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COMPUTER
RECREATIONS

The celiular automaron offers a model

of the world and a world unto icself

by Brian Hayes

cules of water “know"™ how to frame

the elaborate symmetries of a snow-
flake. There is no architect directing the
assembiy, and the molecules themseives
carry within them no template for the
crystalline form. Patiern onalarge scale
emerges entirely {rom the short-range
interactions of many identical units.
Each melecule respoends only 10 the in-
fluence of its nearest neighbors, but a
consistent arrangement is maintained
throughout a struciere made up of pec-
haps 10% molscules.

One way to approach an understand-
ing ¢f this process 18 o imagine that
each sile whare 2 moiccule might be em-
placed 1s governed by a rudimentary
computer. As the crysial grows, each
computer surveys the surrounding sites
and, depending on s findings, deter-
mines by some fixed rule whether is
own site should be scocupied or vacant.
The same calculation is made at all the
sites according to the same rule,

The computational model of snow-
Hake growth is a celivlar awomaton: a
uniform array of many identical cells, or
sites, in which each cell has only a few
possible states and interacis only with a
few neighboring cells. The components
of the system—the ceils and the rule for
calculating the next state of a cell-—can
be simple indeed and nonetheless give
rise 10 & remarkably complex evolution.

Et is due cause for wonder that mole-

he idea of the cellular automaton is
roughly 2s old as the electronic digi-
tal computer. The first investigations
were carried oul by John von Neumann
(with an important coniribution from
Stapislaw Ulam) in the early 19507
Von Neumann's primary alm was to de-
vise a simple systemn capable of repro-
ducing itself in the manner of a living
organism. The besi-known cellular an-
tomaton, the "game of life” invented in
1970 by John Horton Conway, also has
a biological aspect, as the name sog-
gests; cells are born, live or die depend.
ing on the local population density.
In mnore recent work on cellular au-
tomata the emphasis has shified some-

iz

what, Arcays of locally interacting cclis
are seen ag polentially useful models of
physical systems, ranging from snow-
fHakes to ferromagnets to galaxies. They
may also have applications to questions
in computer science, both practical
{How should one organize a network of
many interacting computers?) and theo-
retical {(Whal is the wltraate Jimit {o the
powsr of a computing machine?). Pec-
haps most intriguing, the cellular au-
tomaton can be viewad as a “digital uni-
verse” worth exploring for its own sake,
quite apart frony its wtility as a mode] of
the real world.

The resurgence of interest in cellular
automata was marked by a workshep on
the subject held a year ago at the Los
Alamos National Laboratory. The pro-
ceedings {some 20 papers) have since
been published in Physica Dand in book
form by the North-Holland Publishing
Company. Almost all of what is report-
ed here is based on work discussed at the
Los Alamos meeting.

Four properties characterize a cellu-
tar automaten, The Orst property s the
geometry of the arrav of cells. For a
model of snowflake growth a two-di-
mensional hexsgonal array woold be
appropriate, but in most contexts a rec-
tilinear lattice is chiosen, one made up
of tdentical sguares. Arvays with three
or more dimensions are readily con-
siructed but are not readily visualized,
Lately surprising discoveries have been
made with the still simpler one-dimen-
sional array: a mere line of cells.

Within a given array il 15 necessary to
specify the neighborhood that each ceil
examines in calculating its own next
state. In the rwo-dimensional reclilinear
array two neighborhoods have been giv-
en rauch atiention. Von Neumann con-
fined each cell’s attention to its Tour
nearesi neighbors, those 1o the north,
south, east and west; this sel of cells is
now called the von Neumann neighbor-
hood. The reighbornood that includes
these four cells and the four diagonally
adjacent ones is called the Moore neigh-
borhood, alter Edward F. Moore. Gbvi-
ously neighborhoods overlap, and a8 giv-

cn cell is simulianegusly included in the
ncighborhoods of several adjacent cells.
In some cases the center cell—ihe cell
making a caloeunlation—is considered a
member ¢f its own neighborhood,

The third factor 1o be considered in
describing a cellular auntomaton s the
mumber of states per cell. Yoo Neumann
found a scl-replicating pattern made
up of cells with 29 possible states, but
most autemata are far simpler. Indeed,
there is ample scope for variation even
amaong the binary automata, those with
only two states per cell; the slates may
e represcated as 1 or O, true or false,
on or off, living or dead.

