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The Discovery of Debugging 


On May 6, 1949, a length of 
punched pape r tape was threaded 
into a mac hine at the University 

of Cambridge; a few seconds later a near
by te leprinter began tap ping OUt a list of 
numbers: 1, 4,9, 16, 25, .... The tape 
reade r and the teleprinte r we re the input 
and ou'rput devices of an electronic digi
ta l computer, a machine called the ED
SAC; calculating the squares of a list of 
numbers was iIS first fu ll test. Indeed, it 
was the first time any full-scale compmer, 
in the modern sense of the rerm, had suc
cessfully fun a program. 

Computers and computing have 
changed drastically since 1949-more so, 
pe rhaps, chan any other e lement of tech 
nology. The EDSAC is long gone; most of 
its pans we re sold for scrap in 1958. No 
one will ever build another machine like 
it. Nevenheless, it is still possib le to write 
programs for the EDSAC, ro load those 
programs in to the paper-rape reader and 
rhen co see (and hear) the results come 
ti cking out of the te leprinter. The rime 
machine that offers thi s transport ioco {he 
pase is a simulator created by Manin 
Campbell-Kell y, a historian of computing 
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who teaches ar the University of War
wick. The simuhuor turns a modern 
Macintosh computer into a surprisingly 
faithful- sometimes frustratingly faith 
ful-replica of rhe EDSAC. 

It is a commonplace observa t ion that all 
the computing power of forty years ago---
the rooms filled with glowing vacuum 
tubes, the tons of <lir conditioning, the 
squadrons of attending technicians-will 
now fit comfonably on a corner of your 
desk or in your briefcase or evell in yo ur 
Docket. But it is one thing ro compare per
formance specifications, me mory capaci
ties and program benchmarks; it is quite 
another accual]y to see one of the earl y iron 
giants of computing encompassed in the 
little plastic box of a Macintosh. There is 
something incongruous about it, like the 
dozen ci rcus clowns in the miniaru re car. 

The EDSAC was part of the first gene r
ation of computing mach ines to 

e merge in the afte rmath of the wartime 
ENlAC (Electron ic N umerical Integrator 
and Computer) project. The ·EN IAC it
self, built at the University of Pennsylva
nia, had been churning Out ba llistics ta

bles for the U.S. Army since 1945, but it 
was noc a compute r in the modern sense. 
Ie eQuId not he programmed except by 
setting switches and pluggi ng in patch 
cords. The idea of controlling a machine 
by means of a program StOred in its own 
memory made its public debut in John 
von Neumann's " First Draft of a Report 
on the EDVAC," written in 1945, JUSt af
ter the end of (he Second World War. 

At Cambridge a yea r later, Maurice V. 
Wilkes, rhe new directOr of the Mathe
matics Laboratory, saw a copyofvon Neu
mann 's repo rt. Soon the reafter he was on 
hi s way to Philadelphia for a summer 
school at the Univers ity of Pennsylvania, 
where the stored-program concept was 
discussed in detail. The Pennsy lvania 
group was then gearing up to begin build
ing the EDVAC (Electronic Discrete Vari. 
able Automatic Compute r), and Wilkes 
retu rned co England with the determina
ci on (Q create a stored-program machine of 
his own. He ca lled it the Electronic Delay 
Storage Automatic Calculator. The simi· 
lariry of the acronyms EDSAC and EDVAC 
was no coincidence. 

Back in the United States the EDVAC 
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projec t suffered several changes o f lead
ership and also deve loped a case of creep
ing-enhancement disease: every stage of 
construc tion was delayed by some bright 
idea about how to make the machine big
ger or better or faster. Indeed, the ve rsion 
of the EDVAC finally constructed at 
Pennsylvania bore little resemblance co 
the machine described in von Neumann 's 
"First Draft." Wilkes stuck close to his 
original design and finished a year earlier. 

