
THE INFORMATION AGE

Brian Hayes

Louise Neve/solt, Tra nsparent Sculpture VI. 1967-68

The Discovery of Debugging

On May 6, 1949, a length of
punched pape r tape was threaded
into a mac hine at the University

of Cambridge; a few seconds later a near
by te leprinter began tap ping OUt a list of
numbers: 1, 4,9, 16, 25, The tape
reade r and the teleprinte r we re the input
and ou'rput devices of an electronic digi
ta l computer, a machine called the ED
SAC; calculating the squares of a list of
numbers was iIS first fu ll test. Indeed, it
was the first time any full-scale compmer,
in the modern sense of the rerm, had suc
cessfully fun a program.

Computers and computing have
changed drastically since 1949-more so,
pe rhaps, chan any other e lement of tech
nology. The EDSAC is long gone; most of
its pans we re sold for scrap in 1958. No
one will ever build another machine like
it. Nevenheless, it is still possib le to write
programs for the EDSAC, ro load those
programs in to the paper-rape reader and
rhen co see (and hear) the results come
ti cking out of the te leprinter. The rime
machine that offers thi s transport ioco {he
pase is a simulator created by Manin
Campbell-Kell y, a historian of computing

10 THE SCIENCES 'Ju ly/AuguJlI99J

who teaches ar the University of War
wick. The simuhuor turns a modern
Macintosh computer into a surprisingly
faithful- sometimes frustratingly faith
ful-replica of rhe EDSAC.

It is a commonplace observa t ion that all
the computing power of forty years ago---
the rooms filled with glowing vacuum
tubes, the tons of <lir conditioning, the
squadrons of attending technicians-will
now fit comfonably on a corner of your
desk or in your briefcase or evell in yo ur
Docket. But it is one thing ro compare per
formance specifications, me mory capaci
ties and program benchmarks; it is quite
another accual]y to see one of the earl y iron
giants of computing encompassed in the
little plastic box of a Macintosh. There is
something incongruous about it, like the
dozen ci rcus clowns in the miniaru re car.

The EDSAC was part of the first gene r
ation of computing mach ines to

e merge in the afte rmath of the wartime
ENlAC (Electron ic N umerical Integrator
and Computer) project. The ·EN IAC it
self, built at the University of Pennsylva
nia, had been churning Out ba llistics ta

bles for the U.S. Army since 1945, but it
was noc a compute r in the modern sense.
Ie eQuId not he programmed except by
setting switches and pluggi ng in patch
cords. The idea of controlling a machine
by means of a program StOred in its own
memory made its public debut in John
von Neumann's " First Draft of a Report
on the EDVAC," written in 1945, JUSt af
ter the end of (he Second World War.

At Cambridge a yea r later, Maurice V.
Wilkes, rhe new directOr of the Mathe
matics Laboratory, saw a copyofvon Neu
mann 's repo rt. Soon the reafter he was on
hi s way to Philadelphia for a summer
school at the Univers ity of Pennsylvania,
where the stored-program concept was
discussed in detail. The Pennsy lvania
group was then gearing up to begin build
ing the EDVAC (Electronic Discrete Vari.
able Automatic Compute r), and Wilkes
retu rned co England with the determina
ci on (Q create a stored-program machine of
his own. He ca lled it the Electronic Delay
Storage Automatic Calculator. The simi·
lariry of the acronyms EDSAC and EDVAC
was no coincidence.

Back in the United States the EDVAC

hayez
Rectangle

projec t suffered several changes o f lead
ership and also deve loped a case of creep
ing-enhancement disease: every stage of
construc tion was delayed by some bright
idea about how to make the machine big
ger or better or faster. Indeed, the ve rsion
of the EDVAC finally constructed at
Pennsylvania bore little resemblance co
the machine described in von Neumann 's
"First Draft." Wilkes stuck close to his
original design and finished a year earlier.

