
106 American Scientist, Volume 100

Computing Science

Pixels or Perish

Brian Hayes

Drawings and pictures are
more than mere ornaments in

scientific discourse. Blackboard sketch-
es, geological maps, diagrams of mo-
lecular structure, astronomical photo-
graphs, MRI images, the many varieties
of statistical charts and graphs: These
pictorial devices are indispensable tools
for presenting evidence, for explain-
ing a theory, for telling a story. And, on
top of all that, they are ornaments; they
entice and intrigue and sometimes de-
light. A magazine like American Scientist
would be impoverished without them.

Methods for producing scientific
illustrations—and for reproducing them
in publications—have been changing.
Printing plates for figures were once
engraved by hand, then made by a
photographic process, and in recent
years have been created by digital tech-
niques. Now we are about to turn the
page—if not close the book—on yet
another chapter in publishing history.
After centuries of reading and writing
on paper, we seem to be headed for a
world where most documents will be
distributed online and viewed on a
display screen of some kind. How will
this transition to a new medium affect
the practice of scientific illustration?

Print publishing has a centuries-
long tradition and a rich culture. Gen-
erations of illustrators have developed
technical knowledge, artistic sensibility
and a highly refined toolkit. There’s a
huge body of existing work to serve as
example and inspiration. In digital pub-
lishing, this kind of intellectual infra-
structure is only beginning to emerge

Yet the new computational media
offer new opportunities for the exer-
cise of creativity, especially in quan-
titative graphics, where illustrations

are closely tied to data or mathemati-
cal functions. On the computer screen,
graphs and diagrams can become ani-
mated or interactive, inviting the read-
er or viewer to become an explorer.
I find this prospect exciting. But I’m
also mindful that we don’t yet have
deep experience with the new graphi-
cal methods.

Pyramid Scheme
I offer the illustration on the opposite
page—along with the corresponding
digital version on the American Scientist
website—as a case study. Population
pyramids are a well-established tool in
demography. In this case the pyramids
show the age structure of the global hu-
man population over a 150-year period,
according to estimates and projections
published by the United Nations.

Tracing change over time is the main
point of the illustration, yet this is no-
toriously hard to do in a static picture.
Snapshots at 50-year intervals give
some sense of the overall outcome:
What begins as a pyramid evolves into
an onion dome. But it’s not so easy to
see how and why the shape is chang-
ing. One thing that’s not made explicit
is how cohorts (groups of people born
at about the same time) move upward
through the age categories as time pass-
es. Consider the bar at the base of the
pyramid in 1950, which measures the
number of people who were less than
5 years old in that year. The survivors

of this group reappear in the 50-to-54-
year-old bar in 2000, and a tiny sliver
of centenarians remain in 2050. There’s
nothing in the structure of the diagram
to remind you that those three bars rep-
resent the same people.

No doubt a clever illustrator could
improve the graphs in ways that
would more clearly convey the basic
facts of life: that births affect only the
bottommost bar, and deaths shape all
the rest. Showing more intermediate
stages would certainly help. However,
space on the page is always at a pre-
mium in a printed magazine.

The version of the same illustra-
tion in the Web edition of this column
suggests some of the possibilities of
more-dynamic visual media. Instead
of looking at preselected snapshots,
you can move through time, forward
or backward, and watch the pyramid
change shape as a result of births and
deaths. Animated transitions empha-
size the continuity of the human popu-
lation, as cohorts migrate through the
decades. With higher temporal resolu-
tion (5 years per step, rather than 50),
it’s easier to spot noteworthy moments
of transition. For example, it appears
there was a sharp drop in worldwide
fertility in about 1990; that’s when the
sides of the pyramid grow noticeably
steeper. And another landmark comes
in about 2050, when each successive
group of 0-to-4-year-olds ceases to
be larger than the preceding cohort,
so that the base of the “pyramid” be-
comes pinched. (Note: I am deeply in-
terested in these demographic trends,
but my aim here is to discuss the ef-
fectiveness of graphic presentations,
not to debate the meaning or validity
of the data.)

