistry. Today it is an indispensable tool in fields
ranging from solid-state physics to economics.

Manufacturing RandomnessIn prindple, Monte Carlo calculations can be done by hand,
but problems of practical size can be undertaken only with
high-speed computing machinery. (It is no acddent that the
technique evolved within one of the first groups of peopleto have regular access to such machinery.) But if a computer
is to carry out a Monte Carlo simulation, the computer must
have the equivalent of a roulette wheel—that is, some
source of random numbers.

Random-number generators based on unpredictable
physical phenomena such as noise in electronic circuits andthe decay of radioactive nuclei have occasionally been em
ployed in Monte Carlo studies, but they have certain short
comings. There is no way to repeat a sequence of numbers,which complicates the debugging of programs. What is
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Figure 1. Pseudo-random numbers can exhibit a surprising amount of regularity. In each of these panels 256 pairs of pseudo-random numbers
are interpreted as the x and y coordinates of points in a two-dimensional space. At left is the output of a linear-congruential generator whose
period is just 256, so that the entire production of the algorithm is included in the diagram. Because each integer from 0 through 255 appears
exactly once in the sequence of numbers, the points form a crystal-like lattice. In the middle panel 256 numbers have been selected from a
linear-congruential generator whose period is 1,024; the regularity of the pattern has been lessened somewhat but is still apparent. At right the
pattern is suppressed altogether in the output of a shift-register generator, which has a period of more than IO31. Nevertheless, recent
experiments have exposed apparent flaws in some shift-register algorithms.

more important, generators based on physical effects are
too slow; they cannot satisfy the random-number appetite
of modern Monte Carlo simulations.

Tlie alternative to a hardware random-number generator is
von Neumann's "strict arithmetic procedure," and his state of
sin. The idea is to find an algorithm whose output is a se
quence of numbers that "looks" random, and which can pass
statistical tests of randomness, even though the procedure is
entirely deterrrtinistic. Von Neumann himself invented one of
the earliest generators of such "pseudo-random" numbers. It
is called the middle-square method: Begin with an arbitrary
n-digit number, or "seed"; square the seed to yield a number
having 2/7 digits; then select the middle n digits to be the next
pseudo-random value and the seed for further iterations of
the procedure. For example, an initial seed of 6744 is squared
to yield 45481536, with the middle digits 4815 selected as the
next seed value. Continuing in the same way, the next few
values in the series are 1842,3929,4370, 0969 and 9389. This
sequence certainly looks patternless, but the appearance does
not last. After just three more iterations the generator stum
bles onto the value 2500, whose eight-digit square is
06250000; the middle digits are again 2500, and so the series
becomes eternally stuck on this one value. Middle-square se
quences begun with many other seeds degenerate into simi
lar fixed points or short cycles.

Better algorithms for generating pseudo-random numbers
were soon devised, and along with them a body of theory
and practice for evaluating the quality of the results (Knuth
1981). For some years the most popular generators have been
those described as linear-congruential generators, invented
by D. H. Lehmer at about the same time as von Neumann's
middle-square method. Linear congruential generators are
based on a three-step algorithm: Multiply a seed value by a
constant, r; add another constant, c; and finally reduce the
result by a modulus, m, or in other words divide by w and re
tain only the remainder. Much attention has been given to the
selection of optimum values for the constants r, c and m.
What is probably the most widely used generator today has
the values r = 16,807, m = 231 - 1 and c = 0 (Park and Miller
1988). The output of this generator is a stream of numbers
whose appearance is very convincingly random.

Running Out of Numbers
If a sequence of numbers is truly random, then knowing
any one number in the sequence gives you no information
that would help you guess any other number. Judged by
this standard, the sequences generated by both the middle-
square method and the linear-congruential algorithm are
not random at all, since knowing any one value allows you
to predict all subsequent values. Nevertheless, the numbers
have statistical properties indistinguishable from those of
genuine random sequences. For example, in a uniformly
distributed random stream of decimal digits, all 10 digits
from 0 to 9 should be equally represented on the average, as
should all 100 pairs of digits from 00 to 99 and all 1,000
triplets from 000 to 999. Good linear-congruential generators
pass this test, and many other empirical tests as well. The
numbers they produce appear patternless. If you were to
look at a true random sequence and at a pseudo-random se
quence, you could not tell which is which.