The EDSAC occupied the upper Roar
of a building that had once been the anat
omy school in Cambridge. T he control
circuits, as well as the circuits responsible
for logical and arithmetical operations,
were based on vacuum tubes- some
3,500 of them-arranged in ta ll steel
racks that filled the room like li brary
shelves. The memory clements of [he
compute r were mercury delay lines:
tubes fi ve fee t long, filled with mercury,
wj th a quar[Z transducer at each end. UI
uasonic pulses representing binary digits
were uansmicred inm the mercury at one
end of the tube and received at the ot he r
end; the received signal was the n ampli
fie d and transmitted aga in, so that the
pulses circulated continuously and cou ld
be scored indefin ite ly. Each such "long
tank" in the main memory held 576 bits,
organized as thirry-two "words" of eigh
teen bits each; the design ca lled for
thirty-two tanks, and so the total capacity
was 1,024 words.

The EOSAC, like most of the other
electronic computers conceived in

the 1940s, was a "bit-serial" machine.
The data paths thread ing throughout the
processor were just one bit wide, and so
communicating an eighteen-bit machine
word from one place to anothe r required
eighteen steps. Bit-serial architectu res
are rare today;' mOSt of the common
microprocessors have dara paths that are
sixteen or thirty -two bits wide. The serial
arrangement was slower, but it had th e
imporcant advantages of simplicity and
economy.

The EDSAC's clock speed, which set
the pace of all opera tions, was 0.5 mega
hertz, or 500,000 cycles a second. T hat
was a conservative specification even in
1949 (modern compute rs run at 25 or even
50 megahertz), but it was consistent with
Wilkes's emphasis on getting the machine
built quickly and reliably rather than on
seeking the u ltimate in performance. The
EDSAC could typically execute about 600
instructions a second (for present-day
computers the corresponding number is a
few million). A crude figure of merit for
computer performance is the product of
speed and memory capacity. By that mea
sure a modern deskrop machine might
score 100 or 200 megahertz-megabytes.
The EDSAC checks in at 0.0006 mega
,hertz-megabytes. In one respect, howev

er, the EDSAC exceeded the fondest
dreams of the modern "power user." It
dtew about twelve ki lowatts from the mu
nicipal electric suppl y. (A Macintosh to
day draws about a tenth of a kilowatt.)

Comparing the EOSAC with the very
lates t computer technology may noc be
the best way of conveying 3 sense of its
capabi lities. The EDSAC reminds me
strongly not of the computers I see on ev
ery deskcop coday but of the fiIst machine
on which I had any expe rience of pro
gramming, not quite twenty years ago.
That machine was closely matched to the
EDSAC in memory capacity and execu
tion speed, as well as in its Spartan facili
ties for input and output. Ie was a pro
grammable hand-held calculator made by
Hewlett-Packard.

A few weeks after the EDSAC ran its
first program, a conference on "high

speed automatic calculating machines"
was convened at Cambridge. Here was a
chance for Wilkes and the rest of the EO
SAC crew to show off their accomplish
mencs and {O compare notes with repre
sentati ves of other laborato ries in Great
Britain and in Europe and the U.S. The
record ohhe confe re nce has been reprint
ed as Volume 14 in rhe C harles Babbage
Inst itute Reprint Series for {he History of
Computing; reading it offe rs a glimpse in
to the small world of computer engineer
ing at midcentury.

What snuck me first when I read clle
conference record was the remarkably ad
vanced state of thinking on computer ar
chitecture and hardware design at a mo
ment when there was little practical
experi ence to guide that thinking. Much
of the "des ign space" for digital computers
had already been explored or at least
roughly mapped Ollt. The basic circuits for
performing various arithmetical and logical
operations had been devised. The relative
merits of binary notation and of other op
tions such as binary-coded-decimal were
well understood. There was extensive de
bate over wha t set of elementary machine
instructions (or orders, as they were then
known in England) would yield the best
performance. One speaker introduced the
idea of a scorage hie rarchy, in which a fast
but small me mory is supplemented by a
slower but larger auxiliary scorage.

