Brian Hayes

The Discovery of Debugging

n May 6, 1949, a length of

punched paper tape was threaded

into 4 machine at the University
of Cambridge; a few seconds later a near-
by teleprinter began tapping out a list of
numbers: 1, 4, 9, 16, 25, The tape
reader and the teleprinter were the input
and output devices of an elecrronic digi-
tal computer, a machine called the ED-
SAC; calculating the squares of a list of
numbers was its first full cese. Indeed, it
was the first time any full-scale computer,
in the modern sense of the term, had suc-
cessfully run a program.

Computers and computing have
changed drastically since 1949—more so,
perhaps, than any other element of tech-
nology. The EDSAC is long gone; most of
its parts were sold for scrap in 1958. No
one will ever build another machine like
it. Nevertheless, it is still possible to write
programs for the EDSAC, to load those
programs into the paper-tape reader and
then to see (and hear) the resulcs come
ticking out of the teleprinter. The time
machine that offers this transport into the
past is a simulator created by Martin
Campbell-Kelly, a historian of computing

10 THE SCIENCES Ju/y/August 1993

who teaches at the University of War-
wick. The simulator turns a modern
Macintosh computer into a surprisingly
faithful—sometimes frustratingly faith-
ful—replica of the EDSAC.

[tis a commonplace observation that all
the computing power of forty years ago—
the rooms filled with glowing vacuum
tubes, the tons of air conditioning, the
squadrons of atcending technicians—will
now fic comfortably on a corner of your
desk or in your briefcase or even in your
pocket. Buritis one thing to compare per-
formance specifications, memory capaci-
ties and program benchmarks; it is quite
another actually to see one of the early iron
giants of computing encompassed in the
little plastic box of a Macintosh, There is
someching incongruous about it, like the
dozen circus clowns in the miniature car.

he EDSAC was part of the first gener-

ation of computing machines to
emerge in the aftermath of the wartime
ENIAC (Electronic Numerical [ntegrator
and Compurter) project. The ENIAC it-
self, built at the University of Pennsylva-
nia, had been churning out ballistics ta-

i

bles for the U.S. Army since 1945, but it
wias not a computer in the modern sense.
It could not be programmed except by
setting switches and plugging in patch
cords. The idea of controlling a machine
by means of a program stored in its own
memory made its public debut in John
von Neumann’'s “First Draft of a Report
on the EDVAC,” written in 1945, just af-
ter the end of the Second World War.

Ar Cambridge a year later, Maurice V.
Wilkes, the new director of the Mathe-
matics Laboratory, saw a copy of von Neu-
mann's repart. Soon thereafter he was on
his way to Philadelphia for a summer
school at the University of Pennsylvania,
where the stored-program concept was
discussed in detail. The Pennsylvania
group was then gearing up to begin build-
ing the EDVAC (Electronic Discrete Vari-
able Automatic Computer), and Wilkes
returned to England with the determina-
tion to create a stored-program machine of
his own. He called it the Electronic Delay
Storage Automatic Calculator. The simi-
laricy of the acronyms EDSAC and EDVAC
was no ceincidence.

Back in the United States the EDVAC

hayez
Rectangle

project suffered several changes of lead-
ership and also developed a case of creep-
ing-enhancement disease: every stage of
construction was delayed by some bright
idea about how to make the machine big-
ger or betrer or faster. Indeed, the version
of the EDVAC finally constructed art
Pennsylvania bore litile resemblance to
the machine described in von Neumann's
“First Draft.” Wilkes stuck close to his
original design and finished a year earlier.

The EDSAC occupied the upper floor
of a building that had once been the anac-
omy school in Cambridge. The control
circuits, as well as the circuits responsible
for logical and arithmetical operations,
were based on wvacuum tbes—some
3,500 of them—arranged in tall steel
racks that filled the room like library
shelves. The memory elements of the
computer were mercury delay lines:
tubes five feet long, filled with mercury,
with a quartz transducer at each end, Ul-
trasonic pulses representing binary digits
were transmitted into the mercury at one
end of cthe tube and received at the other
end; the received signal was then ampli-
fied and transmicted again, so that the
pulses circulated continuously and could
be stored indefinitely. Each such “long
tank” in the main memory held 576 bits,
organized as thirty-two “words” of eigh-
teen bits each; the design called for
thirty-two tanks, and so the total capacity
was 1,024 words.

he EDSAC, like most of the other

electronic computers concelved in
the 1940s, was a “bit-serial” machine.
The data pachs threading throughout the
processor were just one bit wide, and so
communicating an eighteen-bit machine
word from one place to another required
eighteen steps. Bit-serial architectures
are rare today; most of the common
microprocessors have dara paths thar are
sixteen or thirty-two bits wide, The serial
arrangement was slower, but it had the
important advantages of simplicity and
economy.