The EDSAC occupied the upper Roar 
of a building that had once been the anat
omy school in Cambridge. T he control 
circuits, as well as the circuits responsible 
for logical and arithmetical operations, 
were based on vacuum tubes- some 
3,500 of them-arranged in ta ll steel 
racks that filled the room like li brary 
shelves. The memory clements of [he 
compute r were mercury delay lines: 
tubes fi ve fee t long, filled with mercury, 
wj th a quar[Z transducer at each end. UI
uasonic pulses representing binary digits 
were uansmicred inm the mercury at one 
end of the tube and received at the ot he r 
end; the received signal was the n ampli
fie d and transmitted aga in, so that the 
pulses circulated continuously and cou ld 
be scored indefin ite ly. Each such "long 
tank" in the main memory held 576 bits, 
organized as thirry-two "words" of eigh
teen bits each; the design ca lled for 
thirty-two tanks, and so the total capacity 
was 1,024 words. 

The EOSAC, like most of the other 
electronic computers conceived in 

the 1940s, was a "bit-serial" machine. 
The data paths thread ing throughout the 
processor were just one bit wide, and so 
communicating an eighteen-bit machine 
word from one place to anothe r required 
eighteen steps. Bit-serial architectu res 
are rare today;' mOSt of the common 
microprocessors have dara paths that are 
sixteen or thirty -two bits wide. The serial 
arrangement was slower, but it had th e 
imporcant advantages of simplicity and 
economy. 

The EDSAC's clock speed, which set 
the pace of all opera tions, was 0.5 mega
hertz, or 500,000 cycles a second. T hat 
was a conservative specification even in 
1949 (modern compute rs run at 25 or even 
50 megahertz), but it was consistent with 
Wilkes's emphasis on getting the machine 
built quickly and reliably rather than on 
seeking the u ltimate in performance. The 
EDSAC could typically execute about 600 
instructions a second (for present-day 
computers the corresponding number is a 
few million). A crude figure of merit for 
computer performance is the product of 
speed and memory capacity. By that mea
sure a modern deskrop machine might 
score 100 or 200 megahertz-megabytes. 
The EDSAC checks in at 0.0006 mega
,hertz-megabytes. In one respect, howev

er, the EDSAC exceeded the fondest 
dreams of the modern "power user." It 
dtew about twelve ki lowatts from the mu
nicipal electric suppl y. (A Macintosh to
day draws about a tenth of a kilowatt.) 

Comparing the EOSAC with the very 
lates t computer technology may noc be 
the best way of conveying 3 sense of its 
capabi lities. The EDSAC reminds me 
strongly not of the computers I see on ev
ery deskcop coday but of the fiIst machine 
on which I had any expe rience of pro
gramming, not quite twenty years ago. 
That machine was closely matched to the 
EDSAC in memory capacity and execu
tion speed, as well as in its Spartan facili
ties for input and output. Ie was a pro
grammable hand-held calculator made by 
Hewlett-Packard. 

A few weeks after the EDSAC ran its 
first program, a conference on "high 

speed automatic calculating machines" 
was convened at Cambridge. Here was a 
chance for Wilkes and the rest of the EO
SAC crew to show off their accomplish
mencs and {O compare notes with repre
sentati ves of other laborato ries in Great 
Britain and in Europe and the U.S. The 
record ohhe confe re nce has been reprint
ed as Volume 14 in rhe C harles Babbage 
Inst itute Reprint Series for {he History of 
Computing; reading it offe rs a glimpse in
to the small world of computer engineer
ing at midcentury. 

What snuck me first when I read clle 
conference record was the remarkably ad
vanced state of thinking on computer ar
chitecture and hardware design at a mo
ment when there was little practical 
experi ence to guide that thinking. Much 
of the "des ign space" for digital computers 
had already been explored or at least 
roughly mapped Ollt. The basic circuits for 
performing various arithmetical and logical 
operations had been devised. The relative 
merits of binary notation and of other op
tions such as binary-coded-decimal were 
well understood. There was extensive de
bate over wha t set of elementary machine 
instructions (or orders, as they were then 
known in England) would yield the best 
performance. One speaker introduced the 
idea of a scorage hie rarchy, in which a fast 
but small me mory is supplemented by a 
slower but larger auxiliary scorage. 