The primary source of variely in the
universe of cellular automata is the
cpormous number of possible rules for
determining the future siale of a cell
based on the present configuraiion of
its neighborhood. If & is the aumber
of states per cell and » is the number
ol cells included in the neighborhood,
there are k% possible rules. Thus for a
binary automaton in the von Neumann
neighborhood (where o is 4} there are
raore than 63,000 possible rules; in the
Moore neighborbood (where n is §)
there are 1077, Only a teifling fraction of
them have been examined ai all.

The game of life is played with two-
state cells on a rectilinear lattice in
the Moore neighbochood, with the addi-
tional complieation that the center cell
is sigmificant. In other words, atl each
step in the evolution of the sysiem every
celdl checks the state of the eight sur-
rounding cells as well as its own state.
According to the rule defined by Con-
way, if the center cell is living, it will
continue 1o live in the nexi generaiion if
cither two or three of the eight cells in
the neighborhood are also living, I
there are three live cells inthe neighbor-
hood, the center cell is alive in the next
generarion regardless of s present
state. Under all other circumsiances the
center cell either dies or remains dead,
The fascination of the game of lifeis
its unprediciability. Seme patterns die
out entirely; many moere lapse into a sta-
ble configuration or a cyclical ong with
a period of a few generations. Over the
years, however, a number of more in-
teresting inittal states have been dis-
covered, such as the “glider gun™ that
launches an unending stream of projec-
tiles. The exploration of life’s byways
continues. Recenl developments are de-
scribed by Martin Gardner in Wheels,
Life, and Orther Muathematical Ariuse-
ments. Here | should like to turn to other
celleiar automaia whose properiiss are
just beginning 1o be elucidated.
Among the muoltrede of possible
transition niles, many hold litle intrin-
si¢ interest. For example, a rule stating
thatacell will be onif and ooly if the cell
io its lefi is on specifies an evolution that
is quite easy 1o predict: any initial pat-
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The van Nemmaun and Moore ncighborhoods

tern preserves its shape but shifis to the
right by one cell with cach time step. A
subclass of rules called counting rules or
totalistic rules seems to include speci-
mens of almost all the observed varie-
ties of cellular automata. With rules of
this kind the new state of a cell depends
only on the number of neighbors in a
given state, not on their position. Many
automata based on such rules have been
investigaled by members of the Infor-
mation Mechanics Group of the Lab-
oratory [or Computer Science at the
Massachusetts Institute ol Technology.
The group consists of Edward Fredkin,
Norman Margolus, Tommaso Tolfoli
and Gérard Y. Vichniac.

One of the simplest counting rules is
the parity rule, which assigns a cell a
value of 1 il an odd number of the nc¢igh-
boring cells are 1's and otherwise assigns
it a value of Q. The evolution of this
system, when the rule is applied in the
von Neumann neighborhcod, was de-
scribed in this space Jast October. Any
starting pattern is replicated four times;
the four copies are then replicated in
turn, and so on.

Another class of counting rules are
the “voting” rules, which give the center
cell a value of 1 whenever the number of
I's in the neighborhood exceeds some
threshold. Vichniac, in a paper present-
ed atl the Los Alamos meeting, points
out that rules of this type yield models
of percolation and nucleation, phenom-
ena of importance in solid-state physics
and other fields. Percolation is the term
applied to the formation of an unbroken
path across some space; for example,
when a metai is dispersed in an insulat-
ing matrix, the conductivity of the com-
posite depends on the probabilily of
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forming a continuous chain of mctal at-
oms. Likewise the transmission of an in-
fectious discase is possible only through
an unbroken scquence of susceptible in-
dividuals. Nucleation is the process that
initiates the growth of a crystal, ihe boil-
ing of a liquid and similar events.