The EDSAC’s clock speed, which ser
the pace of all operations, was 0.5 mega-
herez, or 500,000 cycles a second. That
was a conservative specification even in
1949 (modern computers run at 25 or even
50 megaherrz), but it was consistent with
Wilkes’s emphasis on getting the machine
built quickly and reliably rather than on
seeking the ultimate in performance. The
EDSAC could typically execute about 600
instructions a second (for presenc-day
computers the corresponding number is a
few million). A crude figure of merit for
computer performance is the product of
speed and memory capacity. By that mea-
sure a modern desktop machine might
score 100 or 200 megahertz-megabyres.
The EDSAC checks in at 0.0006 mega-
hertz-megabytes. In one respect, howev-

| er, the EDSAC exceeded the fondest
dreams of the modern “power user.” It
drew about twelve kilowatts from the mu-
nicipal electric supply. (A Macintosh to-
day draws about a tenth of a kilowatt.)
Comparing the EDSAC with the very
latest computer technology may not be
the best way of conveying a sense of its
capabilities. The EDSAC reminds me
strongly not of the compurers I see on ev-
ery deskrop today but of the first machine
on which I had any experience of pro-
gramming, not quite twenty years ago.
That machine was closely matched to the
EDSAC in memory capacity and execu-
tion speed, as well as in its Spartan facili-
ties for input and ocutput. It was a pro-
grammable hand-held calculator made by
Hewlect-Packard.

few weeks after the EDSAQG ran ics
first program, a conference on “high
speed automitic caleulating machines”
was convened at Cambridge. Here was a
chance for Witkes and the rest of the ED-
SAC crew to show off their accomplish-
ments and to compare notes with repre-
sencatives of other laboratories in Great
Britain and in Europe and the U.S. The
record of the conference has been reprint-
ed as Volume 14 in the Charles Babbage
Institute Reprint Series for che History of
Computing; reading it offers a glimpse in-
to the small world of computer engineer-
ing at midcentury.

What struck me first when [read che
conference record was the remarkably ad-
vanced state of thinking on computer ar-
chitecture and hardware design at a mo-
ment when there was hule practical
experience to guide thar thinking. Much
of the “design space” for digital computers
had already been explored or ar least
roughly mapped out. The basic circuits for
performing various arithmetical and logical
operations had been devised. The relatve
merits of bipary notation and of other op-
rions such as binary-coded-decimal were
well understood. There was extensive de-
bate over what set of elementary machine
instructions (or orders, as they were then
known in England) would vield the best
performance. One speaker introduced the
idea of a storage hierarchy, in which a fast

slower but larger auxihary storage.
In conrrastto all the sophisticared anal-
yses of hardware, the idea of software

be sure, there was much tatk abour the
“coding” of problems for specific ma-
chines: how to multiply two numbers ef-
ficiently with a cerrain set of instructions;
which algoritbm would prove best for nu-
merical integration; and so on. Bur those
exercises in problem solving were far
from the modern conception of software
as the “personalicy” of a computer—as
the component that allows a single ma-

but small memory is supplemented by a

could hardly be said to exist in 1949. To |

chine to be a word processor one moment,
an artist’s sketch pad che nexcand a sim-
ulator of an antique computer the next.

The disparity between the advanced
state of hardware design and the primi-
tive state of software development can be
expressed as follows. Mast of the abstrac-
tions that serve as the fundamensal build-
ing blocks of computer hardware had al-
ready been recognized in 1949: Boolean
logic gares, registers, clock circuits, coun-
ters, adders, shifters, and perhaps most
important the division of the machine in-
to subunits for memory, control, arith-
metic and logic, inpuc and output. There
is a corresponding sec of abstractions for
software: sequences, branches, loops, 1t-
eration, recursion, procedures, arrays,
sets, lists, queues, stacks and so forth.
Few of those concepts had yer appeared,
except in the most embryonic form. Even
more canspicuously absent was the idea
of a programming language. No higher-
level programming languages existed
(FORTRAN did not come along until
1954), and che programming notations
then in use, namely the inscruction sets of
the various computers, were not viewed
as having a linguistic aspect. No one had
set forth the grammar of an instruction
set, and no one was ready to atuibure
meaning to a program as an independent
entity, separate from the computer that
would execute it.