In contrast to a ll the sophistica ted anal 
yses of hardware , the idea of software 
could hardly be said to exist in 1949. To 
be sure, there was much talk about the 
"coding" of problems for specific ma
chines: how to multiply two numbe rs ef
ficiently with a certain set of instruct ions; 
which algorithm would prove best for nu
merical integration; and so on. But those 
exercises in problem solving were far 
from the modern conception of software 
as the "personality" of a computer-as 
the component that allows a single ma

chine to be a word processor one moment, 
an artist's sketch pad the next and a sim
ulator of an antique computer th e next. 

The disparity be tween the advanced 
state of hardware design and the primi
tive state of software deve lopment can be 
expressed as follows. Most of th e abstrac
tions that serve as the fundamental build
ing blocks of computer hardware had al
ready bee n recognized in 1949: Boolean 
logic ga tes, regisre rs, clock ci rcuits, coun
re rs, adders, shifters. and perhaps most 
important rhe division of the machine in 
to subunits for me mory, control, arith
me tic and logic, input and Output . T here 
is a corresponding set of abs tractions for 
software: seque nces, branches, loops, If
eration, recursion, procedures, armys, 
sets, lists, queues, stacks and so forth . 
Few of those concepts had ye t appea red, 
except in the most embryonic form. Even 
more conspicuously absent was the idea 
of a programming language. No higher
level programming languages existed 
(FORTRAN did not come along until 
1954), and ehe programming nocations 
then in use, namely the instruction sets of 
the various computers. were not viewed 
as having a linguistic aspect. N o one had 
se t forth th e grammar of an instruction 
set, and no one was ready to attribute 
meaning to a program as an independent 
entity, separate from the computer that 
would execute il-

I can suggest fWO reasons software was 
so much the stunted sibling of hardware in 
the ea rliest years ofcomputing. First, most 
of the computing pioneers still viewed the 
compute r. as a strictly numerical calculator. 
Its function was to solve mathe matical 
problems. T he idea chat it might operate 
not JUSt on numbers bl){ also on symbols 
more generally-including its own pro
grams-had nor yet caught on. Programs 
were seen not as interesting objec ts in 
themselves bue merely as tools for manip
ulating numbers. Second, no one yet ap
preciated that programming a digital com
puter was goi ng to be an intellectual 
challenge, one that might reward the in
terest of a mathematician or an engineer. 
Ie appea red then that programming might 
be tedious but nor funda mentally difficult. 

A crucial discovery was yet to be made: 
the discovery of debugging. 

I find it quite remarkab le that the EO
SAC's first program ran without errors. 

Moreover, the nex t two programs
which printed slightly more elaborate 
lists of squares as we ll as prime num
bers- also worked the first time. It is (Tue 
they were extre mely simple programs, 
and they had been care fully checked and 
rechecked in the weeks be fore the ma
chine was ready for the m. But still J am 
full of adm iration. Three bug-free pro
grams in a row: it is a record that may nev
er have been equaled. In any event, the 
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streak stopped at three; with the next pro· 
gram, which was more ambitious, Wilkes 
glimpsed the awful truth. 

Campbell-Kelly tells the Story of that 
program in the Annals of /ne History oj 
Computing(Volume 14, Number 4, 1992). 
After the June conference at Cambridge, 
Wilkes began work on the fi rst nontrivial 
EDSAC program, which calculated a cable 
of va lues for Airy's integral (the solution 
of a differemial equation chat turns up in 
areas such as the theory of the rainbow). 
Wilkes has given no dera iled account of 
how he wrote the program, but there is 
documentary evidence that ie did noe ru n 
successfully on the firs t cry. In 1979, while 
cleaning out his office, Wilkes came upon 
an old punched tape, which turned oU[ to 
be an early version of the Airy program. 
He gave a copy to Campbel1·Ke lly, who 
has since teased our its meaning. 

The program is 126 lines long and has 
twenty errors. Most of the errors are 

mere typographical sli ps and small lapses 
in syntax or logic. For example, Wilkes 
got two condirional·branch instructions 
backward. ca using the program to jump to 
a new loca tion when it should continue 
sequentially, and vice versa. T he program 
calculates an inrermed iate result but then 
neglects to store it for futu re use. In two 
other cases a value is stored in the wrong 
place. All of these minor blunders will be 
maddeningly familiar to anyone who has 
done some programming. The human 
reader passes over such errors without 
even seeing them, unconsciously filling 
in the intended meaning, but the rna· 
chine is resolutely literal. It does only 
what it is tOld to do. 

