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COMPUTER
RECREATIONS

On the ups and downs

of hailscone mumbers

by Brian Hayes

Threc steps forward and two steps
back: it is not the most eflicient
way Lo travel, but i secms certain
tn get you there in the end. A cort-
ous tnsolved problem in the theory of
numbers puts that conclusion in doubt.
The problem can be stated as follows.
Choose any posilive miteger {any whole

number greater than zero) and call it &
1 the number is odd, wriplc it and add },
or inother words replace Nby 3N + L H
the number s even, divide 11 by 2, re-
placiag N by N/2. In either case the re-
sult is the new value of ¥ and the proce-
dure is repeated. After many Merations
do the numbers tend o grow larger or
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STEP NUMBER

The sequence of kallsione numbers peginning with 27

10

smaller? o they converge on SoMmMe pur-
ticular value or diverge toward infinity?
How long docs it take 1o settle the “fate™
of a number?

For any piven value of N, answering
ihgse guestions cals for nothing more
than simnele arithmetic. For example, if
MNis 27, an odd number, the nexi valus is
{3 X 27y + L. or 82; it is followed by 41
and then by 124, Evidently there will be
many ups and downs in this serics of
numbers; thc value gocs up whenever N
ig odd and down whenever 1115 oven.
The reader is invited to extend the series
o see where it Icads. '

The difficult task 15 not evalueating the
series for a given N but iinding a general
solution, one that applies to al} possible
values of N As vel no general solution
has been devised. A great many num-
bers have been tesied explicily, and
they all follow the same paderp. bui
no one has been able 10 prove that ev-
ery number conlorms to the patiern. 1t
is hardly the most important unsolved
problem in number theory, bus 1L is one
of the most irksome. The procedure is
easy Lo describe and tocarey oul, butitis
remarkably difficult to understand what
s soing on.

The problem iliustrates well both the
utility and the limitations of the digh-
tal computer as a mathemancal instru-
menl. To explore bevond the smaliest
integers some mechanical 1id to compu-
ration is necded, but almost any com-
puter will do, even a programmable cal-
culator. On the other hand, exiending
the ¢aleulation to a significantly larger
range of numbers is practical only wih
the most powerful computing machin-
ery. When it comes to the very deepest
questions, it is not ceriain any compuier
can be of help. For the most part the
compuier s a tool of “experimental”
mathematics: it generaies examples and
counterexamples. Discovering a prin-
ciple in the peregrinations of N seems
to call for theorem proving rather than
rumber crunching,

hen the transformation rule is ap-
plied repeatedly to an arbiirary
number, what outcome can be expect-
ed? Here are three naive hypotheses:
The first argumsnt runs thus: There
are agual numbers of odd and even inte-
gers, and so i any long series of caloula-
tions odd and cven values of & should
come up eqeally often. When N s odd,
it is tncreased by a factor of 3 (and a i1~
tle more), but when & s evep, it 15 de-
creased by only a factor of 2. Hence the
value of ¥ after many iterations should
increase without limit. On the average
the value should increase by (3N + 1)1/2
per teration. For large values of Nihat
is essentially 3/2 N
The sccond hypothesis relies on the
nolion ihat what goes up must come
down. This line of rezsoning beging with
the observation that wheosver the cal-



culation happens to yield an cxact pow-
er of 2, the series of numbers immedi-
ately cascades back down 10 a value of
1. {When any power of 2 cxcept 2 itseif
is divided by 2, the result is necessarily
an cven number, so that the descend-
ing branch of (he calculation is jnvaria-
bly selected.) There are infinitely many
exact powers of 2 among the infinite
counting numbers. and a calculation
that is continued long enough is certain
to alight on one of them. Very large val-
ues of N might well be reached in the
course of a calculation, bul eventually
there must be 4 crash.