One transition rule that gives rise 10
percolation makes the center cell a |
only if there are 1's in at least three out
of the five cells that conslitute the von
Neumann neighborhood plus the cen-
ter cell. The onsct of percolation is ex-
tremely sensitive to the inilial concen-
tration of 1's. 1f the concentration is less
than onc-half, continuous chains of 1’3
spanning the array are nol likely 1o form
in the course of the evolution, At a con-
cenlration of one-half or greater the
chains do appcar, but the cntire lattice
still does not fill with 1's; islands of 0's
remain in the final stable state. Nucle-
ation, in which the array does fill solidly
with 1's, 1s observed when the rule is
changed to require only two out of five
1I's. The critical concentration is .(0822.

he Ising modecl is a conceptual tool

of physics that seems superficially to
be much like a cellular automaton. The
madel is a rectilinear tattice where each
site has two possible values and interacts
only with its four nearest neighbors. The
model] is often employed to describe
ferromagnetic materials; each site repre-
sents an atomic spin that must point ei-
ther up or down. Below a critical tem-
perature (the Curie temperature) the
spins tend to be aligned, so that the ma-
terial is magnetized, but at higher tem-
peratures they are more or less random-
ly distributed.

En October 1 discussed a version of the
Ising model created with a spreadsheet
program, whose lattice of cells lends it-
self naturally to cellular-automata stud-
ies, albeit a lattice with probabilistic
rules toemulate temperature. [ observed
a curious phenomenon: at low tempera-
ture the spins did not assume a uniform
alignment in onc direction; instead they
adopted a checkerboard configuration
of alternating up and down spins. With
each time step all the spins flipped. In a
ferromagnet the checkerboard pattern
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is the configuration of highest energy
and should therefore be unstable; it is
the paticrn characleristic ol an antifer-
romagnet.

Vichniac had already discovered the
problem and cxplaincd it. [n the stan-
dard implementation of the [sing model
only one spin is allowed to change in
each iteration. il [ollows that when a
particular site surveys its neighborhood,
some of the spins il inspects are “old”
ones and some are “new.” Under these
conditions the oscillating antiferromag-
net cannot arise. It is only when ail the
spins are recalculated simultaneously
that the high-energy antilcrromagnet
is lavored, There are siraicgies for
avoiding this “fecdback catastrophe,”
but the lesson of larger significance is
that the simplest intuitive correspon-
dence between the Ising model and cel-
lular autemata js misleading.

Vichniac and others in the M.LT.
group point out that cellular automata
have a status fundamentally dillerent
from that of other physical models. The
commonest device for building a math-
ematical modcl of the natural world
has long been the differential equation,
which can describe the change in some
quantity as a function of position and
time. For example, Maxwell’s equations
give the variation in the value of an elec-
tromagnetic field from point to point
and from moment to moment. All the
quantities in such equalions are continu-
ous: they vary smoothly. A cellular au-
tomaton, on the other hand, is a fully
discrete system. Space s nol a contin-
vum but an array of cells; time too
is Lroken down into discrete steps, and
whereas the magnitude of a field can
vary over a conlinuous range, the cells
of a cellular automaton can have only
a finite number of states,

Of course, real space and time and
many physical variables are thought o
be continucus rather than discreie {(al
least at the scale commonly considered).
it does not foliow, however, that differ-
ential equations yield inherenily superi-
or models of pature. Often it is not the
precise numerical value of a variable
that is significant but only its overall
size, as in whether a particular point in
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Evolution of a ceflular automaton under the two-out-of-five voting rule
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Algorithm for cellular automata based on “counting™ or “totalistic” transition rules

a growing snowflake is icc or water va-
por. Cellular automata make this dis-
cretencss cxplicit on a digital computer.
In addition their temporal evolution can
be computed exactly; there is no nced
for approximations. Furthermore, they
can make far more efficient use of the
digital computer’s resources.

