
Catherine Widgery, Word Bal
with Sea Shell, 1996

EVERYBOl)Y'S L()OKIN(! FOR SOME-
thing—the Holy Grail, the Prom
ised Land, the Northwest Passage,

the source of the Nile, the great white

whale, temps perdu. Shangri-la, the end

of the rainbow. The detective searches
for clues, the shopper lor bargains, the

plumber for leaks, the programmer tor

bugs. On the back page of the local
newspaper. M's and F's of various de

scription are in search of one another,
in various permutations. Much ot sci

ence is framed as a search: for new par

ticles, new planets, new theorems. As

for me, I spend a lot of time searching

for my keys and eyeglasses.

Searching, it seems, is just one of those

things we do; it's a part of human cul
ture, if not human nature. We're the

species that walks, talks and can't remem
ber where the car is parked at the airport.
How intriguing, then, that after so many

centuries of unaided groping and rum

maging we finally have some power tools
for searching. The Internet has brought

us "search engines." Machines for find

ing things—what a concept! A search

engine may not help you retrieve that
earring lost in the sofa cushions, but when
it comes to anything represented as bits

and bytes, searching will never be the

THE INFORMATION AGE

Eureka!

Forget the needle in the haystack. Modern searchers

often don't knon> what they're looking for

until they have found it

B Y B R I A N H AY E S

same. When the next generation of epic-

poets writes of the great quest, the heroes
will surely begin their adventures by con

sulting the oracle of AltaVista or Google.

II INI) IT MILDLY CURIOUS THAT TECH-nological aids to searching have come
along only in the modem era. For oth
er intellectual labors—measuring, count

ing, reckoning rime—people have relied
on mechanical crutches from the outset.

But searchers have mostly been on their

Own, with no instruments comparable
to the ruler, the abacus or the clock. The

sole exception—the one ancient inven

tion that unquestionably had a profound

effect on searching—was the alphabet.
It's not the letterforms themselves that

aid the search but, rather, the idea of

assigning the letters a canonical sequence.

Strictly speaking, alphabetizing is a device
to aid sorting, not searching: it's a way
of putting things in order, from first to

last. But sorting is a crucial adjunct to

searching. Dictionaries and telephone
directories would not be ot much use

without the alphabetic principle.

Suppose you're trying to find a spe
cific entry in a long list of words or num

bers. If the list is unordered, the best you

can do is scan from top to bottom. On

average you'll have to look at half the
entries before you come to the target,
and if you're unlucky, all of them. By

contrast, a list that is sorted offers a much

quicker method. Instead of plodding
through, item by item, you start at the

midpoint and check to see whether the
item you are looking for is above or

below. Discard the half that doesn't

include the target and divide the remain
der of the list in half again. Continuing

by halves, you soon zero in on the tar

get. The number of comparisons need
ed is proportional to the logarithm of the
list length—a number much smaller than

the length itself. For a list of a million

words, the direct and unordered search

could take a million steps; the logarith

mic method no more than twenty.

The logarithmic advantage is so dra
matic that for most of human history

searching a large archive was simply not
feasible without some kind of sorted
index or concordance. But times have

changed. That "find" or "search" com
mand in the menu bar will zip through

megabytes of unsorted text so fast that you
can't measure the time between clicking

the mouse and seeing the result. This

newfound facility for searching without

sorting raises the question of whether the

(//'(•sequence, which has been the hallmark
of literacy for millennia—the first acade
mic accomplishment of almost every

chikl—can endure much longer as a uni

versal cultural artifact. The fact is, you

needn't know anything about the sequence

of letters in order to read and write. That

sequence is useful only when you look
up a name in a phone book or a word in
a dictionary—skills that may rarely be

exercised in the coming computopia.

So will we keep drumming the alpha

bet into the minds of preschoolers? I

expect we will, at least for a few more

generations. Children who are compelled
to master addition and subtraction in case

they are ever marooned on a desert island
and have to make change for a dollar

after the batteries in their calculators run

down—those children are not going to

escape learning their abc\.