But the numbers produced by common implementations
of Lehmer's method do have one serious failing: There just
aren't enough of them. Every number produced by a linear-
congruential generator is an integer less than m, and so the
generator can yield no more than /// distinct values. If it is
asked for m + 1 numbers, it must repeat itself at least once.
Furthermore, because each number in the sequence is de
termined entirely by the preceding number, repeating even
one value leads into a cycle that the generator can never es
cape. Suppose 57 is followed by 43 and then by 92 when the
generator is first started; when 57 appears again, it must
necessarily be followed by 43 and 92 again. From that mo
ment on, the generator is stuck in its own rut.

Tlie best linear-congruential generators have the longest
possible period before repetition, namely m (or m -1 for gen
erators with c = 0). The popular m value 231 -1 is equal to a
little more than 2 billion, which seems like a great many ran
dom numbers, but there are computers on desktops today
that could run through that stock of numbers in 10 minutes.
Large Monte Carlo studies demand an ampler supply.

Tlie shortage of random numbers becomes particularly
acute when the numbers are used in pairs or triplets or larg
er groups. Suppose a Monte Carlo study calls for choosing a
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random point within a three-dimensional cube m units on a
side. The point is selected by interpreting three successive
random values as x, y and z coordinates. The generator pro
duces at most m such triplets (even when each number is
used three times—once each as x, y and z), but the cubical
volume has m3 points. Thus the points that have a chance of
being selected—the "reachable" points—are very sparsely
distributed. Furthermore, if all reachable points are viewed
at once, their distribution looks anything but random; they
form a highly regular lattice, made up of planes tilted at an
angle to the coordinate axes (Marsaglia 1968). Such a lattice
structure is inevitable in the output of any generator that
produces each random number just once in its cycle. Be
cause there are no repetitions, there is exactly one point with
each possible value of the x coordinate, one point with each
possible y value and one point with each z value.

Shift-Register Methods
To avoid these failings, some workers have turned away
from linear-congruential generators to algorithms of anoth
er class, known collectively as shift-register algorithms. In a
shift-register algorithm, each newly generated number de
pends on many previous values, not just on the immediate
ly preceding one. Hence the reappearance of a single num
ber does not cause the algorithm to enter a cycle; that
happens only with the repetition of the entire set of num
bers that enter into the calculation of the next element of
the sequence. Therefore, a shift-register algorithm can have
a very long period.

The simplest shift-register algorithm is based on the Fi
bonacci series, in which each number is the sum of the pre
vious two numbers—in other words, X„ = X,M + X„_2. This
formula can be made to yield pseudo-random numbers be
tween 1 and a modulus m by carrying out the addition
modulo m. Unfortunately, the sequences created by this spe
cific generator do not perform very well on statistical tests of
randomness. More elaborate generators based on similar
principles, however, yield very good results.

Shift-register algorithms were already known in the 1950s
(Green, Smith and Klem 1959). The basic idea is to retain a
list of prior values and then to generate each new pseudo-

Figure 2. Ising model is a conceptual device of solid-state physics that
is generally studied by Monte Carlo methods, which rely heavily on
pseudo-random numbers. The model represents the microscopic
structure of a ferromagnet in terms of atomic spins that can be either
up or down. In traditional Monte Carlo studies a spin is selected at
random and then either flipped or not, with a probability depending
on the temperature and on the effects of neighboring spins. A new
algorithm creates clusters of spins, which are then flipped as a group,
speeding the calculation.

random number by combining two or more elements from
the list. In the Fibonacci algorithm the list is just two ele
ments long. A better generator might keep track of the past
15 values and then form new numbers by calculating the
modular sum of the seventh and the fifteenth entries in the
list; that is, X„ = (X„_6 + X„_14) modulo m. X„ is then put at
the front of the list and all the other values move down one
slot, with the last value (the old X„_14) being discarded. Be
cause of the way entries move through the list, shifting one
position each time a number is generated, the list is called a
shift register.

In this example of a shift-register algorithm, only two
numbers enter directly into each sum, but all 15 numbers
contribute to the period of the generator. To see why this is
so, imagine that after the generator has run for a while, 14 of
the 15 numbers have all returned to their original values,
but one number—call it the oddball—remains different
from its starting value. After a few more iterations, the odd
ball will have shifted down the list to position n - 6 or n -14,
at which point the new X„ must take on a value different
from what it had during the first part of the run. Hence the
generator has not entered a cycle; only when all 15 elements
of the list have returned to their initial values does the out
put of the generator begin to repeat.