program for simulating a cellular

automaton can be written for cven
the smallest compuler. Indced. Per Bak
of the Brookhaven National Laborato-
ry has recently argued in Physies Today
thal many simulations in physics can be
done more elcclively and more cheaply
with a small personal computer than
they can be with more powerful shared
facilities. The cxample he chose to il-
lustrate was a simulation of the three-
dimensional Ising model, done with a
Commodore VIC-20 computer at an es-
timated cost of $4.

The most straightforward cellular-au-
tomalon program simply embodies the
method one would be likely to adopt in
carrying oul the procedure by hand with
graph paper. First an array of cells is
established, with each cell being repre-
sented by a memory element in the com-
puter. For each time step the program
must attend to every ceil in turn, exam-
ine its neighbors and calculate the ap-
propriate value for the cell's next siate.
The calculation itself is conveniently
done by looking up the value in a table.
If only counting rules are considered,
the table needs enly one entry for each
possible number of *“on” cells. When
other kinds of rules are allowed, the ta-
ble can become quite etaborate.

A few subtleties must be kept in mind
when one writes such a program. Most
important is the need to avoid altering
the content of a cell before its value has
been checked by all the other cells 10
which it is a neighbor. The easiest way
of meeting this requirement is 1o main-
tain 1wo copies of the array; the pro-
gram examines one copy 1o determine
the current state of the neighborhood
and enters the result of its calculation
in the other copy. Boundary conditions
must also be defined. Ideally the array
would be infinite, but that is ¢learly im-
practical. A common technique is to
effectively join the edges of an array,
so that cells on opposite edges become
neighbors. In one dimension an array of
this kind is topologically a circle and in
two dimensions it is a torus; although it
is finite, it has no boundaries.

A program of the kind described
above, running on a general-purpose -
digital computer, is a sequential proce-
dure that simulates the actions of an ar-
ray of many computers running simul-
taneously. Far better would be an actual
network ol multiple computers with the
structure of the cellular array. Building
such a machine is by no means out of
the question: the individual computers



would be so simple that many of them
might be fitted onto a single semicon-
ductor chip. The fact that only ncarby
computers need 10 communijcate with
one another would also reduce the com-
plexity of the device. Toffoli has esti-
mated that such a processor might oper-
ate faster than a general-purpose com-
puter by a factor of a million or cven a
billion. Preliminary work on computers
of this kind is under way at the Massa-
chusetts Institute of Technology and
the Thinking Machines Corporation of
Waltham, Mass.

In lieu of a special-purpose chip, Tof-
foli has constructed a dedicated cellu-
lar-automaton machine out of standard
microelectronic compenents. Calcula-
lions are done serially rather than {or all
the cells at once, but because the device
15 finely tuned to a single kind of calcu-
lation, it is roughly 1,000 times [aster
than a general-purpose computer. The
machine itself consists of a few printed-
circuit boards mounted in a [rame; it
is connected to a color display and is
controlled by another small computer,
an Atari 800.

Toffoli’s cellular-automaton machine
provides an array of 256 by 256 cells,
each of which can have up to 256 states.
The state of every cell is recalculated 60
times per second. Watching a system
evolve at this rate is quite different from
watching a slower device. Instead of a
sequence of still photographs one sees a
motion picture. The game of life no
longer appears as a stately progression
of abstract patterns; it is more like a
view through the microscope of bacte-
ria and protozoa swimming, spinning,
breeding, eating and being eaten.

one-dimensional- cellular automa-

ton is much less demanding of com-
puter resources, both spatial and tem-
poral, than a two-dimensional system.
Writing a program for the one-dimen-
stonal system is also casier. The linear
array has still another advantage over
the planar one: because of the simpler
geomelric structure, there is more hope
of gaining an analytic understanding of
the automaton's evolution. [n the past
two years Stephen Wolfram of the Insti-
tute for Advanced Study has undertaken
to do just that.