AS FAR AS I KNOW, THE FIRST MECH-anized devices that could sort and
search were the punch-card machines

invented in the 1880s. The cards with

the famous warning not to fold, spindle
or mutilate were designed by Herman

Hollerith, who founded the little com

pany that grew up to be IBM. The Hol
lerith card represented information by
the presence or absence of holes punched

in an array of columns and rows.

I have a sentimental fondness for anoth-

S THE SCIENCES • Sorember/December 2000

er style of punch card, which had holes

only near the perimeter. To record data

you converted specific holes into notch
es by snipping away the bit of paper that

separated the hole from the edge of the
card. I can remember experimenting with

such a scheme in my ncrdy boyhood,

using three-by-five cards filched from my
mother's recipe box. Of course I didn't

invent the idea. Hollerith himself con
sidered an edge-notched design before

settling on his column-and-row format.
Moreover. 1 have recently learned—

through the wonders of search engines—
that several companies manufactured

edge-notched cards from the 1920s into
the 1970s. One brand, called the McBee

card, was popular in libraries for keeping
track of books and borrowers.

W H AT I S M O S T C H A R M I N G A B O U Tedge-notched cards is that they

require none of the motorized machin

ery of the Hollerith system. The only
equipment needed for sorting and

searching is a knitting needle. Consider
a deck of thirty-two cards numbered

from 0 through 31. Along one edge, each
card has five holes, which are assigned

the values 1, 2, 4, 8 and 16. Notches are
cut at the holes whose values add up to

the card number. For example, card five

has notches at holes 1 and 4, whereas card
thirteen is notched at I, 4 and 8.

Now suppose you want to retrieve

card thirteen from an unsorted stack. You

begin by inserting the needle into hole I
and letting the cards with a notch at that

position fall away; card thirteen should
be among the dropped cards, so you gath

er them up for further processing, putting
the other cards aside. Now, with the

reduced deck, move the needle to hole

2. but this time keep the cards that

remain on the skewer and set aside the

ones that drop off". At holes 4 and 8 you

select the cards that tall, and finally at hole

16 you retain the un-notched card that

stays on the needle—there should be only
one, and it should be card thirteen.

Finding one McBee card out of thir

ty-two takes five skewering operations.
It's no coincidence that 5 is the logarithm

to the base 2 of 32. (In other words, 2s =

32.) As that relation suggests, the card-
search process is a logarithmic one.

Admittedly, with only thirty-two cards
all this rigmarole hardly seems worth the

bother, but the system begins to pay off"
with larger decks. Logarithms grow slow

ly. To find one card in a thousand would
take just ten operations; one in a million,

just twenty. That performance is impres
sive by any standard.

And there's more. If vou're adroit

enough to knit with several
needles at once, it's possible

to search an edge-notched

deck in a single step. To
make the trick work, each

card has to have a second set
of holes and notches com

plementary to the first set;
that is, wherever a hole

appears in the first set, the
second set has a notch, and

vice versa. With such a dou

ble-punched deck, you

merely insert needles at the

right positions, give a good
shake, and the unique select
ed card falls out. The perfor

mance is even better than

logarithmic; it is a "constant-
time" algorithm, which runs

just as fast no matter how

large the deck is.
If edge-notched cards are

such hot stuff, why haven't

they replaced all those clunky
old computers on our desks?

Well, for one thing, it would
take a knitting needle 800

feet long to handle a million

cards. Then there's the job of

punching all those notches.
And, finally, the simple
search described above—

picking one number out ot
a finite sequence of num

bers—is probably not the
best benchmark for evaluat

ing the merits of cardboard
versus silicon.