I can suggest two reasons software was
so much the stunted sibling of hardware in
the earliest years of computing. First, most
of the computing pioneers still viewed the
compureras a strictly numerical calculator.
Its function was to solve mathemarical
problems. The idea that it might operate
not just on numbers but also on symbols
more generally—including its own pro-
grams——had not yet caught on. Programs
were seen not as interesting objects in
themselves but merely as tools for manip-
ulating numbers. Second, no one yet ap-
preciated that programming a digital com-
puter was going to be an intellectual
chatlenge, one that might reward the in-
terest of a mathemarician or an engineer.
It appeared then that programming might
be tedious but not fundamentally difficult.

A crucial discovery was yet to be made:
the discovery of debugging.

find it quite remarkable that the ED-

SAC’s first program ran without errors.
Moreover, the next two programs—
which printed slightly more elaborate
lists of squares as well as prime num-
bers—also worked the first ime. It is true
they were extremely simple programs,
and they had been carefully checked and
rechecked in the weeks before the ma-
chine was ready for them. But suli I am
full of admiration. Three bug-free pro-
grams in a row: itis a record that may nev-
er have been equaled. In any event, the

JulyfAuguse 1993+ THE SCIENCES 11

streak stopped at three; with the next pro-
gram, which was more ambitious, Wilkes
ghmpsed the awful truch.

Campbell-Kelly tells the scory of that
program in the Anrals of the History of
Computing (Volume 14, Number 4, 1992).
After the June conference at Cambridge,
Wilkes began work on the first nontrivial
EDSAC program, which calculated a table
of values for Airy’s integral (the solution
of a differential equation chat turns up in
areas such as the theory of the rainbow).
Wilkes has given no dertailed account of
how he wrote the program, but there is
documentary evidence that it did not run
successfully on the firsttry. In 1979, while
cleaning out his office, Wilkes came upon
an old punched tape, which turned our to
be an early version of the Airy program.
He gave a copy to Campbell-Kelly, who
has since teased out its meaning,.

he program is 126 lines Jong and has

twenty errors. Most of the errors are
mere typographical slips and small lapses
in syntax or logic. For example, Wilkes
gor two conditional-branch instructions
backward, causing the program to jump to
a new location when it should continue
sequentially, and vice versa. The program
calculates an intermediate result but then
neglects to store it for future use. In two
other cases a value 1s stored in the wrong
place. All of these minor blunders will be
maddeningly familiar to anyone who has
done some programming. The human
reader passes over such errors without
even seeing them, unconsciously filling
in the intended meaning, but the ma-
chine 15 resolutely literal. It does only
what it is told to do.

One of the bugs in the program was
more subtle. Campbell-Kelly writes:

When Wilkes first sent me the tape in 1979, it
did not take very long to coax some numbers
from the program, buc although che results
were correct to four decimal places, there was
an error of as much as four units in the fifth
place. . .. Since everything else in the program
looked perfect—and since I had spent more
time trying to debug the program than [really
care to admit—I was forced to concede defeat
and put it to one side. During the intervening
years between chen and now I looked at the
program again two or three times but the bug re-
mained obstinately hidden. Finally, one morn-
ing in early 1990, the penny finally dropped:
The error was caused by the fact that the con-
stant (8x)%/12 in Jocation 45 was stored only to
single precision instead of double precision.

The prevalence and the stubbornness
of such errors took the early programmers
by surprise. The speakers at the 1949
Cambridge meeting were gravely con-
cerned abourt hardware faults and how to
detect them. Several early machines, in-
cluding the EDVAC (but not the EDSAC),
were built with two complete arithmetic
and logic units just so that all operations
would be continuously double-checked.

12 THE SCIENCES ¢ July/August 1993

But the corresponding problem of soft-
ware errors got litcle attention. After all,
programs would be written by mathe-
maticians and others skilled in the ma-
nipulation of complex formulas; surely
they could get it right the first time.

Having spent a little time writing sim-
ple EDSAC programs and struggling
to get them to ren on Campbell-Kelly's
simularor, 1 am impressed that any useful
work at all was ever done on the comput-
er. The pioneer programmers who mas-
tered the stern and unyielding machine
were obviously prodigies of concentration
and patience.

The simulation is unrelentingly realis-
tic. The only aids to writing, running and
debugging programs are the ones that
were available to Wilkes and his col-
leagues in 1949, Moreover, the only input
and output facilities are the ones avail-
able to the original machine. You punch a
program tape by typing the orders in a
long list. Pressing che Start button reads
the rape into memory and starts the com-
puration. Other butrons execute a single
program step, clear the memory and réset
the processor, or stop the machine. Out-
put from the program appears In a
scrolling window, which mimics the con-
tinuous roll of paper in the teleprinter of
the original EDSAC; the simulated print-
er clicks quietly and at the end of every
line produces the whump-clunk of a car-
riage return. The only facility for inter-
acting with a running program is a tele-
phone dial, which allows single digits to
be dialed in; even that device was not
added uncil 1951.