The third argument is similar in lorm
1o the second but leads to a different
conclusion. Note that whenever the
calculation changes direcuon, such as
when an odd number is encountered af-
ter a series of even ones, it reenters terri-
tory it has been in belore. Indeed, in
wandering up and down the number line
il can return to a finite domain of num-
bers arbitrarily often. Eventually it can
be expecied to stumble onto a value it
has visited before, and once that hap-
pens the entire future of the calcula-
tion is fixed. Because the procedure for
choosing a next step is fully determinis-
tic, apy duoplicated valuc of N must
lead into a icop that wil thereafter be
repeated endlessly.

The three hypotheses presented here
should not be taken 100 seriously. They
cannot all be right. Some of their prem-
ises are definitely open 1o question. In
particular, all three theories rely on a
probabilistic analysis, but the series of
numbers generated by applying the rule
is not a random one. What does mathe-
matical experiment have to say about
the matter?

he place to begin the calculation is at
the beginning, with 1. It is an odd
number, and so the instructions call for
multiplying it by 3 and adding 1. The
result, 4, 1s even and is therefore divided
by 2, vielding another even number; di-
viding by 2 again brings the calculation
back to 1. Hence with the first computa-
tion two of the speculative theories cited
above are given handsome support. As
the crash hypothesis predicts, the calcu-
lation stumbles en a power of 2; it does
so after just one iteration. As the cyclical
theory predicts, the calculation becomes
trapped in an endless loop; the values 4,
2 and | will be repeated indefinitely.
Among all the counting numbers 1 is
very special: it is the first and the small-
est. The results obtained when Nisequal
to | may therefore be atypical; before
reaching any conclusions one ought to
check further. Since the fate of 2 and 4
are known already from the calculation
for N=1, the obvious candidate is 3.
It is odd, and so the next value is
(3 X 3) + 1, or 10. Dividing by 2 vields
5, and then multiplying by 3 and adding
1 givesaresult of 16. Again a power of 2

has turped up, and the series cascades
through N =8 inio the 4-2-1 loop.
After examining the first four natural
numbers the trend seems clear, and yel
there is still reason for doubt. Tn the cal-
culalions made so far two quantities of
interest stand out: the highest value of
Nreached during a calculation and the
path length, which I shall define as the
total number of itecrations needed 1o
rcach a value of 1. For | itscll the maxi-
mum value s | and the path length is
zcro. For 2 the peak is 2 and the length
is |. For 3 the maximum is 16 and the
length is 7. The example of 3 suggests
that the maximum value reached and
the length of the series can be much larg-
er than the initial value of ¥, and so

perhaps the (unction will turn out 1o be
unbounded for some values of N.
Consider again the series generated
when the inttial value is 27. As noted
above, the first three numbcrs are 82, 41
and 124, but two successive divisions
bring the series back down to 31. Hence
after five steps almost no progress has
been made. As the calculation contin-
ues, however, the ihree-steps-forward,
two-steps-back mechanism gives rise to
a series of oscillations of ever larger am-
plitude. New peaks arc reached at 142,
214, 322 and 484. There are {urther set-
backs (at step 19 the value has dropped
10 91), but the trend continues Lo be up-
ward. The calculation passcs through
700, through 1,186 and through 2,158
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and by the 77th itcration has reached
the substaniial value of 9,232. It secms
we are on our way. As il turns out,
however, the path cnds at | aflter a total
of 111 sleps, never having risen higher
than 9,232. (The complete path is shown
in the illustration on page 10.)
Calculations of the kind 1 have just
traced have becn made for all the inte-
gers in an extremcly wide range. Nabuo
Yoneda of the University of Tokyo has
tested all values up to 242, or 1.2 X 1012,
In every case the result has been the
same: after a finite number of steps
the series subsides into the 4-2-1 loop,
where it must stay forever. Among the
first 50 integers 27 has the longest path