T H E C L A S S I C T E S T I N Gground for search algo
rithms is a procedure known

as exact string matching. In

computer science a string is a sequence ot
characters—letters, numbers, spaces,

punctuation—with no higher-level struc
tures such as paragraphs or pages. Think

ofa string as a novel written on ticker

tape. The search task is to find all the
occurrences of one string (called the pat

tern) inside another string (the text)-. Usu

ally the pattern string ("great white

whale") is much smaller than the text

{Moby Dick).
A moment's thought suggests an algo

rithm. Write the pattern and the text on

separate strips of paper, and line them

up on their leftmost characters. Now,
working from left to right, compare each
character in the pattern with the corre

sponding character in the text; if they
are all identical, note that you have

found a match. Now slide the pattern
one place to the right and compare all

the characters again. Continue until the

rightmost character in the pattern slides
off the end of the text. For a pattern of

p characters and a text of t characters,
the number of comparisons needed is

approximately /> X /.
Another moment's thought suggests

an easy speedup: you don't always have

to compare all the characters. Since a

match has to be exact, you can stop com

paring and slide the pattern along to its
next position as soon as you come to the

first mismatch. To what extent does this
shortcut improve performance? If you

happen to be searching for the pattern
XXX in the text .v.y.v.y.y.v.v.v.v.y, the short

cut will never be taken, so it's not help
ful at all. But that's worst-case behavior.

More typically, the shortcut can reduce

the number of comparisons from /> X /
to something closer to /> + l.

10 Till- SCIENCES • November/December 2000

James Crable, Telephone Boxes, London, England,

MAKING FURTHER IMPROVEMENTSrequires more than a moment's

thought. Indeed, the quest to improve
exact string search algorithms occupied

an entire community of computer sci

entists, off and on. throughout the 1960s

and lu70s. The techniques that came out
of that effort are ingenious, but simple

and obvious they are not.

And yet the basic principles are not so

mysterious. Suppose you are searching
for the pattern algorithm in the text alge

braic algorithms. Starting from the left, the
first three characters are confirmed to

match, but at the fourth position you find
an (> opposite an e. At this point the naive

algorithm would slide the pattern one
place to the right and start the charac

ter-by-character comparison again. Cer
tainly, though, a human searcher could
see at a glance that all those comparisons

are a waste of time, and that

no alignment of the first four

characters can possibly work.

Although computers are not
as good at glancing, with a

little preliminary work—by

building a table of the char
acter positions within the

pattern—the computer will

recognize that it can safely
ratchet the pattern along to

the fifth position.

That idea underlies a

search procedure worked
out in the 1970s by James

H. Morris of Carnegie Mel

lon University in Pittsburgh,

Pennsylvania, and Donald
E. Knuth and Vaughan R.

Pratt, both of Stanford Uni

versity. The Knuth-Morris-
Pratt algorithm never exam

ines any character in the text

more than once, so it is guar
anteed to require no more

than p + / comparisons.

Another technique can

often do even better. Again,

line up the pattern at the start
of the text:

a lgor i thm
algebraic algorithms

As in the earlier algorithms,
the pattern moves from left

to right along the text. But

in this algorithm, you read

the pattern backward, begin

ning with the last letter, as

you compare it with the text.
That change of direction

might seem insignificant—
1986 after all, the letters are the

same no matter which way

you read them—but, in fact, swimming

"upstream" has an important advantage.
In this example, the advantage is appar

ent as soon as you find the first mismatch,

between ;// in the pattern and i" in the

text. Because the letter cdoes not appear

anywhere in the pattern, you can safely
shift the pattern forward by its entire

length, skipping nine positions to the

right in the text. Through such leapfrog
tactics, the algorithm searches a text
without ever looking at most of its char

acters. Although the worst-case perfor
mance is still about;; + t comparisons,

typical results are much better.
The upstream algorithm was invent

ed around 1975 by Robert S. Boyer and

J Strotber Moore, both of the Univer
sity of Texas at Austin, and indepen

dently by R. William Gosper. It is
widely admired for its sheer cleverness

and efficiency, but writing a computer

program that puts the algorithm into
action is not as easy as I have made it

seem. Note that my chosen pattern

word, algorithm, has no repeated letters.