In contrast to a ll the sophistica ted anal
yses of hardware , the idea of software
could hardly be said to exist in 1949. To
be sure, there was much talk about the
"coding" of problems for specific ma
chines: how to multiply two numbe rs ef
ficiently with a certain set of instruct ions;
which algorithm would prove best for nu
merical integration; and so on. But those
exercises in problem solving were far
from the modern conception of software
as the "personality" of a computer-as
the component that allows a single ma

chine to be a word processor one moment,
an artist's sketch pad the next and a sim
ulator of an antique computer th e next.

The disparity be tween the advanced
state of hardware design and the primi
tive state of software deve lopment can be
expressed as follows. Most of th e abstrac
tions that serve as the fundamental build
ing blocks of computer hardware had al
ready bee n recognized in 1949: Boolean
logic ga tes, regisre rs, clock ci rcuits, coun
re rs, adders, shifters. and perhaps most
important rhe division of the machine in
to subunits for me mory, control, arith
me tic and logic, input and Output . T here
is a corresponding set of abs tractions for
software: seque nces, branches, loops, If
eration, recursion, procedures, armys,
sets, lists, queues, stacks and so forth .
Few of those concepts had ye t appea red,
except in the most embryonic form. Even
more conspicuously absent was the idea
of a programming language. No higher
level programming languages existed
(FORTRAN did not come along until
1954), and ehe programming nocations
then in use, namely the instruction sets of
the various computers. were not viewed
as having a linguistic aspect. N o one had
se t forth th e grammar of an instruction
set, and no one was ready to attribute
meaning to a program as an independent
entity, separate from the computer that
would execute il-

I can suggest fWO reasons software was
so much the stunted sibling of hardware in
the ea rliest years ofcomputing. First, most
of the computing pioneers still viewed the
compute r. as a strictly numerical calculator.
Its function was to solve mathe matical
problems. T he idea chat it might operate
not JUSt on numbers bl){ also on symbols
more generally-including its own pro
grams-had nor yet caught on. Programs
were seen not as interesting objec ts in
themselves bue merely as tools for manip
ulating numbers. Second, no one yet ap
preciated that programming a digital com
puter was goi ng to be an intellectual
challenge, one that might reward the in
terest of a mathematician or an engineer.
Ie appea red then that programming might
be tedious but nor funda mentally difficult.

A crucial discovery was yet to be made:
the discovery of debugging.

I find it quite remarkab le that the EO
SAC's first program ran without errors.

Moreover, the nex t two programs
which printed slightly more elaborate
lists of squares as we ll as prime num
bers- also worked the first time. It is (Tue
they were extre mely simple programs,
and they had been care fully checked and
rechecked in the weeks be fore the ma
chine was ready for the m. But still J am
full of adm iration. Three bug-free pro
grams in a row: it is a record that may nev
er have been equaled. In any event, the

July/August 1993' THE SCIENCES 11

streak stopped at three; with the next pro·
gram, which was more ambitious, Wilkes
glimpsed the awful truth.

Campbell-Kelly tells the Story of that
program in the Annals of /ne History oj
Computing(Volume 14, Number 4, 1992).
After the June conference at Cambridge,
Wilkes began work on the fi rst nontrivial
EDSAC program, which calculated a cable
of va lues for Airy's integral (the solution
of a differemial equation chat turns up in
areas such as the theory of the rainbow).
Wilkes has given no dera iled account of
how he wrote the program, but there is
documentary evidence that ie did noe ru n
successfully on the firs t cry. In 1979, while
cleaning out his office, Wilkes came upon
an old punched tape, which turned oU[to
be an early version of the Airy program.
He gave a copy to Campbel1·Ke lly, who
has since teased our its meaning.

The program is 126 lines long and has
twenty errors. Most of the errors are

mere typographical sli ps and small lapses
in syntax or logic. For example, Wilkes
got two condirional·branch instructions
backward. ca using the program to jump to
a new loca tion when it should continue
sequentially, and vice versa. T he program
calculates an inrermed iate result but then
neglects to store it for futu re use. In two
other cases a value is stored in the wrong
place. All of these minor blunders will be
maddeningly familiar to anyone who has
done some programming. The human
reader passes over such errors without
even seeing them, unconsciously filling
in the intended meaning, but the rna·
chine is resolutely literal. It does only
what it is tOld to do.