The EDSAC had several oscilloscope
displays whereby the contents of memo-
ry tanks and wvarious registers could be
monitored. Those displays are also pre-
sent 1n the simulator. They show binary
1’s and O’s as large and small dots, which
dance and flicker appealingly when a pro-
gram is running. The largest of the dis-
plays has sixteen rows of thirty-five dots
each, representing the entire contents of
a long rank. Among the demonstration
programs included with the simulatorisa
virtuwoso performance by A. S. Douglas,
who was then a student and later became
a president of the British Computer Soci-
ety. In Douglas’s program the contents of
memory are manipulated in such a way
that the long-tank oscilloscope displays
the playing field for a game of tic-tac-toe.

On first glance at the EDSAC instruc-
tion set, programming the machine seems
straightforward encugh. The instruction
A 45 adds che contents of memory loca-
ton 45 to the contents of a special regis-
ter called the accumulator. Similarly S 46
subtracts the contents of location 46 from
the accumularor. T47 transfers the con-
tents of the accumulacor to location 47
and resets the accumulator to 0. There are

eighteen instructions altogether, each
specified by a one-letter code. Itis easy to
see how the designers of the machine
could have believed that those instruc-
tions would meet all cheir needs, and in-
deed there is nothing wrong with the in-
dividual instructions. The trouble begins
when you try to string instructions to-
gether in a meaningful sequence.,

Suppose you want to add the numbers 5
and 8. Doing the addition is quite
easy—all it takes is an A instruction—but
almost every other step of the program
has its own little snag. If you want to add
8 to 5, you must first gera 5 into the accu-
mulartor, buc there is no instruction for di-
rectly setting the accumulator to a speci-
fied value. All you can do is make sure the
accumulator is inivally 0 and chen add 5
to it. The only way to zero the accumula-
tor, however, 15 to execute a [instruction,

| which also has the effect of storing the old

value of the accumulator at some memo-
ry address. Hence some location must be
available to serve as a “rubbish heap.”

On the basis of those ideas, a sequence
of instructions for adding two numbers
might look like this:

065 T 71 F
066 A 69 F
067 A 70 F
068 Z F

Here the numbers in the leftmost column
are not parct of the program; they merely
identify the memory locations at which
the instructions are stored. The next col-
umn holds the instruction codes them-
selves, T for transfer and A for add. The
numbers foliowing each code are address-
es: location 71 is serving as a rubbish
heap, whereas location 69 is assumed to
hold the value 5, and location 70 holds the
value 8 The F thar follows each instruc-
tion indicates that the instruction oper-
ates on “short,” or single-precision, quan-
tities of seventeen bits; a D would signal
“long,” or double-precision, values of
thirty-five bits. The Z instruction hales the
machine when the addition is done.

The program is already a fairly intricate
piece of work just for adding a couple of
numbers, but it gets worse. Storing the
constant values 5 and 8 in their assigned
places might seem a rrivial task. In facr, it
is the hairiest part of the program. The
EDSAC had no special provision for spec-
ifying numeric values, and so constants
had to be entered on the tape by typing
out the instruction code whose binary
pattern matched the appropriate numeric
value. The integer 5, for example, is rep-
resented by the instruction P 2 D, which
just happens to have the seventeen-bit
binary encoding 00000000000000101,
equal to 5 in decimal notation. The code
for decimal 8 is P 4 F, which translates to
00000000000001000. Hence the full addi-

tion program would consist of
these instructions:

065 T 7 E
066 A 69 F
067 A 70 F
068 z F
069 P 2 D
070 P 4 E
071 P F

The statements in locations 69
through 71 that specify constants
are called pseudoinstructions, be-
cause although they look like in-
structions, they are not meant to
be executed. The final pseudo-
instruction, which stores a 0 in {o-
cation 71 to reserve that address
as the rubbish heap, illustrates
ane more little peculiarity for the
programmer: a 0 in the address
field of an instruction is repre-
sented not by a 0 but by a blank.