Figuring out how far ahead you can safe

ly skip is trickier when you're search

ing for banana or Mississippi.

AFTER ALMOST TWENTY-FIVE YEARS,the Boyer-Moorc algorithm re

mains the fastest known method for

many kinds of searches, and yet it is not

quite the last word. One major draw
back is that it works only for exact string

matches. In many a quest, you don't real

ly know what you're looking tor, though

you hope you'll recognize it when you
see it. Such approximate pattern match

ing turns out to be a much harder prob
lem than exact searching.

It's possible to leave some slack in the

search process by including "wild cards"

in the pattern—a practice known vari

ously as globbing or grepping, depend
ing on how it's done. Under glob rules,

typing info* will bring upfo,foo,fog,
fork and much else: according to grep

syntax, the matches for /i>* would be f,

fo, foo, fooo, foooo and so on. The two

processes look much the same, differing

only enough to ensure the occasional
disastrous mistake.

In recent years the strongest impetus

for the development of approximate
search algorithms has come from mol

ecular biologists. The decoding of

genomes has given rise to a corpus of
text that runs to several billion charac

ters, all written in a four-letter alphabet
that ribosomes read fluently but that

people find opaque. Approximate
matching is the only way to find any

thing interesting in this archive. For

example. Homo sapiens has thousands of

genes in common with the fruit fly

Drosophila melanogaster, but because of
subtle variations none of those shared

genes would be recognized as the same

by an exact string search.
Thus genome searches attempt to mea

sure the similarity between sequences,

usually in terms of an "edit distance": the
minimum number of changes needed to

convert one string into the other. Three
kinds of editorial change must be taken

into account: substitutions, insertions and
deletions. Of the three, substitutions are

easy enough to cope with because they
are strictly local, affecting only one letter

at a time. Insertions and deletions com

plicate matters because they alter the

alignment of the string over a large region.
Yet no adequate genetic search can be

Continued on Page 46

November/December 2(>n<) • THE SCIENCES 1

THE INFORMATION AGE

Continued front Page 11

conducted without considering them; as

genes evolve, bits of DNA are constant

ly being snipped out or spliced in.

Approximate genome searching is

computationally expensive. Given two
strings of length //, finding the edit dis
tance between them takes roughly n2

steps—which makes the process far
slower than checking for an exact

match. The job turns out to be so labo

rious that it simply cannot be done rou

tinely when screening a new DNA

sequence against a large genome data
base. Instead, the screening programs
do an approximate approximate string

match: they estimate the edit distance

without actually finding the optimum

sequence of editing operations.

The Internet would appear to bethe ideal application for search al

gorithms—the perfect test case for meth
ods that have continued to be refined
over the years. Ironically, though, when

searching the Net one encounters diffi
culties that make classic search algorithms

ill-suited to the task. Part of the prob

lem is the monstrous size of the Inter

net, which would overwhelm any algo
rithm that attempted to search

sequentially, character by character.
Another complication is that people

searching the Net are seldom trying to
retrieve a specific document. Instead,

their searches are a fonn of exploration—

an attempt to find "what's out there" on
some topic.

The need for Internet search tools had

already been recognized a decade ago,
before the World-Wide Web made the

Internet a mass medium. In that quaint,

pre-Web era, which now seems as
remote as the age of Morse-code teleg

raphy, people searched the Net with
Archie or WAIS, the Wide-Area Infor

mation Service, and what resulted from

the search was an unadorned list of file
names. When the Web was bom, the first

search aids were manually compiled

directories, the ancestors of such services
as Yahoo! and the volunteer Open Direc

tory Project. Such directories have the
important virtue of organizing the con
tent of the Web by subject, providing a

taxonomy of knowledge that is similar to
a library's subject catalogue. Unfortu

nately, though, maintaining the hierar
chical structure requires so much effort

that such handcrafted directories take in

only a small fraction of the total Web.
Search engines, which emerged in

the early 1990s, have broader coverage;