One of (he bugs in (he program was 
more subtle. Campbell·Kelly writes: 

When Wilke~ hm scm me the cape in 1979, it 
did not take very long to coax some numbers 
from the program, hue although the resules 
we re correct to four decimal places, there was 
an error of as much as four units in the fifth 
place. . Since everythi ng else in the program 
looked perfect- and since I had spent more 
time trying to debug the program chan J reall y 
care to admit-( was forced to concede defeat 
and pur it to one side. During the intervening 
years between then and now I looked at the 
program again twO or three times but the hug re
mained obstinately hidden. Finally, one morn
ing in eady 1990, the penny finally dropped: 
The error was caused by the fact that the con
stant (Sx)2/l2 in location 45 was stored only to 

single precision instead ofdoublc precision. 

The preva lence and the stubbornness 
of such errors took the early programmers 
by surprise. The speakers at (he 1949 
Cambridge mee ting were gravely con· 
cerned about hard ware faults and how to 

detect them. Several ea rl y machines. in· 
eluding the EDVAC (bm not the EDSAC), 
were built with tWO complete arithmetic 
and logic units JUSt so that all operations 
would be cont inuously double·checked. 

12 THE SCIENCES • JulJIAuguu 1993 

Bm the corresponding problem of soft· 
ware errors got little attention. After all, 
programs would be written by mathe· 
maticians and others skilled in the rna· 
nipulation of complex form.ulas; surely 
they could get it right the first t ime. 

Having spent a little ti me writing sim· 
pIe EDSAC programs and struggling 

to get them to run on Campbell· Ke lly's 
simulator, I am impressed tha t any useful 
work at all was ever done on the compuc· 
er. The pioneer programmers who mas· 
cered the ste rn and unyielding machine 
were obviously prodigies of concent rat ion 
and pacience. 

The simulation is unrelent ingly real is· 
cic. The only aids to w6eing, running and 
debugging programs are the ones that 
were available to Wilkes and his col· 
leagues in 1949. Moreover, the on ly input 
and output facilities are the ones avail
able to the original machine. You punch a 
program tape by typing the orders in a 
long list. Press ing the Starr bu tton reads 
the tape into memory and sta rtS the com· 
putation. Other bunons execute a single 
program step. clear the memory and reset 
the processor, or StOp the machine. Oue· 
put from the program appears in a 
scrolling window, which mimics the con · 
tin uous roll of paper in the te leprinte r of 
the original EDSAC; the simulated print
er cl icks quietly and at (he end of every 
line produces the wnump·clllflk of a car
riage return. The only facility for inter
acting with a running program is a tele
phone dial, which allows single digits to 
be dialed in; even thac device was not 
added until 195 1. 

The EDSAC had several oscilloscope 
displays whereby the contents of memo
ry tanks and various registers could be 
monitored. Those disp lays are also pre
sent in the simulator. They show binary 
1 's and D's as large and small dots, which 
dance and Ricker appealingly when a pro
gram is running. The la rgest of the dis
plays has sixteen rows of thirty-five dots 
each, represeming the e ntire contents of 
a long tank. Among the de monstration 
programs included wi th the simulator is a 
vi rtuoso performance by A. S. Douglas, 
who was then a stUde nt and late r became 
a president of the British Computer Soci
ety. In Douglas's program the contents of 
memory are manipulated in such a way 
that the long-tank oscilloscope d isplays 
the playing field for a game of tic·tac·toe. 

On first glance at the EDSAC instruc· 
tion set, programming rh e machine seems 
straightforward enough. T he instruction 
A 45 adds the contents of memory loca· 
tion 4S to the conten ts of a special regis· 
ter called the accumulator. Similarly S 46 
subuac(s the contents of location 46 from 
(he accumulato r. T47 transfers the can· 
tents of (he accumulator to location 47 
and rese ts the accumulator toO. There are 

eightee n instructions altoge ther, each 
specified by a one·jene r code. Jr is easy to 
see how the designers of dle machine 
could have believed that those instruc· 
tions would meet all their needs , and in· 
deed there is nothing wrong with the in · 
dividual instructions. Th e trouble begins 
when you try to string instructions to· 
ge rher in a meaningful sequence. 

