
LISP, Lore and Logic: An Algebraic View
of LISP Programming, Foundations,
and Applications. W. Richard Stark.
278 pp. Springer-Verlag, 1990. $38.

Every science has its own vocabulary,
but computer science is unusual in having
whole languages of its own; indeed, every
subculture of the computing world seems
to have a private language. Those who
specialize in numerical analysis tend to
write in FORTRAN; the authors of operat
ing systems favor C; other groups com
municate among themselves in languages

such as Pascal, Ada, FORTH, SNOBOL
and APL. One of the oldest computing
cultures—it goes back to before 1960—is
the one that speaks LISP. This language
has traditionally been associated with the
pursuit of artificial intelligence, but it is a
general-purpose programming notation,
and it need not be confined to any one
realm of discourse.

W. Richard Stark's book promises,
among other things, the lore of LISP, and
there is a lot of lore to be recorded. For ex
ample, the most conspicuous elements of
any LISP utterance are the parentheses, as
in this expression:

(car (cdr (cdr '(foobarbaz))))
It turns out that the heavily parenthesized
notation was invented early in the devel
opment of the language as a kind of stop
gap, to be used only until something bet
ter could be devised. In 30 years nothing
better has come along. Those odd terms
car and cdr also embody a good deal of
history; they are verbal fossils, referring to
hardware features of a vacuum-tube com
puter that was retired early in the 1960s.
Their meaning is a little less abstruse than
their etymology: car selects the first ele
ment in a list of items, and cdr selects all
the elements except the first. These actions
combine in such a way that the expression
given above selects the third item in the
list (foo bar baz), namely the symbol
baz. (Exploring the origin of the nonsense
words foo, bar and baz would take us
even deeper into LISP lore.)

Are these historical arcana worth
knowing? It is certainly possible to write
LISP programs without knowing the ori
gin of car and cdr, just as one can write
English prose without knowing about the
Indo-European roots of the words. But
the historical background of LISP, the cir
cumstances of its invention, and its con
ceptual foundations are of more than
passing interest. LISP is not merely a pro
grammer's tool or a medium of commu
nication but also an object of study in its
own right.

At the heart of LISP is a model of com
putation closely related to the mathemat
ical principles of recursive function theo
ry. A subset of LISP called pure LISP is a
strictly functional language: expressions
in pure LISP have the simple semantics of
mathematical functions, and so it is easy
to reason rigorously (and even automati
cally) about programs written in this no
tation. A dialect of LISP called Scheme
can be regarded as an implementation of
the lambda calculus, the computational
system invented in the 1930s by Alonzo
Church. The rich body of mathematical
results obtained in the lambda calculus
can therefore be applied directly to
Scheme; what is more, Scheme has be
come an excellent vehicle for teaching the
ideas of the lambda calculus, since all the
mathematical expressions can be evaluat
ed by machine.

Most of the older texts on LISP pass
quickly over the history and the theoreti
cal foundations of the language. Stark
gives ample attention to these matters,
which is a welcome change. Bits of history

• and lore are scattered throughout the
book, along with photographs of some of
the leading figures and excerpts from im
portant early works. There are discussions
of the lambda calculus and other mathe
matical ideas, such as the theory of fixed
points of functions.

Unfortunately, this material is not made
accessible to those readers who might find
it most informative. Somewhere within
the book is most of what a beginning stu
dent needs to know, but there is no pre
dicting just where in the book it will be
found; in particular, there is no reason to
expect that what you need to know first
will be presented first. For example, the
term "s-expression" is first used on page
31 but is not defined until 40 pages later.
What is most disappointing is that the at
tractive mathematical properties of pure
LISP are ignored in the introductory chap
ters; instead the student is introduced to
methods of imperative programming
(based on assignment statements) that
would be more appropriate in a language
such as Pascal or FORTRAN.

Apart from an abundance of parenthe
ses, the most famous characteristic of LISP
is probably its emphasis on recursive and
self-referential structures. It may be apt,
then, that Stark's book is most useful for
learning exactly those things that you al
ready know.—Brian Hayes