1l those tricks and foibles of
the instruction code put a
formidable obstacle in the way of
the beginning programmer, but
in the long run they are probably
not the major source of difficuley
in working with che EDSAC. Such minor
arcana can be mastered with a few days’
practice. The snares that carch even ex-
perienced programmers lie elsewhere.
Suppose you have written a program to
compute the sum 5+8, and you need to
modify it to calculate 5+8+21. Inserting
a third A instruction is easy, and working
out a way of representing 21 (it’s P 10 D)
1s merely a bizarre exercise, but when the
new instructions have been written, the
job 1s not yet finished. Interpolating a
third add instruction pushes all the sub-
sequent data down in memory, which
means that the addresses embedded in
the earlier instructions must be adjusted.
Indeed, address adjustments are needed
whenever instructions are inserted or
removed, with the consequence that a
change anywhere in the program text can
have repercussions arbicrarily far away.
The tedious and exacting chore of
keeping addresses current was quickly
recognized as an invitation to error. An in-
genious partial solution was contributed
by David]J. Wheeler, a Cambridge stu-
dent who joined the EDSAC project early
on and who is now professor of computer
science at Cambridge. Wheeler wrote the
“initial orders,” which were manually
loaded into the machine’s first few mem-
ory locations and which then loaded oth-
er programs through the rape reader. The
ininial orders included aspects of what
would now be called an operating system
(for loading and executing programs) and
aspects resembling those of an assembler
(for converting symbolic instructions into
/their binary form). In the second version

of che initial orders, completed in Sep-
tember 1949, Wheeler included a facility
for “relocatable” subroutines. The facili-
ty would adjust addresses automarically
according to where the routines were
loaded into memory.

In spite of the sparse instruction set,
the weird notation for numeric constants
and the difficulty of working with abso-
lute addresses, it needs to be said thac the
EDSAC was the friendliest of all the first-
generation computers. At Jeast it accept-
ed input in the form of alphabetic charac-
ters and decimal numbers. Workers on
other machines had to manually translate
cheir programs into raw binary or hexa-
decimal (base 16) notation. And art least
EDSAC instructions had only one address
to go wrong; in the EDVAC every instruc-
tion had four address fields, each of which |
might have to be adjusted after every pro-
gram change.

It did not take long for the Cambridge
group and others to recognize chat get-
ting programs right was going to be a long
and laborious undercaking chat would de-
mand a major investment of intellectual
resources. Wilkes wrote in his autobiogra-
phy, Memoirs of a Computer Pioneer, of the
moment, during his work on the Airy
tape, that the nature of the problem be-
came clear to him:

The EDSAC was on the top floor of the building
and the tape-punching and editing equipment
one floor below. . .. It was on one of my jour-
neys berween the EDSAC room and the punch-
ing equipment that, “hesitating ac the angles of
stairs,” the realization came over me with full |

force that a good parc of the remainder
of my life was going to be spent in
finding errors in my own programs.

By the uame of the next British
computing conference, in July
1951, the problems of program-
ming and debugging were being
taken more seriously. There was
even mention of “programme-
translating programmes,” and
Alan M. Turing discussed the
idea of an interpreter, a program
that would enable the computer
[0 eXecute programs written in a
higher-level language. By then,
too, the EDSAC had a suite of de-
bugging routines ready for pro-
grams that went awry. They in-
cluded “postmortem” routines,
which printed out the state of the
machine after a program had
stopped, and “trace” routines,
which printed out informarion as

each instruction was execured.
At about the time of the sec-
ond conference, Wilkes, Wheeler
and their colleague Stanley Gill
published the first textbook on
computer programming, 1he
Preparation of Programs for an
Electronic Digital Computer. The three col-
laborators included a chapter on “pit-
falls,” which began by acknowledging
that even a comperent programmer will
sometimes make a mistake. “Experience

| has shown that such mistakes are much

more difficult to avoid than might be ex-
pected,” they wrote. “ltis, in fact, rare for
a program to work correctly the first time
itis ried, and often several attempts must
be made before all errors are eliminated.”
The copy of Wilkes, Wheeler and Gill in
my local university library was evidently
donated by someone who had had first-

| hand experience of programming the ED-

SAC or one of the machines modeled on
it. The margins are full of penciled notes
and comments. The two quoted sen-
tences are underlined in red. ®

BRrRiaN HAYES is a contributing editor of
THE SCIENCES.

For readers of The Sciences who want to
experiment with the EDSAC simulator,
Martin Campbell-Kelly has agreed to
make the program and a tutorial guide
available for $20, to cover the cost of
printing and shipping. The package in-
cludes a library of subroutines and a va-
riety of demonstration programs, so that
it is not necessary to master the EDSAC
instruction code to run the simulator.
The programs come on one three-and-a-
half-inch floppy disk. Checks for the $20
should be made out o the New York
Academy of Sciences and sent to De-
partment EDSAC, The Sciences, 622
Broadway, New York, New York 10012,

July/August 1993» THE SCIENCES 13

hayez
Rectangle