MAXIMUM

N PATH LENGTH VALUE
1 0 1
2 1 2
3 7 16
6 8 16
7 16 52
g 19 52
18 20 52
25 23 88
27 111 9,232
54 112 9,232
73 115 9,232
97 18 9,232
129 123 9,232
171 124 8,232
231 127 8232
313 130 9,232
327 143 9,232
649 144 9,232
703 170 250,504
871 178 190,996
1,161 181 190,996
2,223 182 250,504
2.463 208 250,504
2919 218 250,504
3711 237 481,624
6,171 261 975,400
10,971 267 975,400
13,255 275 497,176
17,647 278 11,003,416
23,529 281 11,003,416
26623 307 106,358,020
34,239 310 18,975,192
35,655 323 41,163,712
52,527 339 106,358,020
77,031 350 21,933.016

Sequence of longest paths up fo N = 106,000

MAX UM
N PATH LENGTH VALUE

1 0 1
2 1 2
3 7 i6
7 16 52
15 17 160
27 119 89,232
255 47 13,120
447 97 39,364
639 131 41,524
703 170 250,504
1,819 161 1,276,936
4,255 201 6,810,136
4,591 170 8,153,620
9,663 184 27,114,424
20,895 255 50,143,264
26,623 307 106,258,020
31,911 160 121,012,864
60.975 334 583,279,152
77.671 231 1,570,824,736

Sequence of peak values up to N = 100,000

12

back 10 1 (although 41 and 31 are not
much shorter and reach the samc peak
value, for reasons that should be appar-
ent from the information given above).
No posilive integer has been found to
generale a series that gocs off toward
infinity, and no ioops other than the 4—
2-1loop have been found. Nevertheless,
the conjecture that all positive numbers
conform to the same pallern remains
without a sccure theorctical basis.

The 3N+ 1 problem, as it is generally
called, has a murky history, but it
does not scem to be of great antiquity.
Over the past 30 years or s0 it has turned
up repeatedly in varions universily de-
partments of mathemaltics and comput-
er science, its comings and goings scem-
ing to bc as capricious as the advances
and recessions of the numbers them-
selves, Jeffrey C. Lagarias of Bell Labo-
ratories, who has recently looked into
the origins of the problem and the pros-
pects for solving i, notes that it may
have been invented several times. In the
1930’s Lothar Collatz, who was then a
student at the University of Hamburg,
investigated a class of problems that
includes the 3N + 1 problem, although
the work was not published until many
years later. In 1952 the British mathe-
matician B. Thwaites independently dis-
covered the problem, and a few years
later it was invented yet again by Rich-
ard Vernon Andree of the University of
Oklahoma at Norman.

Lagarias cites some 20 research arti-
cles on the 3N + 1 problem and its gen-
eralizations, most of them published
within the past 10 years, but the prob-
lem had circulated by word of mouth
long before. Collatz’ colleague Helmut
Hasse introduced it at Syracusc Univer-
sity in the 1950's, and Stanislaw Ulam
took it to Los Alamos and elsewhere.
Shizuo Kakutani, who first heard of the
problem in about 1960, reported to La-
garias: “For a month everybedy at Yale
worked on i, with no result. A simi-
lar phenomenon happened when [ men-
tioncd it at the University of Chicago.
A joke was made that the problem was
part of a conspiracy to slow down math-
ematical research in the U.S.”

Another sustained attack on the prob-
lem, with an emphasis on computer-aid-
ed numerical calculations, was made in
the early 1970’s by a group in the Arti-
ficial Intelligence Laboratory at M.IT.
The problem is recorded as Item 133 in
the group’s informal (and unpublished)
transactions, called BaAxkmEM, or “hack-
ers’ memorandum.”

In its wanderings the problem has
been known by many names. Calling it
the 3N + 1 problem does not seem en-
tirely satisfactory, in that it gives undue
attention to one half of the procedure
and slights the other half. Of the various
alternatives the one I find most con-
genial identifies the numbers generated

from a given starling value as “hailstone
numbers.” The path the serics follows is
rather like the trajectory of a hailstone
through a storm cloud, rising in updraflis
and then falling under its own weight.

computer program for calculating

hailstonc numbers can be written in
a few lincs of a higher-level program-
ming language such as Basic. Indecd, Lhe
central algorithm can be expressed in a
single statement. In nAasic it might be

IF N MOD2=0THEN N=N/2
ELSE N=3*N-+1.