One of (he bugs in (he program was
more subtle. Campbell·Kelly writes:

When Wilke~ hm scm me the cape in 1979, it
did not take very long to coax some numbers
from the program, hue although the resules
we re correct to four decimal places, there was
an error of as much as four units in the fifth
place. . Since everythi ng else in the program
looked perfect- and since I had spent more
time trying to debug the program chan J reall y
care to admit-(was forced to concede defeat
and pur it to one side. During the intervening
years between then and now I looked at the
program again twO or three times but the hug re
mained obstinately hidden. Finally, one morn
ing in eady 1990, the penny finally dropped:
The error was caused by the fact that the con
stant (Sx)2/l2 in location 45 was stored only to

single precision instead ofdoublc precision.

The preva lence and the stubbornness
of such errors took the early programmers
by surprise. The speakers at (he 1949
Cambridge mee ting were gravely con·
cerned about hard ware faults and how to

detect them. Several ea rl y machines. in·
eluding the EDVAC (bm not the EDSAC),
were built with tWO complete arithmetic
and logic units JUSt so that all operations
would be cont inuously double·checked.

12 THE SCIENCES • JulJIAuguu 1993

Bm the corresponding problem of soft·
ware errors got little attention. After all,
programs would be written by mathe·
maticians and others skilled in the rna·
nipulation of complex form.ulas; surely
they could get it right the first t ime.

Having spent a little ti me writing sim·
pIe EDSAC programs and struggling

to get them to run on Campbell· Ke lly's
simulator, I am impressed tha t any useful
work at all was ever done on the compuc·
er. The pioneer programmers who mas·
cered the ste rn and unyielding machine
were obviously prodigies of concent rat ion
and pacience.

The simulation is unrelent ingly real is·
cic. The only aids to w6eing, running and
debugging programs are the ones that
were available to Wilkes and his col·
leagues in 1949. Moreover, the on ly input
and output facilities are the ones avail
able to the original machine. You punch a
program tape by typing the orders in a
long list. Press ing the Starr bu tton reads
the tape into memory and sta rtS the com·
putation. Other bunons execute a single
program step. clear the memory and reset
the processor, or StOp the machine. Oue·
put from the program appears in a
scrolling window, which mimics the con ·
tin uous roll of paper in the te leprinte r of
the original EDSAC; the simulated print
er cl icks quietly and at (he end of every
line produces the wnump·clllflk of a car
riage return. The only facility for inter
acting with a running program is a tele
phone dial, which allows single digits to
be dialed in; even thac device was not
added until 195 1.

The EDSAC had several oscilloscope
displays whereby the contents of memo
ry tanks and various registers could be
monitored. Those disp lays are also pre
sent in the simulator. They show binary
1 's and D's as large and small dots, which
dance and Ricker appealingly when a pro
gram is running. The la rgest of the dis
plays has sixteen rows of thirty-five dots
each, represeming the e ntire contents of
a long tank. Among the de monstration
programs included wi th the simulator is a
vi rtuoso performance by A. S. Douglas,
who was then a stUde nt and late r became
a president of the British Computer Soci
ety. In Douglas's program the contents of
memory are manipulated in such a way
that the long-tank oscilloscope d isplays
the playing field for a game of tic·tac·toe.

On first glance at the EDSAC instruc·
tion set, programming rh e machine seems
straightforward enough. T he instruction
A 45 adds the contents of memory loca·
tion 4S to the conten ts of a special regis·
ter called the accumulator. Similarly S 46
subuac(s the contents of location 46 from
(he accumulato r. T47 transfers the can·
tents of (he accumulator to location 47
and rese ts the accumulator toO. There are

eightee n instructions altoge ther, each
specified by a one·jene r code. Jr is easy to
see how the designers of dle machine
could have believed that those instruc·
tions would meet all their needs , and in·
deed there is nothing wrong with the in ·
dividual instructions. Th e trouble begins
when you try to string instructions to·
ge rher in a meaningful sequence.