Gains and Losses
Interactive gadgets like the Web ver-
sion of the population pyramid tend
to be put in a category apart from the
illustrations that appear on the pag-

The art of scientific
illustration will
have to adapt
to the new age

of online publishing

Brian Hayes is senior writer for American Scien-
tist. Additional material related to the Comput-
ing Science column appears at http://bit-player.
org. Address: 11 Chandler St. #2, Somerville, MA
02144. E-mail: brian@bit-player.org

2012 March–April 107www.americanscientist.org

es of a magazine or journal. They are
classified as supplemental material, or
maybe educational software, and are
not seen as an integral part of the pub-
lication itself. Years ago, many pub-
lishers segregated photographs and
certain other kinds of illustrations in
an analogous way. They were printed
on special paper and bound in a sepa-
rate section of “plates.” That practice
ended with improvements in printing
technology. Likewise, when publica-
tions are distributed over the network
and read on a computer screen, ac-
tive graphics can be integrated into a
document in the same way that ordi-
nary photographs and drawings are.
There’s no reason to keep them out of
the mainstream.

What do we stand to gain in going
from paper to pixels? Animation—
adding a time axis to a graphic—is
the most obvious possibility, but there
are many other ways to exploit the
power of computation. For one thing,
we are liberated from the fixed size of
the printed page. Computer displays
also have bounds, but when a figure
is too large to fit, we can roam about
in it by scrolling or by “panning and
zooming.” (Think of Google Maps.)
When a diagram is too intricate for the
reader to see all details clearly, we can
offer tools to magnify selected regions.
In a cluttered graph, we can highlight
and label data points when the reader
selects them, or else hide distracting
features from view. We can offer the

reader options, such as changing the
scales of a graph from linear to logarith-
mic, or choosing a subset of the data.
Three-dimensional graphics are easier
to understand in a medium where the
reader can rotate a diagram or change
the point of view.

Of course good old-fashioned pa-
per also has advantages, starting with
the fact that everyone knows how to
use it. No one needs an instruction
manual for reading a magazine. No
one needs any special hardware or
software, either. Authors and publish-
ers can be reasonably certain that all
readers will see the same words and
pictures; there’s no need to worry that
Internet Explorer will sow one thing
and Firefox another. And the printed

21002050

100 200 300300 200 100 0 100 200 300300 200 100 0

100 200 300300 200 100 0 100 200 300300 200 100 0

20001950
2.53 billion 6.12 billion

10.01 billion9.31 billion

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

5
0

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

5
0

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

5
0

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

5
0

male and female population by age group (millions) male and female population by age group (millions)

male and female population by age group (millions) male and female population by age group (millions)

Evolution of the human population provides an example of a concept that seems difficult to convey effectively with a static image on the print-
ed page; an animated, interactive graphic may be better suited to the task. The four population pyramids show the age structure of the world
population at 50-year intervals, according to estimates and projections made by the United Nations. From such snapshots it can be difficult
to perceive how groups of people flow through the age categories, determining the shape of the distribution from year to year. For example,
the 0-to-4-year-olds in the bottom bar of the 1950 pyramid went on to become the 50-to-54-year-olds in 2000 (though slightly diminished by
deaths). An interactive version of the illustration on the American Scientist website allows the trajectory of individual cohorts to be followed
more clearly. Animated transitions show each group rising through the pyramid over the course of a lifetime, while a new generation enters at
the base. The interactive version is built with SVG (Scalable Vector Graphics) and a JavaScript library called D3, created by Michael Bostock.

108 American Scientist, Volume 100

page still offers a level of resolution
and typographic refinement that can-
not be matched on the electronic dis-
play screen.

At a deeper level, the producers
and consumers of printed graphics

have had many decades to develop
conventions about various graphic
devices and what they mean. For ex-
ample, arrows are variously used to
show the flow of material or time or
interconnections between parts. Line
graphs and bar charts have an elabo-
rate semantics that is not obvious but
is widely understood. Much of this
knowledge and lore will transfer di-
rectly to new computational media,
but we’ll doubtless also need some
new graphic metaphors, and it may
take time for them to emerge.

Picture Perfect
Scientists make pictures for many pur-
poses. Doodles and sketches in a lab
notebook might serve a strictly pri-
vate function; many graphs and charts
are created in a process of exploratory
data analysis, and are soon discarded.
Here I want to focus on more formal
illustrations—those destined for pub-
lication, perhaps in a journal or an
American Scientist article, perhaps in a
textbook or on an educational website.
And because my interests are compu-
tational, I’m going to emphasize quan-
titative graphics.