The maximum possible period of a shift-register genera
tor is 2'"', where q is the number of binary digits in each
pseudo-random value and p is the number of values re
tained in the list. For a list of 15 numbers of 32 bits each, the
maximum period is 2480, which is equal to about IO144. It is
hard to imagine exhausting such a copious stockpile of
numbers. But the shift-register algorithms have a drawback
of their own. Whereas the linear-congruential method re
quires the user to supply only a single initial value as a seed,
a shift-register algorithm demands p initial values in order
to fill up the shift register. Moreover, the simplest such al
gorithms, like the one described above, turn out to be very
sensitive to the choice of initial values. With a poor choice,
the period may be much shorter than the maximum period.

To strengthen the shift-register algorithms, they have
been made somewhat more complicated. One strategy is to
maintain a longer shift register, or in other words to choose
larger values of x and p in the formula X„ = X„_x + X„_/;.
(Guidance in selecting the best values of x and p comes from
the mathematical theory of primitive polynomials.) Another
approach is to replace simple modular summation with
some other operation. Add-with-carry generators maintain
an auxiliary variable, the carry bit, which is set to 1 when
ever the sum X„_v + Xn_p exceeds some fixed limit; including
this extra bit in the sum increases the generator's period
considerably. Subtract-with-borrow generators employ an
analogous principle. Still another family of shift-register al
gorithms replace modular addition with the exclusive-or
(xor) operation, which is essentially binary addition modulo
2. In most computers .tor is a single hardware instruction,
and so xor generators can be very efficient (Kirkpatrick and
Stoll 1981).

Spin the Atom
After 40 years of development, one might think that the mak
ing of random numbers would be a mature and trouble-free
technology, but it seems the creation of unpredictability is
ever unpredictable. Last year Alan M. Ferrenberg and David
P. Landau of the University of Georgia and Y. Joanna Wong of
IBM were preparing for a series of large-scale Monte Carlo
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simulations. As a test of their programs, they made some pre
liminary studies of a problem for which exact results were al
ready known. They got the wrong answers. Further checking
eventually implicated the random-number generator. Ironi
cally, the problem arose not with comparatively weak algo
rithms such as a linear-congruential generator but with some
of the highly regarded shif t-register methods.

The Georgia-IBM study is focused on the Ising model, a
simplified representation of certain systems in solid-state
physics, such as a ferromagnet, devised in the 1920s by the
German physicists Wilhelm Lenz and Ernst Ising. In a fer
romagnet, nearby atomic spins can reduce their energy by
lining up in the same direction, but thermal perturbations
disrupt the alignment; the equilibrium between these two
tendencies determines the magnetization of the material. In
the Ising model all the physical details of atomic structure
are ignored. The atoms are represented by abstract sites in a
lattice, and each site has just two discrete states, corre
sponding to spin-up and spin-down. Moreover, only inter
actions between immediate neighbors are taken into ac
count; all longer-range influences are ignored.

The classical algorithm for studying the Ising model
works as follows. First, select a site at random (in d dimen
sions this requires d random numbers). Examine the neigh
boring sites and calculate A£, the change in the energy of the
system if the selected spin were reversed. The energy is re
duced (that is, A£ is negative) if flipping the selected spin
brings it into alignment with a majority of its nearest neigh
bors. Next, based on A£ and the temperature, calculate the
probability of a spin flip. The probability is 1 (or in other
words a spin flip is certain) when the transition is energeti
cally favored. The probability declines toward 0 as A£ be
comes more positive and as the temperature is lowered. The
final step in the algorithm is to calculate a random number
X between 0 and 1. If X is less than the calculated probabil
ity, flip the spin; otherwise leave the spin unchanged. Now
repeat the entire procedure a few thousand or million or
billion times until the system reaches equilibrium.

In spite of its simplifications, the Ising model reflects
some important properties of real ferromagnets. In particu
lar, as the temperature is lowered through a critical value
called the Curie temperature, the system undergoes a phase
transition: It becomes magnetized. At high temperature the
spins fluctuate rapidly, and there is no long-range order in
their arrangement. As the temperature falls, the spins be
come organized into magnetic domains, which grow larger
and more stable as the system cools further. This sponta
neous emergence of order out of chaos near the critical point
is of much interest; unfortunately, at just this point the algo
rithm begins to fail. As the spin fluctuations become slower,
the number of Monte Carlo steps needed to reach equilibri
um rises sharply, making accurate simulations impractical.