Suppose you want to add the numbers 5
and 8. Doing the addition is quite

easy-all it takes is an A instruction- but
almost every otber step of the program
ha s its own little snag. If you want to add
8 to 5, you must first get a 5 into the accu·
mulato r, but there is no instruction for di ·
recdy setting the accumulator to a speci·
fl ed va lue. All you can do is make sure the
accumulator is initia lly 0 and the n add 5
to it. Th e only way to zero [he accumula
tor, however, is to execute a T instruction,
which also has tbe effect ofstoring the old
value of the accumulatOr at some memo·
ry address. Hence some location mUSt be
available to serve as a "rubbish heap."

On the basis of those ideas, a sequence
of instructions for adding (\110 numbers
might look like this:

065 T 71 F
066 A 69 F
067 A 70 F
068 Z F

He re the numbe rs in the leftmost column
are not parr of the program; they merely
identify rhe me mory locations at which
the instructions are scored. T he next col
umn holds the instruction codes the m
selves, T for transfer and A for add. The
numbers following each code are address
es: location 71 is serving as a rubbish
heap, whereas location 69 is assumed to
hold the value 5, and loca tion 70 holds the
value 8. The F that follows each instruc·
tion indicates that the instruction oper·
ates on "short," or single· precision, quan·
tities of seventeen bits; a D would signal
"long," or double·precis ion, values of
thirty-five bits. The Z instruction halts the
machine when the addition is done.

The program is already a fair ly intricate
piece of work JUSt for adding a couple of
numbe rs, but it gees worse. Stori ng the
constant va lues 5 and 8 in their assigned
places might seem a rri vial task. In fact, it
is the hairiest part of the program. The
EDSAC had no special provision for spec
ifying numeric va lues, and so conStants
had to be entered on the tape by typing
out the instruction code whose binary
pattern matched the approp riate numeric
value. The integer 5, for example, is rep·
resented by the instruction P 2 0, which
just happens to have the sevenceen·bit
binary encoding 00000000000000101,
equal to S in decimal notation. The code
for decimal 8 is P 4 F, which translates to
00000000000001000. Hence tbe full addi

tion program would consist of
these instructions:

065 T 71 F

066 A 69 F

067 A 70 F

068 Z F

069 P 2 D

070 P 4 F

071 P F

The state mems 10 locations 69
through 71 that specify cons tants
are called pseudoinstructions, be
cause although they look like in
structions. they are not meant co
be executed. The fina l pseudo
instruction, which stores a 0 in lo
cation 71 to reserve that address
as the rubbish heap. ill ustrates
one more little peculiarity for the
programmer: a 0 in the address
field of an instruction is repre
sented not by a a but by a blank.

A ll those tri cks and foibles of
the instruction code put a

formidable obstacle in the way of
the beginning p rogram me r, bue
in the long ru n they are probably
not the major source of difficulty
in working with the EDSAC. Such minor
arcana can be mastered with a few days'
practice. The snares chat ca tch even ex
perienced programmers lie elsewhe re.

Suppose you have written a program to

compute the sum 5+ 8. and you need to

modify it to calculate 5+8+21. Inserting
a third A instruction is easy, and working
out a way of representing 21 (ie's P 10 D)
is merely a bizarre exercise, but when the
new instructions have been written, the
job is not yet fin ished. Interpolating a
third add instruction pushes all the sub
sequem data down in me mory, which
means chac the add resses e mbedded in
the earlier instructions must be adjusted .
Indeed, address adjustments are needed
whenever instructions are inse rted or
removed, with the consequence chat a
change anywhere in the program text can
have repercussions arb itrarily far away.