Any account of publication-quality
computer graphics has to begin with
PostScript, the “page description lan-
guage” developed in the 1970s and
1980s by John Warnock and Charles
Geschke, the founders of Adobe Sys-
tems. Warnock and Geschke are com-
puter scientists, but they worked close-
ly with graphic artists, typographers
and the printing trade, and the lan-
guage reflects this influence.

PostScript is primarily a language
for “vector” graphics, where objects
are constructed from geometric lines
and curves, rather than “raster” graph-
ics, where an image is a rectangular
array of discrete pixels. PostScript
operators with names such as moveto,
lineto and curveto construct a path in
a two-dimensional coordinate sys-
tem of almost unlimited precision, so
that the geometry of the drawing is
independent of the resolution of the
output device. Paths can be built from
straight line segments or from curves
called Bézier splines, defined by cu-
bic equations. The operators stroke and
fill can then be applied to create a vis-
ible graphic object. Some aspects of
the language seem almost comically
fastidious, such as the elaborate speci-
fications of beveled, mitered or round-
ed joints between stroked lines; but it

turns out such fussiness makes a real
contribution to the visual quality of the
finished artwork.

PostScript has another distinctive
property: It is not just a notation for
describing drawings but a complete
programming language, with features
such as conditional expressions, itera-
tion and named procedures. In this
way PostScript blurs the distinction
between drawing a picture and writ-
ing a program.

An illustration published in Ameri-
can Scientist in 1990 offers an example.
Robert V. Levine of California State
University, Fresno, had written an ar-
ticle on “The Pace of Life,” measuring
quantities such as walking and talking
speed in 36 cities. As an aid to under-
standing this multivariable data, I ex-
perimented with a visualization tech-
nique invented by Herman Chernoff
of Stanford University. The illustration
mapped Levine’s measurements to
various features of a cartoon face. (Part
of the array of faces is shown below at
left.) The PostScript file that generated
this figure did not specify the coordi-
nates of the various lines, arcs and el-
lipses in each of the 36 faces; instead, it
had a single face-drawing procedure,
which was invoked 36 times on 36
rows of raw data. Thus the illustration
didn’t exist, even as an internal data
structure, until the program was run.

Virtual Paper
In 1990 the only way I could run a
PostScript program was to send it to
a laser printer or a typesetting ma-
chine; I had no way to see output on
the computer screen. (The debugging
cycle consumed reams of paper.) To-
day we have PostScript interpreters for
the screen, but the language remains
closely tied to its ink-on-paper origins
and is useless for any kind of active
illustration, where objects move or re-
spond to events. In PostScript, all art
is still life.

A later variant called Display Post-
Script was meant to bring the same el-
egant and precise drawing model to
interactive graphics, but it never caught
on. What did gain traction was PDF,
or Portable Document Format, which
takes a step in the opposite direction,
away from programmatic graphics.
PDF is essentially “flattened” Post-
Script; it’s what’s left when you remove
all the procedures and loops in a pro-
gram, replacing them with sequences of
simple drawing commands.

Boston New York

St. Louis

Atlanta

Detroit

Chicago Philadelphia

Dallas Los Angeles

Cartoon faces whose features encode mea-
sured aspects of life in several cities were gen-
erated by a PostScript program, which both
computed the mapping from data to facial
geometry and produced the graphical output.
Eyebrow angle corresponds to walking speed,
pupil size to the speed of bank transactions.
The original illustration appeared in “The
Pace of Life,” by Robert V. Levine, American
Scientist, September–October 1990.

cap style joint style

butt bevel

square miter

round round

Joinery that master carpenter Norm Abrams
would approve is a feature of the PostScript
graphics language. Where a stroked path
makes a turn, the joint can be beveled, mi-
tered or rounded. Another setting controls the
style of the end caps. The same fastidious at-
tention to small details appears in the more re-
cent language called Scalable Vector Graphics.

2012 March–April 109www.americanscientist.org

From the outset, PDF aspired to be
virtual paper—to re-create on the com-
puter screen the experience of reading
a printed document. It succeeds bril-
liantly. Layout and typography are
carefully preserved; you get everything
but paper cuts and inky fingers. This is
a laudable achievement, but I also see
it as a sad waste of resources. When I
read a PDF on my laptop, I’m using a
powerful and versatile computing en-
gine to imitate a mere sheet of paper.
The machine could do much more.