This issue of "critical slowing down" is addressed in a new

Figure 3. Evolution of the Ising model slows as the temperature falls
toward a critical point, Tc. In these snapshots of a small two-
dimensional Ising model, a purple square represents an up spin and a
green square indicates a down spin. At high temperature there are
small-scale variations in spin direction, and there are also rapid
fluctuations in spin direction at any given site. As the temperature is
reduced, the domains of aligned spin grow larger, and the
fluctuations also become slower. Near the critical point, this "critical
slowing down" makes the one-spin-at-a-time Monte Carlo algorithm
impractical; cluster methods are faster, but they may be incompatible
with certain random-number generators.

p-vassimm
step 8,000 temperature = 5.0 Tc

step 160,000 temperature = 1.05 Tc
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Ising-model algorithm developed by Ulli Wolff of the Uni
versity of Kiel, inspired by earlier work of Robert H. Swend-sen and Jian-Sheng Wang of Carnegie-Mellon University
(Wolff 1989, Swendsen and Wang 1987). Instead of flipping
spins individually, Wolff's method works on clusters of spins;the element of randomness enters in forming the clusters.
The algorithm has the following steps. Choose one site at ran
dom, which becomes the nucleus of a cluster, then visit each
of the site's neighbors. A neighbor may or may not be added
to the cluster, depending on a probability determined by the
energy and the temperature. When a neighboring site is
added to the cluster, all of its neighbors are visited in turn,
and this process of agglomeration continues recursively until
all neighbors have been visited. Then the entire cluster is
flipped. Wolff's algorithm has the attractive property that the
clusters tend to grow larger as the temperature falls, com
pensating for the critical slowing down. Surprisingly, it can be
proved that the algorithm will always yield the same results
as the single-spin-flip method—at least when both algorithms
are given truly random numbers.

The Wages of Sin
On a two-dimensional lattice, the properties of the Ising
model are known exactly (McCoy and Wu 1973). Lars On-
sager of Yale University solved the model in 1944, using an
alytical techniques rather than simulation. Hence it is possi
ble to calculate physical properties such as the energy or
specific heat of a two-dimensional Ising model. For this rea
son Ferrenberg and his colleagues tested their Monte Carlo
software on the two-dimensional Ising model, in prepara
tion for high-precision studies in three dimensions, where
exact results are not known.
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The disturbing outcome of this test was the discovery that
the Wolff algorithm gives incorrect results when it is used
with certain random-number generators. Specifically, it fails
with two shift-register algorithms—an xor variant and a
subtract-with-borrow algorithm. The discrepancies in cal
culated quantities such as specific heat are subtle—they gen
erally show up in the fifth decimal place—but because thesimulations attained very high precision, the errors are sta
tistically significant. In one case the standard deviation is 42,and in another it is 107.

Ferrenberg and his colleagues have given an account of
their findings in Physical Review Letters (Ferrenberg, Landau
and Wong 1992). They have established that the source of
the problem lies in some interaction between the Wolff al
gorithm and the shift-register generators. Running the Wolff
algorithm with a linear-congruential generator (the ever-
popular r = 16,807, m = 231 - 1) gives results accurate to
within one standard deviation. Conversely, the shift-register
generators give acceptable results with the single-spin-flip
algorithm for the Ising model, or with a different cluster al
gorithm invented by Swendsen and Wang. The findingshave been confirmed by other workers, using independent
ly written versions of the programs.

In the weeks since the report was published, Ferrenberg
has continued to search for the cause of the failures. He
speculates that subtle correlations in the most significantbits of the random numbers may create a slight bias in the
size of the clusters formed in the Wolff algorithm. Such cor
relations were not detected in earlier statistical tests of the
random-number generators, but the Wolff algorithm itself
may constitute a more sensitive test than any of the stan
dard ones. Ferrenberg is now trying to learn more about the
aberration by running the simulations with random-num
ber generators known to have specific biases.

The Georgia-IBM program of Monte Carlo studies remains
stalled until the defect is understood. "This problem is con
suming me," Ferrenberg says, with frustration and discour
agement in his voice. "You know what John von Neumann
said about random numbers and sin? I think I'll put that up
over my door." One is reminded of another famous entryway
warning to sinners: "Abandon all hope, you who enter here."
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