Suppose you want to add the numbers 5 
and 8. Doing the addition is quite 

easy-all it takes is an A instruction- but 
almost every otber step of the program 
ha s its own little snag. If you want to add 
8 to 5, you must first get a 5 into the accu· 
mulato r, but there is no instruction for di · 
recdy setting the accumulator to a speci· 
fl ed va lue. All you can do is make sure the 
accumulator is initia lly 0 and the n add 5 
to it. Th e only way to zero [he accumula
tor, however, is to execute a T instruction, 
which also has tbe effect ofstoring the old 
value of the accumulatOr at some memo· 
ry address. Hence some location mUSt be 
available to serve as a "rubbish heap." 

On the basis of those ideas, a sequence 
of instructions for adding (\110 numbers 
might look like this: 

065 T 71 F 
066 A 69 F 
067 A 70 F 
068 Z F 

He re the numbe rs in the leftmost column 
are not parr of the program; they merely 
identify rhe me mory locations at which 
the instructions are scored. T he next col
umn holds the instruction codes the m
selves, T for transfer and A for add. The 
numbers following each code are address
es: location 71 is serving as a rubbish 
heap, whereas location 69 is assumed to 
hold the value 5, and loca tion 70 holds the 
value 8. The F that follows each instruc· 
tion indicates that the instruction oper· 
ates on "short," or single· precision, quan· 
tities of seventeen bits; a D would signal 
"long," or double·precis ion, values of 
thirty-five bits. The Z instruction halts the 
machine when the addition is done. 

The program is already a fair ly intricate 
piece of work JUSt for adding a couple of 
numbe rs, but it gees worse. Stori ng the 
constant va lues 5 and 8 in their assigned 
places might seem a rri vial task. In fact, it 
is the hairiest part of the program. The 
EDSAC had no special provision for spec
ifying numeric va lues, and so conStants 
had to be entered on the tape by typing 
out the instruction code whose binary 
pattern matched the approp riate numeric 
value. The integer 5, for example, is rep· 
resented by the instruction P 2 0, which 
just happens to have the sevenceen·bit 
binary encoding 00000000000000101, 
equal to S in decimal notation. The code 
for decimal 8 is P 4 F, which translates to 
00000000000001000. Hence tbe full addi



tion program would consist of 
these instructions: 

065 T 71 F 

066 A 69 F 

067 A 70 F 

068 Z F 

069 P 2 D 

070 P 4 F 

071 P F 


The state mems 10 locations 69 
through 71 that specify cons tants 
are called pseudoinstructions, be
cause although they look like in
structions. they are not meant co 
be executed. The fina l pseudo
instruction, which stores a 0 in lo
cation 71 to reserve that address 
as the rubbish heap. ill ustrates 
one more little peculiarity for the 
programmer: a 0 in the address 
field of an instruction is repre
sented not by a a but by a blank. 

A ll those tri cks and foibles of 
the instruction code put a 

formidable obstacle in the way of 
the beginning p rogram me r, bue 
in the long ru n they are probably 
not the major source of difficulty 
in working with the EDSAC. Such minor 
arcana can be mastered with a few days' 
practice. The snares chat ca tch even ex
perienced programmers lie elsewhe re. 

Suppose you have written a program to 

compute the sum 5+ 8. and you need to 

modify it to calculate 5+8+21. Inserting 
a third A instruction is easy, and working 
out a way of representing 21 (ie's P 10 D) 
is merely a bizarre exercise, but when the 
new instructions have been written, the 
job is not yet fin ished. Interpolating a 
third add instruction pushes all the sub
sequem data down in me mory, which 
means chac the add resses e mbedded in 
the earlier instructions must be adjusted . 
Indeed, address adjustments are needed 
whenever instructions are inse rted or 
removed, with the consequence chat a 
change anywhere in the program text can 
have repercussions arb itrarily far away. 