One remedy for this situation would
be to re-engineer PDFs to make fuller
use of the available computing capac-
ity. Many of the necessary facilities,
such as scripting languages, are al-
ready present in the PDF specification;
they’re just not used much. That could
change. In the meantime, though, live-
ly ideas for active graphics and sci-
entific visualization are coming from
another direction—from the world of
HTML, the language of the Web.

The Web Playground
In some respects the Web is an unlikely
source for innovations in high-qual-
ity graphics. It began as a text-only
service, and when graphics were first
introduced—through the ele-
ment of HTML—the only acceptable
formats were raster images. Proposals
for including vector graphics in Web
pages were discussed all through the
1990s, and standards were drafted
soon after. Nevertheless, vector for-
mats have become a convenient and
practical option for Web graphics only
in the past few years.

In spite of this long struggle to bring
drawing to the Web, the medium has
attracted a community of talented pro-
grammers, designers and artists, who
find it a friendly place for experiment-
ing with new ideas and showing off
the results. By its nature, the Web is a
very open system, where anyone who
can view a page can also see the code
that created it.

We now have two widely supported
schemes for drawing on Web pages.
(Two is not necessarily better than
one.) The <canvas> element of HTML
is closely analogous to the tag
but accommodates vector graphics.
Scalable Vector Graphics, or SVG, in-
troduces an entire sublanguage similar
in structure to HTML.

Even before these additions, the
Web was already a polyglot nation.
Web browsers have to speak at least

three languages: HTML (Hypertext
Markup Language), CSS (Cascading
Style Sheets) and the JavaScript pro-
gramming language. These are, re-
spectively, the nouns, the adjectives
and the verbs of the Web. HTML sets
forth the basic structure of a document
(paragraphs, headings); CSS provides
guidance on how to present the vari-
ous elements (colors, fonts, margins);
JavaScript encodes actions (respond-
ing to mouse clicks and other events).

The <canvas> element, as the name
suggests, is a blank rectangular sur-
face for drawing on. It has a fixed
size and can be placed anywhere in a
document. The dimensions are mea-
sured in screen pixels, so this is not
a device-independent graphics pro-
tocol; however, coordinates can be
specified with precision finer than the
pixel resolution. The JavaScript meth-
ods that draw shapes on the canvas
include procedures named moveTo,
lineTo, stroke and fill, with an explicit
nod to the PostScript heritage. There
are even the same options for line caps
and joints.

SVG works a little differently. In-
stead of setting aside a rectangular re-
gion that isolates the drawing from
other elements of the document, SVG
incorporates the drawing commands
into the same data structure (called
the Document Object Model, or DOM)
that holds all the HTML. Indeed, the
SVG language is a close cousin of
HTML, with a similar syntax based on
tags enclosed in angle brackets. And,
like HTML, SVG is a noun language;
but the nouns are different, defining
lines and curves rather than para-
graphs, tables and lists.

Whereas drawing on a canvas is
done procedurally—by invoking
JavaScript functions—SVG drawing
elements can be defined in a declara-
tive manner, simply by listing their
coordinates and properties, in much
the same way that text is entered into
an HTML file. This declarative style
might suggest that an SVG drawing is
a static object, defined in advance and
never changing. But it is brought to life
by JavaScript, which can inject new
drawing elements, remove old ones,
rearrange objects or alter their style
attributes. JavaScript programs have
access to the entire DOM, so opera-
tions on drawings use the same basic
mechanisms as operations on text.

SVG also borrows heavily from
PostScript (including the line caps and

joints). And in this case the drawing
space truly is device-independent and
capable of very high precision. Any-
thing displayed on the screen must ul-
timately be mapped to a finite number
of pixels, but SVG drawings take maxi-
mum advantage of the available reso-
lution, just as PostScript figures do.