some claim to index more than a thou

sand million pages. But because of that

vast scale, the search process bears lit

tle resemblance to what happens when

you click the "find" command in a

word-processing program. Instead,
search engines rely on a three-phase

process. The first phase is carried out

long before you log on and type in your
search term. A program called the

crawler, or spider, surveys the Web, sys

tematically visiting pages and retrieving
text and other content. Crawling the

Web takes weeks or months, which is

why a search sometimes sends you to

pages that no longer exist.
The crawler brings back gigabytes or

terabytes of data—too much for any

sequential search algorithm to handle.
Thus to make fast searches possible, the

collection of retrieved documents has to
be organized in some way, and that is

the second phase of the engine's opera

tion. In principle, the text could be sort

ed alphabetically to enable a logarithmic

search, but there are better schemes.
Most search engines rely on a method

called the vector-space model. At the

heart of the model is a gigantic matrix

with a column for every document and

a row for every anticipated search term.
Thus the matrix could have a million

Of ten you don ' t

know what you're

looking for, though you

hope you'll recognize
it when you see it.

columns and 100,000 rows. The entries

in the matrix record how many times

each term appears in each document.

The giant matrix is put to use in the
third and final phase ofa search engine's

cycle—the response to your query. The

process is straightforward: for each word
in the query, the engine goes to the appro

priate row of the matrix and chooses all
columns that have a non-zero entry. The

process takes only milliseconds—and it's
a good thing, too. Large search engines

get millions of queries a day, which works
out to some hundreds a second; they've

got to pump out answers at the same rate
or the input hopper will overflow.

A s i t h a p p e n s , fi n d i n g D o c uments that match a given query is
the easiest pan of the search engine's

job. The real challenge is figuring out
the best way to dump the majority of

those matches. With at least a thousand

million Web pages out there, queries

routinely yield 10,000 or 100,000 hits.
The search engine must somehow

divine which of those documents best

meet the user's needs and list them first.
The enormous matrix built into the

vector-space model is the key to the

winnowing process. The matrix can be

given a geometric interpretation. The
rows (corresponding to the potential

search terms) define the dimensions of

an imaginary space, and the entries in

each column (representing a document)

give the coordinates ofa point in that

space. For a small matrix—say, three
rows and five columns—it's easy to see
how this plan works. The rows corre

spond to length, width and height
dimensions, and the columns define five

points that lie somewhere inside this
volume. Adding another 99,997 spatial

dimensions makes the model harder to

visualize, but mathematically it works
the same way.

How can such a bristling, multidi

mensional abstraction help you find your

way around the Web? It's remarkably

straightforward. The search engine sim
ply treats the query as if it were another
Web document brought back by the

crawler. It tallies all the temis in the query
and plots the position of the correspond

ing point in the vector-space model. The
best answers then become the documents

that lie nearest the query point.

T H E A L G O R I T H M S T H AT R A N K T H Ehits are becoming more sophisti

cated. The innovation that I find most

interesting was pioneered by the Google
search engine, which was developed by

Sergey Brin and Lawrence Page when

they were still doctoral students at Stan
ford University. In its rankings, Google

considers not only the content ofa page

but also the number of other pages that

have links to it. Presumably, people who

create such links think the page is worth

visiting, so an abundance of links can be
taken as a strong recommendation.

Not only do Web search engines

have to find and rank pages, but they

also have to cope with pages designed
to manipulate or deceive; for example,

some Web designers rig the system by

adding invisible extraneous keywords.
Such tactics would be a bizarre aberra

tion in other contexts—you don't

expect the books in a library catalogue
to disguise their content and vie for the

notice of readers—but on the Web, the

searcher and the searchee are often

adversaries. Moreover, the search en

gines themselves can turn traitor: some

46 THE SCIENCES • November/December 2000

accept payment from the owners of
Web pages for preferential placement.