A single generation of a one-dimen-
sional array is merely a line of cells, but
successive generations can be plotted
next Lo one another. In this way a two-
dimensional pattern is formed that has
one spatial axis and one time axis, and
the entire evolution of the system can be
taken in at a glance.

Wolfram has found that all 1he tran-
sition rules he has investigated so far
can be put into just four classes. Class 1
consists of those rules whose evolution
leads to a stable and homogeneous state;
for example, all cells might take on a
value of 0 or of 1. Class 2 rules give rise

i Lt ol s AR R bbb L | —_— . g— - sy

Some components of a pussible universal computer
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o simple sirociures that are enber upe
Hle oy periodic bet in cither casc remuin
isodated from one another, The reles in
Class I orenin chaotic paliorosg, alilousgh
not random ones In Class 4 are the
few transition rules thal gonernic siruce
teres of substantial spatial and tempo-
ral complexity.

Wollram conjectures that the ons-di-
mensional coltular suiomata muy be (he
simplesi well-deiined sysicos capable
of complox sellh Qrgumgm° behaviar, in
nuture many continuous dynamical syse
tems have sach a capability. beginning
in o rendom indimd siude, ihey cvolwe
& highly ordersd stracture, {The snow-
fake B an cxample) The owolulion
can be cxplaingd in legms of atirsciors,
which seem ta draw the gvstem ovward a
subset of all the possible configurations.

A parallel s been established be-
tween it classes of celbular automata
and the kinds of atiraciors absecved in
physical sysiema A Olass 1 automaton
is analogous 1o & contindous system
with the simplest atiraolon 2 Hmi point,
which mvariably brings the system
the zame fnal siste. The evolulion of a
Class 7 antomaion s rather Bke thal of 3
gvsiesn with s Hnleeyels, 2 set of conlig-
wratinns that is repgaied indefiniiely,

Class 3 sutomats, with ther chasot-
ic patierpy, can by associated with the
more inferesiing entities called strange
stiracttrs, which are characteristic of
physical shenomena such 28 the onset of
warbnlent How. I 2 sysigm governed by
& girange atirscioy evolulion procseds
toward # nudhset of 3} the possible con-
Bgurations, but the sibse! Can have an
cxcedingly intricaie sirociure. Whan
the selis visoalized as an array of points
in space, it s in many cases g fracial, a
geomelnie figure with a fractional num-
ber of dimansions.

The distinctions befwesn the cldsses
of aufomatia tan be made clesver by
considering s sieople experiment. Sup
pose a celiulae auomaion i started
seroe randomiy chosen bntial configora-
tion and allewwd 0 evolve for many
thme steps; e final siate 95 1hen noted,
Now return 1o ihe slarting configura-
tigas, change the value of a single cell
and allow the system o evolve for the
same ntmber of siops, Whal effect wiil
the small change have on the fnal stae?
In g Class | antornaton thure bino effovt
atall a Class | svsteos reachss the same
final state no maiisr what the inial siate
s A Class 2 aulomaion may show some
effect, bt it & confined 10 2 small ares
rear e site of the shange. In a Class 3
system, however, allering a single cell
can set up a distwrbance that propagates
throughout the array.