Data-Driven Documents
The interactive version of the popula-
tion pyramid that I discussed above
is an SVG graphic—although, as it
happens, I did not write a single line
of SVG code when I created the illus-
tration. All of the SVG structures are
generated by an embedded JavaScript
program, which reads in a data file
and constructs the corresponding bars
for male and female population. (The
architecture is the same as that of the

10
15
20

5
0

100 200200 100 0

1950

10
15
20

5
0

100 200200 100 0

10
15
20

5
0

100 200200 100 0

1955

10
15
20

5
0

100 200200 100 0

Comic-strip animation, where successive stag-
es in a process are shown in separate panels,
is one of several conventions for indicating
the passage of time in a static medium. Here
the panels show stages in the operation of the
interactive population pyramid as the year
advances from 1950 to 1955. Three kinds of ar-
rows suggest movement; transparent “ghosts”
represent objects that are about to appear or
disappear. Such visual metaphors will not be
needed in a medium where objects really can
move or appear and disappear.

110 American Scientist, Volume 100

1990 PostScript program that read a
data file to generate Chernoff faces.)

The pyramid is initialized to the
state of the world population in 1950.
When a mouse click advances the
date to 1955, all the bars shift upward
by the width of one bar (representing
the aging of the population by five
years), and then the bar lengths are
adjusted to account for deaths in each
age group during the five-year inter-
val. Finally a new bar enters at the
bottom of the stack, representing net
births into the youngest age category.
Each of these transitions is animated
over 750 milliseconds. It’s worth em-
phasizing that all of the computations
are done “on the client side,” by the
JavaScript interpreter built into a Web
browser; nothing is precomputed by
the Web server.

The pyramid visualization is built
on a JavaScript library called D3 (for

“data-driven documents”) described in
a 2011 paper by Michael Bostock, Vad-
im Ogievetsky and Jeffrey Heer of Stan-
ford University. (D3 is an open-source
software project managed by Bostock,
who is now with Square, Inc.)

At the heart of the D3 framework
is a simple but general mechanism
for creating or modifying elements of
the DOM based on supplied data. For
example, in the pyramid figure, the
length of each bar is determined by an
entry in a table that lists population by
age, gender and year. When the year
changes, each bar length is relinked
to a different entry in the table. The
updating of the display and the ani-
mated transitions are handled behind
the scenes by the D3 library.

In designing my population pyra-
mid I was inspired by several exam-
ples and tutorials on the D3 website
(https://github.com/mbostock/d3/
wiki) and I borrowed snippets of code
from them. There are at least two more
population pyramids among the ex-
amples, and many other delightful
tools and toys worth exploring.

Info Vis
The D3 project is one of many to come
from a thriving creative community
that works under the banner of info
vis or data vis (with close connections
to those who do stat vis and sci vis).
Michael Friendly of York University
in Toronto has described the present
era as a new golden age in data visu-
alization. The old golden age was the
19th century, when William Playfair,
Florence Nightingale, Charles Minard
and a few others perfected many of
the graphic devices (pie charts, line
graphs) that are now standard ap-
paratus throughout the sciences. The
modern revival has brought us new
forms of quantitative graphics suited
to an age when considerable computa-
tional power is available even in a Web
browser.

I am enthusiastic about the pros-
pects of the info-data-stat-sci-vis biz. It
has the potential to make science com-
munication at all levels—from school-
books to scholarly journals—more ef-
fective and more fun. But worrisome
problems remain.

First, creating active graphics takes
a lot of work—and a lot of wonk, too.
If this is an art form only for JavaScript
gurus, it will not spread widely. The
impact will be greater when the ideas
from a program such as D3 filter into

software environments such as R and
gnuplot, MATLAB and Mathematica,
or even Powerpoint and Excel.

 Second, the quality of graphic out-
put is not yet up to the highest publi-
cation standards. One reason is simply
the low resolution of most computer
screens. This will doubtless change,
but in the meantime we have to cope
with issues such as the Heisenpixel
problem (see illustration at left).

Finally, there’s the nagging anxiety
about entrusting the literature of sci-
ence to digital formats that are not di-
rectly accessible to the human senses.
Will we still be able to see those fancy
JavaScript graphics in 100 years? In 10
years? As a matter of fact, they don’t
work reliably even now unless you
choose the right combination of hard-
ware and software to view them.