N E W T E C H N O L O G I E S T H AT T R A N S -form daily life tend to dazzle and

annoy us in equal measure. My cellular

telephone is a wonderful convenience
when I'm caught in traffic, but yours is

an abomination when it rings in the the
ater. The automated teller machine is a

marvel of the age when it hands me mon

ey in a foreign city, but not when it re
fuses my card at the ATM around the cor

ner. Search engines seem to fall into the
same category, innovations we love to

hate. Tbev are windows into a world of

that always the moral ot the quest genre—

that the search for meaning ends by find

ing meaning in the search itself?
Some weeks ago, curious about those

edge-notched cards that fascinated me
in childhood, I launched a Web search.

Soon I was led to the Dead Media Pro

ject, which turned out to be a celebra
tion of bygone information technolo

gies. Among the dead media was the
Indecks Information Retrieval System,
a set ot edge-notched cards that Stewart

Brand reviewed in the Last Whole Earth

Catalog in 1971. There was also a refer
ence to McBee cards, which was how I

first learned of their existence.

ration, in the period after the punch-card

company merged with the Royal Type
writer Company. I learned that the Roy-

al-McBee LGP-30 was the computer on
which Edward Lorenz discovered deter

ministic chaos. I even found the Web

site of the company in its current incar

nation, McBee Systems, Inc., which is
now a purveyor of office supplies.

T H I S L O N G C H A I N O F L I N K S W A Sleading me in fascinating direc
tions—but not where I wanted to go.

And, despite several hours of diligent and

diverting searches, I never did find any
thing more about McBee cards on the

! h b s s H i i

SSSlBQSiiSE

vmm

riches, except when the windows are

broken or closed or dirty or distorted.

Indeed, searching for the term "win
dows" is all it takes to illustrate the

frustrations of Web searching. Google

returns "about 20,700.000" documents:
needless to say. I didn't look at all of them,

but the first few dozen had nothing to do

with panes of glass—and quite a lot to do

with a certain software manufacturer.

For now, though, 1 remain far more
enchanted than frustrated. Access to those

thousand million documents is priceless,

even if the path to them is sometimes
indirect. Consulting Google has become

my first reflex for answering every ques
tion. What was the first Internet search

engine? Who said, "Cherchez la fenime'l
What is the Echelon program? And it's
not just the answers that delight, if you

ever find them. The very process of

searching has charms of its own, and more
often than not the best outcome is find

ing what you weren't looking for. Isn't

Patrick Hughes, Book Look, / 997

Searching for "indecks" turned up
dozens of Web pages, but they were a

mixed and mysterious lot. One bore the
title "And once devoured, through eter

nal night one lollipop glows steady like

,i . . ." Not much help there. It took a
while to deduce the unifying thread:

nearly all of the hits were pages in which
the file name "index.html" had been

misspelled "indecks.html."
Searching for "McBee card" took me

first to the crash of a B-25 bomber in

1943 (I still don't understand why).
More useful was a work of fiction by

Charles Brownson titled "The Altair

Lizard," in which a character explains the

edge-notched mechanism, speculates on
the fate of the McBee Company and

complains of difficulty in ordering sup

plies. Following further leads, I discov
ered a dozen scattered copies ofa nerd-

humor posting called "The Legend of

Mel, the Real Programmer." Mel
worked for the Royal-McBee Corpo-

Web. Instead, I found what 1 was seek

ing in the library, where I searched by

running my finger slowly along the

spines of books until I came to a fifty-

year-old volume by Howard F. McGaw
titled Marginal Punched Cards in College

and Research Libraries. Thumbing through

its pages, I learned much of what I want

ed to know about McBee cards—for

instance, that the first patents were issued
in 1896, and that the main users were

libraries and chemists. So here was a case

in which gigabytes and terabytes and

100,00((-dimensional vector spaces were
outdone by the Dewey decimal system.

Evidently, there are still places the Net
can't take us.

But don't gloat, Luddites. The next

person who asks a Web search engine to
find McBee cards will very likely be

referred to this document. •

Brian Hayes is a freelance writer and a for
mer editor of AMERICAN SCIENTIST.

November/December 2000 • THE SCIENCES 47