Here the first operation is one that peo-
ple {but not computers) are capable of
doing without explicit calculation: de-
termining whether N is odd or even. N
MOD 2 is a modulus operation, which
computes the remainder when N is di-
vided by 2. If the remainder is 0, the
THEN part of the statcment is execuled
and Nis set cqual to N/2; otherwisc the
ELSE part is executed, setting N equal
to 3N+ 1.

A program in BaAsIC serves well
enough for generating hailstone num-
bers from the first few hundred inte-
gers, but if more extensive calculations
are undertaken, it becomes intolerably
slow. The Basic statement calls [or a di-
vision {as part of the modulus opera-
tion}), a comparison and then cither a
second division or a multiplication and
an addition. Division and multiplication
arc time-conpsuming operations, particu-
larly in a small compulter system. There
is much to be gaincd here by speaking
directly to the central processing unit in
its own language. All the division and
multiplication operations can thercby
be eliminated.

The illustration on the opposile page
gives a schematic account of such a ma-
chine-language program. It is assumed
that the value of Nis initially in a regis-
ter designated AX, which also serves as
an “accumulator” where arithmetic op-
crations are done. The value at the
start of the procedure is the binary rep-
resentation of the decimal number 27.

The first step is to save a copy of the
initial value in another regisier, here
labeled BX. The division operation is
avoided by exploiting a property of the
binary number system: shifting a bina-
ry number to the right one position js
equivalent to dividing it by 2, just as
shilting a decimal number to the right
divides it by 10. In the course of the shift
the rightmost digit (the units digit) is
preserved In a one-bil storage location
called the carry fag. Testing the car-
ry flag determines whether the original
number was odd or even, since in bina-
ry notatiop every odd number ends in a
1 and every cven number ends in a 0.

If N is even, the calculation is now
finished. The value remaining in register
AX after shifting to the right one place
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i the auodiznd NAZ In this caso, bowe
over, Mis odd and further computations
are needed. Firgt (he original valug of N
is recovered from regiswor BX. Then, in-
stead of multiplying by 3, the value 2
added o uself twice; even though this
requires two machmg ingtruciions .
sicad of gne, it s dor appreciably {fast.
gr. The final siep iz (0 introment the
pumber m AX by 1 in the instruction
voi of one micreprocessor the entire pro-
codure takes 20 ovoles of the compiter’s
clock wheon Mmevenand 1R eyeles when
M oaddd, Ad g olock frequeney of roeughe

Iy five megaherte e program fragment

could in prieciple be cxecuied some
FHEOB0 times per seeond LA fow more
elock oycles cowld be saved, at some
¢osl in program olarity.y The equivalent
algorithss emploving divisien and mul-
tiplication lastruciions ukes 173 cvoles
for cven Namd 286 avcles for odd M

In the tHustration registors are shown
a3 boing sighi bits wide and can here-
fore acvcommmopdate pumbers no larpey
than 28, or 256, In miosi micropragessors
the registers are aclualiy 16 bils wide
sodl can Boid acmbers up 19 63336,
Fven ibat 1#nit is 3 sovere consiraint 1
program cmploving  16.bU arithamotic
could ool calculnte hailsione numbers
bevond & = 702 Achicving 2 higher ¢3-
pacity reguires muhiple-precision arith-
tetic, in which 8 single number s eplit
betwoen (WO oF WIOPE Fegisters O feme-
ry locaiions, Wih 32 bits of precision
numbers up to about four billion can be
regresented; 64 bifs exiead the limil o
1O, Bach increase in precision, how.
gver, exacis 2 peanlty n speed.