The tedious and exacting chore of 
keepi ng add resses curre nt was quickly 
recognized as an invitation to error. An in
genious partial solution was contributed 
by David J. Wheeler, a Cambridge stu
dent who joined the EDSAC project early 
on and who is now professor of computer 
scie nce at Cambridge . Wheeler wrote the 
" initjal orders,1> which were manually 
loaded inm the machine's first few me m
ory locations and which the n loaded oth
er programs th rough the tape reader. The 
initial orders included aspects of what 
would now be called an operating system 
(for loading and executing programs) and 
aspec ts resembling chose of an assembler 
(for convening symbolic instructions into 

,their binary form). In the second version 
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of the initial orders, comple ted in Sep
tembe r 1949, Wheele r included a facili ty 
for "reloca table" subroutines. The facili
ty would adjust add resses auw matica ll y 
according to whe re the routines were 
loaded inco memory. 

In spite of the sparse instruction set, 
the weird notation fo r numeric constants 
and the difficulty of working with abso
lute addresses, ie needs to be said thac the 
EDSAC was the fri endliest of all the first
generation computers. At lease it accept
ed input in the form of alphabetic charac
ters and decimal numbers. Workers on 
ocher machi nes had to man ually translate 
thei r programs intO raw binary or hexa
decimal (base 16) notation. And at least 
EDSAC instructions had only one address 
to go wrong; in the EOVAC every instruc
tion had four add ress fields, each of which 
might have to be adjusted after every pro
gram change. 

I t did not take long for rhe Cambridge 
group and ochers to recognize that get

ting pfOgrams righe was going to be a long 
and labo rious undertaking chat would de
mand a major investment of intellectual 
resources. Wilkes wrote in.his autobiogra
phy, Memoirs oja Computer Pioneer, of the 
moment, during his work on the Airy 
tape, that the natu re of the problem be
came clear to him: 

The EDSAC wason (he tOP floor of the building 
and the cape-punching and editing equipment 
onc Roor below.... It was on one of my jour
neys between the EDSAC room and the punch- , 
ing equ ipment thac, "hesitating at the angles of 
stairs." the realization came over me with full 

force chat a good part of the remainder 
of my li fe was going to be spent in 
findi ng errors in my own programs. 

By [he time of the next British 
computing confe re nce, in July 
195 1, the proble ms of program
ming and de bugging were be ing 
taken more se rious ly. There was 
even mention of "programme
translating programmes," and 
Alan M. Turing discussed the 
idea of an interpreter, a program 
that would enable the computer 
to execute programs written in a 
higher-l evel language. By then, 
too, the EDSAC had a suite of de
bugging routines ready for pro
grams [hac went awry. They in
cluded "pos tmorte m" routines, 
which printed Out [he state of the 
machine afte r a program had 
stOpped, and "crace" roucines, 
which printed out informacion as 
each inst ruction was execmed. 

At about the time of the sec
ond conference, Wilkes , Wheeler 
and" their co lleague Stanley Gill 
published the fi rst textbook on 
computer programming, The 
Preparotioll oj Programs Jor all 

Elee/rollie Digital Computer. T he three col
la boratOrs included a chapter on "pit
falls ," which began by acknowledging 
(hat even a comperem programmer will 
some times make a mistake. "Experience 
has shown [hat such mistakes are much 
more difficult CO avoid than might be ex
pected," they wrote. " It is, in fact, rare for 
a program (Q work correctly the first time 
it is tried, and ofte n several auempts must 
be made before a ll errors are eliminated." 
The copy of Wil kes, Wheeler and Gill in 
my local university li brary was evidently 
donated by someone who had had first
hand experience of progtamming the EO
SAC or one of the machines modeled on 
it. The margins are full of penciled notes 
and comments. The two quoted sen
te nces are underlined in red. _ 

BRIAN HA YES is n contributing editor of 
THE ScIENCES. 

For readers of The Sciences who want co 
experiment with (he EDSAC simulator, 
Martin Campbell-Kelly has agreed to 
make the program and a tutorial guide 
avai lab le fo r $20, to cover the cOSt of 
printing and Shipping. The package in
cludes a li brary of subroutines and a va
riety of demonstracion programs, so that 
ir is not necessary to master the EDSAC 
instruction code to run the simulator. 
T he programs come on one three-and-a
half-inch floppy disk. Checks for the $20 
should be made out to the New York 
Academy of Sciences and sent to De
partment £DSAC, The Sciences, 622 
Broadway, New York, New York 1001 2. 
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