The Class 4 rules ave the rarest ang
the most insriguing, Some guile simple
iransition functions [all inio this clasg
for example, i the neighborhood de-
fned to inchude the conter coll 4nd the
iwo cells on each side of i, the role stas-

ing that the center cell bs 3 1 ¥ enhey
twnr oF fonr cells in the neighborhood
ars 's leads to Class 4 puticrns. Senst
ity (o smull variatons i the initial
conditions is even grester iu Class 4
than W is o Class 3. Jt s conjectured
that in predicting the fuigre state of &
Class 4 aulomaton there can be no gen-
cral procodure more #ificiont than al-
fowing the sulomaton il 10 compute
the atgie,

A relatod conjectare hug oven grander
seone: 11 sugeests thal Class 4 aviom-
aia may geulify as unlversal compulors.
The Turing machine 8 the maost lamil-
inr deviee of this kind; i a fusction can
be compated at all, a2 Turipg machine
can presymably do il Other computers
cap be proved upiversal by sh(}x&mg_
that they gre cquivalent to a Turing ma
ching, Several bwo-dimengional eoliular
sutomats docluding the game of e}
have been shown 10 be unbversal com-
suters, and 2 prool has alio bean given
for s complicaied pne-dimensional svs
sor with 18 sigies iy oedl The Class 4
aulomata would be the simplest univer-
sal compuisrs known, Most of the ¢s-
seniial componenis have been idenit-
Aed. Ore important miszing elemont is
1 clock: & siruciure ihal ssues 4 Woam
of pulses at regular ntervaly, likg the
glider gun in the game of e

The view of celivlar awiomain s
sompuiers suggests that theiy sell-orgs-
aizing hehavior can be characlerized
i fovms of (helr compuiations] capabil
Miez. Thas, for exampls, sefs of confign-
rations gengrated by the evelution of a
cellular sutomaton can be thought of
as a formal language. Bach confgura-
tion is constlered as & word in the lan-
guage, formed from a segioencs of sym-
beds represeating the celiular-auioma
ton site values according io 3 set of
grammanesiroles Wollram has shown
shat the ponfiguration generntad by sny
ceflubar aytomaion afier 2 finlte Hme
can be described by a simpls class of
formal langunges known as regobar Jao-
guages, For any of these regular lan.
guages it is possibie to find a shmplest
grammar, The grammar gives a mmi
mal description of the coiiuar-aitoma.
ton conpfzerations, and Hs size can be
isken 1o moessure the complexity of the
canfigurations. For cesllular swmiomals
of Class 1 and Class 2 the complexily
tends to a fipite Hodt af large times, so
thatl the struciures generiied by those
systems are described by oregulsr lane
guages For celinlar aviomain of Class
3 and Class 4, however, the tomplex-
ity usually increases rapidly with thne,
and it appearz that mors cimplizated
formal languages arve reguired o doe
seribe the large-time behavior of such
syéiems,

T?}g’wé s » specint olass of celular ac-
tornata that are said 1o be reversible,
or inveriibie. From any starting configis
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ration a reversible aviomaton can be al-
lowed to evolve for any number of time
steps, then stopped and run in reverse,
and it will relurn to its exact initial state.
The patierns formed by a typical revers-
ible automaton have a qualitatively dif-
ferent appearance from those characier-
istic of a nonreversible automaton. In
particular, if the pattern is initially ran-
dom, it tends (o remain random; no sell-
organizing slructurcs appear.

A nccessary condition for reversibili-
ty is that the transition rule be determi-
nistic in both the forward and the back-
ward directions, that is, every possible
state of a neighborhood must have both
a unique successor and a unigue prede-
cessor. The game of life is nonreversible
because the predecessor of a state can-
not be identified unambiguously: if a
cell is currently “dead,” for example, in
the preceding generation it could have
had any number of living neighbors oth-
er than three. A systemalic way of creat-
ing reversible transition rules was in-
venled by Fredkin and has been further
investigated by Margolus. The essence
of the method is to let the next state
ol a cell depend on the two previous
states of the neighborhood. The state at
time 7+ 1 is given by any [unction of
the neighborhood at time ¢ minus the
state at lime ¢/~ 1. The reversal is
then straightforward: the state at time
¢ — | must be given by the state at lime
r minus the state at time ¢+ 1.