The algorithm for caleulating one val-
e of Nis only & fragment of 8 work-
ing program. In addibion there musi be
some facidities Tor zouting input values
into the pwchine and {or displaying ree
sults, A practical set of programs for
exploring the hallsione pumbers ought
to do a good deal more. For exampde, it
sheuld be possibie to print ou! the entive
series of numbers generated by a given
starting value, or to st the path length
ansd maximum value associated with all
the infegers in a3 given range Ancther
prograre coutd be set up 1o search for
integers viclding progrossively longer
paihs or larger pusk values Thero arg
many other possibilities.

Variations gnthe 3V ¢ | formulaem-
ploving different cosfickmis and com
stants are alse worth exploring. R, Wil
dtam Gosper angd Richard Schrosppel,
whan they werg mombers of the Bak.
MEM group, investigaled the 34 -
proétem and showed that isequivalent
to ihe 3A - 1 problem with negative
values of N BEvery number they checked
terminates i one of three loops, the

paricd of 18 steps.

A program whose only alm i o
search for numbers hat do not {ait o
the 4-2-1 loap can be greutly stroam-

tined. H numbers are chacked in succes
sion beginning with 1, only odd numbers
nead o be examined, Any oven number
i immadigioly reduced by half, and so
the path i genssaies would alrendy have
been delected, Foy similar redsons there
is no necd 1o follow the path of 4 num-
bor sl the way 19 1; onco the value of &
falls below the initial value the candi
date cun be dmissed. Sull more effec-
1w rules for aatrowing (ho seareh have
beon doveloped by William M Henne
sran, 4 sipdent i the saxMud Rroup
whi i oow at Bosion Uneeersity.

ithough no prool has yet been dis-
: coversd, a hint of an oxplanation
may e it a bearkaie argument sore ree
fmd than the three naive hypotheses
given above, Thare it was noted that in
any ziage of ihe calosiation & has ap
equal probability of bomg muliiplied
by 3 or divided by 2, leading 10 the sug-
gestion that the value should tond to -
crease by a Tactor of 372 per Horstion
Lagaris points cut, bowever, (hit one-
fourth of all the integors arz divisibie
nal only by 2 bot alse by & one-eighih
of them are divisible by §, one-sixteonth
by 16 z2nd 30 on Taking inlo accornt
divisions by all possible powers of 2
vields & prediciion thet N should dee
erease by a (actor of 3/4 per ilerstion.
The smpincal evidence supports e
prediciion

Even if i sy out that all positive
infegers {ail into the 4-2-1 loog, the
hallsione nusbers offer au abundaace
of curissitins. Porhaps the most batrigas.
ing properiies of the aumbers are con-
spiousus patierns in the distyibution of
nath lergths and peak valaes. ¥ a num-
ber as svaall as 27 san keep the ball in
the abe for 117 s1epe and reach g height
of 8232, one might well cypet thar the
path kength and the peak valve would
grow rapidly as N inoreased. Actusliy
the path Jength grows very slowly; the
increase in the maximum value s fagter,
but it i also guile erratic

Among the Brsz I integers 1he Jong-
o5t path s 118 sieps {ar ¥ = 97); smong
the firgr 100,000 intzgers the longest
path is just 350 steps {ar A== 77031
Thuis increasing M by a {actor of 1,004
increascs the path length by 3 facior of
soly 3; the relation appesrs (0 be 2 loga-
rithmic one, The record maximum of
933% set a1 N 27 is not exceeded une-
i A= 235, which reaches a4 peak of
13,128, Mevw maximurms are recovded 2
quils irregular intervalas. The hailstong
sequences for &= 77671 reaches the ox-
tranrdinnry beight of 1,570,824,735,

it iz zasy 1o zee thal the peak valpe
reached n a halisione calculation must
invariably be an even pumber. It ¢an
also be proved that only an odd value of
Nocan sei 3 new record {6r maximum
height (wail ihe possible exception of
A= 2% I the oase of numbers thaf set
rew pecords for path fenmih thers is a0