Souvenirs of the Web
Another question arises from the
choice of graphic formats whose na-
tive environment is the Web. My
hope is to see these new forms of il-
lustration become enhancements to
scientific publishing, but the Web
is not where scientists publish. It is
a major channel for distributing sci-
ence publications, including the 1,000
journal titles at JSTOR, for example,
or the 700,000 preprints at arxiv.org.
But almost all of that material comes
in the form of PDFs rather than HTML
documents. It’s available through the
Web, not on the Web. Even the confer-
ence papers and journal articles that
describe the D3 system are not HTML
documents with D3 illustrations; they
are PDFs with still images.

Why do authors and readers prefer
PDFs for this kind of publication? One
factor may be this: A PDF is something
you possess. You download it from a
server, give it a name, store it in a fold-
er. It’s yours; it stays put. A website
built out of HTML has a different char-
acter. It’s not a thing you own but a
place you visit. You can’t take it home
with you—although perhaps you can
send a postcard or keep a small souve-
nir in the form of a bookmark.

Perhaps someday, when all infor-
mation lives in the cloud, readers will
give up their acquisitive desire for
thinginess in publications. If not, doc-
uments created in the HTML/SVG/
JavaScript ecosystem are at a disad-
vantage, because they cannot readily
be turned into self-contained packages
for downloading and safekeeping.

high-resolution appearance

screen appearance (“geometricPrecision”)

screen appearance (“crispEdges”)

The Heisenpixel principle states that the posi-
tion and the thickness of lines cannot both
be shown accurately in a medium with finite
resolution. On a computer screen, parallel
lines placed two-and-a-half pixels apart are
nonuniform either in thickness (top) or in po-
sition (middle). The rulings appear correct in
a high-resolution printed pattern (bottom). In
the print version of this column, the computer-
screen gratings are represented by images cap-
tured at actual size; in the Web version, the
screen patterns are drawn in SVG, and the
high-resolution pattern cannot be shown.

2012 March–April 111www.americanscientist.org

For the purpose of getting those
nifty D3 graphics into science publi-
cations, there would seem to be two
plausible approaches. We could open
up PDF to accept a wider range of
graphics formats. I’m told this is tech-
nically feasible; the challenge is mak-
ing PDF a more attractive working
environment for the young program-
mers who come up with the cool new
graphics tricks. It’s worth noting that
an active community works on em-
bedding three-dimensional graphics in
PDF, with impressive results.

The alternative is to seek a better
way to encapsulate all the bits and
pieces that constitute a Web applica-
tion, so that it can be distributed in the
same way as a PDF. Something resem-
bling encapsulated HTML already ex-
ists; it’s the basis of several file formats
for electronic books.

In J. K. Rowling’s Harry Potter books,
newspapers for wizards are ink-on-
paper publications, but the pictures on
their pages spontaneously come to life.
It’s the best of both worlds—the fa-
miliar physical form of reading matter
we’ve known since Gutenberg, but no
longer lying still on the page. Out here
in the land of Muggles we may never
quite attain that kind of magic, but we
could come remarkably close.

Bibliography
Adobe Systems. 1990. PostScript Language

Reference Manual. Second edition. Reading,
Mass.: Addison-Wesley.

Bostock, M., V. Ogievetsky and J. Heer. 2011.
D3: Data-driven documents. IEEE Transac-
tions on Visualization and Computer Graphics
17:2301–2309. (Preprint online at http://vis.
stanford.edu/files/2011-D3-InfoVis.pdf)

Dahlström, E., et al. (eds). 2011. Scalable Vector
Graphics (SVG) 1.1 (Second edition). World
Wide Web Consortium Recommendation
16 August 2011. http://www.w3.org/TR/
SVG11/

Friendly, M. 2008. The golden age of statisti-
cal graphics. Statistical Science 23:502–535.
(Available online at www.datavis.ca/pa-
pers/index.php#methods)

Heer, J., and M. Bostock. 2010. Declarative lan-
guage design for interactive visualization.
IEEE Transactions on Visualization and Com-
puter Graphics 16:1036–1043. (Preprint on-
line at http://vis.stanford.edu/files/2010-
Protovis-InfoVis.pdf)

Heer, J., M. Bostock and V. Ogievetsky. 2010.
A tour through the visualization zoo. Com-
munications of the ACM 53(6):59–67.

United Nations Department of Economic
and Social Affairs. 2011. World Population
Prospects, the 2010 Revision. http://esa.
un.org/unpd/wpp/

Wilkinson, L. 2005. The Grammar of Graphics.
Second edition. New York: Springer-Verlag.