Because of the requirement of bidi-
rectional determinism, there can be no
attractors in the cvolution of a revers-
ible automaton. The presence of an at-
tractor implies thal many initial states
evolve along paths that merge with one
another; in the reversed evolution the
merger poinis would become branch
points, where determinism would fail.
Similarly, a reversible cellular automa-
ton can never enter or leave a loop, or
cycle of states, because again a branch
point arises in one direction or the oth-
er. Because atiractors and the associat-
ed sclf-organizing patierns are excluded,
it may seem that reversible transition
rules would give rise 10 quite dull cellu-
lar automata, but other [eatures of the
systems offer compensating poinis of
infercst. Mosl notably, the information
content of a patiern of cells in a re-
versible automaton turns oul to be a
conserved quantity (one that cannot in-
crease or decrcase in the course of the
automaton’s evolution). This property
makes the reversible systems valuable
models of computation.

Margolus has constructed a cellular-
automaton computer based on an imag-
inary mechanical system [irst discussed
by Fredkin: the billiard-ball model of
computation. In the model bits of infor-
mation (1's and 0's) are carried by ide-
alized billiard balls that move without
friction and rebound from one another
and (rom other obstacles with perfect

clasticity. The prescnce of a ball al a
designaled position represents a binary
I and the absence of a ball represents a
binary 0. Through a clever arrangement
of bumpers it is possible (o creale var-
ious logic gates analogous Lo those of
an clectronic compulcer. In an AND gate,
for cxample, one billiard ball passcs
through the output region (and thereby
registers a binary 1) only if two balls
approach the gate simultancously along
specific trajectorics.

Margolus' cellular-automalon ver-
sion of the billiard-ball model is an ex-
ample of a simple but somewhal un-
usual reversible transition rule. Cells
are considered not individually but in
blocks of four; every possible patiern
within a block is transformed into a
unique product patiern. The rule is de-
signed so that a single 1 jn a background
of 0's propagates along one of the four
diagonal directions of the lattice at a
speed of one cell per time step; the iso-
lated 1 is the embodiment of a billiard
ball. A solid block of four 1's remains
unchanged and acts as a perfect reflec-
tor. When the model is set going on Tof-
foli’s cellular-automaton machine, the
“billiard balls™ streak across the display
screen in infricate interwoven patterns,
Watching this orderly (i {renetic) mo-
tion, it is hard to keep in mind that the
program has no representation of the
balls’ paths but merely applics a single
rule to all the cells.

he bilkiard-bail model and its cellu-
lar-automaton implementation have
an importanl bearing on the theory of
computation. It has been conjectured

that any computer must have compo-
ncnts that dissipate both energy and in-
[ormation; according lo this argument,
there is a thermodynamic limit to the
efliciency of a computer just as there is
to the efliciency of a heat engine. The
supposcdly inevitable losses of infor-
mation and cnergy result directly from
the irreversibility of the computation-
al process. (When a computer adds the
numbers 5 and 3 o get 8, the procedure
cannot be reversed because there are in-
finitely many numbers that could have
been added to get the same result.)

Fredkin, Teoffoli and Margolus point
out that the billiard-ball mode! offers
a counterargument (o the notion ol in-
evitable dissipation. In the billiard-ball
computer no information is lost. Indeed,
the billiard balls themselves cannot be
created or destroyed, and all the infor-
mation that defines their initial pattern
is preserved as the system cvolves. The
inputs to an addiltion operation can be
recovered simply by reversing the tra-
jectories. In principle the billiard-ball
compuler could operate with no inter-
nal power consumption.

The connection between physics and
computing has been made with parlicu-
lar clarity by Toffoli in 2 statement that
could be read as a description of the
largest of all cellular automata. “In a -
sense,” he wriles, “nature has been con-
tinually compulting the ‘next state’ of
the universe for billions of years; all
we have to do—and, actually, ail we can
do—is ‘hitch a ride’ on this huge on-
going compulation, and try to discover
which parts of it happen lo go near (o
where we want.”

The billiard-ball computer in action
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