The tedious and exacting chore of
keepi ng add resses curre nt was quickly
recognized as an invitation to error. An in
genious partial solution was contributed
by David J. Wheeler, a Cambridge stu
dent who joined the EDSAC project early
on and who is now professor of computer
scie nce at Cambridge . Wheeler wrote the
" initjal orders,1> which were manually
loaded inm the machine's first few me m
ory locations and which the n loaded oth
er programs th rough the tape reader. The
initial orders included aspects of what
would now be called an operating system
(for loading and executing programs) and
aspec ts resembling chose of an assembler
(for convening symbolic instructions into

,their binary form). In the second version

Babis Vekris, Stand Clea r of Hazard Area, 1992

of the initial orders, comple ted in Sep
tembe r 1949, Wheele r included a facili ty
for "reloca table" subroutines. The facili
ty would adjust add resses auw matica ll y
according to whe re the routines were
loaded inco memory.

In spite of the sparse instruction set,
the weird notation fo r numeric constants
and the difficulty of working with abso
lute addresses, ie needs to be said thac the
EDSAC was the fri endliest of all the first
generation computers. At lease it accept
ed input in the form of alphabetic charac
ters and decimal numbers. Workers on
ocher machi nes had to man ually translate
thei r programs intO raw binary or hexa
decimal (base 16) notation. And at least
EDSAC instructions had only one address
to go wrong; in the EOVAC every instruc
tion had four add ress fields, each of which
might have to be adjusted after every pro
gram change.

I t did not take long for rhe Cambridge
group and ochers to recognize that get

ting pfOgrams righe was going to be a long
and labo rious undertaking chat would de
mand a major investment of intellectual
resources. Wilkes wrote in.his autobiogra
phy, Memoirs oja Computer Pioneer, of the
moment, during his work on the Airy
tape, that the natu re of the problem be
came clear to him:

The EDSAC wason (he tOP floor of the building
and the cape-punching and editing equipment
onc Roor below.... It was on one of my jour
neys between the EDSAC room and the punch- ,
ing equ ipment thac, "hesitating at the angles of
stairs." the realization came over me with full

force chat a good part of the remainder
of my li fe was going to be spent in
findi ng errors in my own programs.

By [he time of the next British
computing confe re nce, in July
195 1, the proble ms of program
ming and de bugging were be ing
taken more se rious ly. There was
even mention of "programme
translating programmes," and
Alan M. Turing discussed the
idea of an interpreter, a program
that would enable the computer
to execute programs written in a
higher-l evel language. By then,
too, the EDSAC had a suite of de
bugging routines ready for pro
grams [hac went awry. They in
cluded "pos tmorte m" routines,
which printed Out [he state of the
machine afte r a program had
stOpped, and "crace" roucines,
which printed out informacion as
each inst ruction was execmed.

At about the time of the sec
ond conference, Wilkes , Wheeler
and" their co lleague Stanley Gill
published the fi rst textbook on
computer programming, The
Preparotioll oj Programs Jor all

Elee/rollie Digital Computer. T he three col
la boratOrs included a chapter on "pit
falls ," which began by acknowledging
(hat even a comperem programmer will
some times make a mistake. "Experience
has shown [hat such mistakes are much
more difficult CO avoid than might be ex
pected," they wrote. " It is, in fact, rare for
a program (Q work correctly the first time
it is tried, and ofte n several auempts must
be made before a ll errors are eliminated."
The copy of Wil kes, Wheeler and Gill in
my local university li brary was evidently
donated by someone who had had first
hand experience of progtamming the EO
SAC or one of the machines modeled on
it. The margins are full of penciled notes
and comments. The two quoted sen
te nces are underlined in red. _

BRIAN HA YES is n contributing editor of
THE ScIENCES.

For readers of The Sciences who want co
experiment with (he EDSAC simulator,
Martin Campbell-Kelly has agreed to
make the program and a tutorial guide
avai lab le fo r $20, to cover the cOSt of
printing and Shipping. The package in
cludes a li brary of subroutines and a va
riety of demonstracion programs, so that
ir is not necessary to master the EDSAC
instruction code to run the simulator.
T he programs come on one three-and-a
half-inch floppy disk. Checks for the $20
should be made out to the New York
Academy of Sciences and sent to De
partment £DSAC, The Sciences, 622
Broadway, New York, New York 1001 2.

Ju /y/August / 993 ' THE SCIENCES 13

hayez
Rectangle