STANT

GO AN INTO BY
5 BRIFT AX BIGHT ONE BIT
[“oadbrror e{7]
0001401t
P s i CARRY = 0

bl

COPY BX INTG AX

[Mocoiras: | [l

G
ADD BY 70 aX

Ee
_MAW\ .
[_oerone | (3]
| oeotiott |
ADD BT AX

[ soneri 7]

i
;o ADD YT AE
na

The haibisone alporitha

theoretionl argument T know of that ro
guirey them to be either odd or oven.
MNevertheless, among the frst L0060
integers pathe-longth records are sgt ab
snpst exclusively by odd values of &
A listing of the path leagth and maxs-
vy valug for & rasge of numbers has
a {rusirating mixture of reguiarity and
disorder: it is definiely not random, bt
the paticrn resists intorproiation. For
inglance, ceriaia maximuem values are
much commener than others and far wo
common 0 be explained by any stalis-
£ical provess. The oulstanding example
i 9232, the pumber 8yt rpached at
N= 27 {3 the first §,000 iniegers more
than 33 have their maximum 2t 5230
The distrimaion of path lenpths s
enually peculiar, Every possibls lesgth
wan be produced {by the sutocssive ex-
act powers of 21, bul again sonie mum-
bers appear far more often fhan athers.
Moreover, both the path lengths and the
maxirmum valucs show g strong tonden-
ey o form clusiers. In 1976 Fred Gruen-
bBerger of Calilornis Siate University in
Morthridge published 8 lst of such clus-
ters: the fargest was g siehng of 32 con-
secutive numbery that 53 have the same
path keagth, Can two conssrune val

i3
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wes of A have the same path length and
the same maximum? The guestion can
e seitied slgebruioally, g readors
whe profor » oumerikal demonsiration
might want 10 oxaming the hailstons 50
guenccs for A= 386 thyough Ao 384

quenee i connecied fo the botiom of
ihe loop, Accordingly o should be pos-
sible to invert the hallstone fentiion: @
bogin with | and upply the ransforma-
1o “hackward” w1 ordor fo goncrale
cvory hrger number, I some sumbor
cannat e reachod in this way. by fol-
fowing the river upsircam, 1the sumber
cannet vicld 1 as s final value,

The methad might well yickl a gener-
al sofntion of ihe hodstory problem, o
only 4 could be carried 1o completion.
As i turas oul, the provedore 18 0ot s

(’“ sre Hineninsting way 1o losk at the

hailytone problem s 10 lurn i up-
side down. Suppost i is Wus that all
positive mumbers ubliimately fall doio
the 4-2-1 loop. They musl then form
s unbroken chain through which any
gumbeyr in e nfinlc cownrding s

syal hailsione function s doiormibnanice s
valug of Mat any point in the caloulation
can have only one possible sucoessor. i
A s 40 for example. ihe next number
cun ouly be 20, When the path s rascd
in roverse, thore are ambizaitics. When
the vibue N 20 iy epcouniered, 13
wmown o enuld only have been gengr-
aied [rom 44, which must therelore be
thes next vafue, At 4, howover, the next
value could bo cither BO or 1k (he
sirearn spiits, and both tribatarios mug
e cxplorod, There i 2 bifwrcation

sipgiphiforward as 8 sooms. The nor-  everyaumborol theform 68 4+ 4 owhere
A ean be owyo or any posithve intogot
A bramching svsives of this Mad can
ne traced ondy 10 a fHalie Jepth, A single
prapeh must be foliowed uatilsome pros
determinesd thnit i3 reached and then at-
ientian myust be diveried to anothier
branch. When the Timil is sel at 100, 13
branches are eaplored and 49 pombers
are conlirmed 10 be copnected to i sys-
torm of nmorics! rills and rivilets, With
the Himit af 100 there are 84 brameins,
but only 349 pumbors are counied,
A lmy of IG000 vislds 1663 brunch
g3, winch pass theaugh $1.233 numinrsg,
Npte that e Hhan belf of e numbers
seem 1o 1e i ihe intersticos bobween the
hranchcs of the stream, As 1he i i
increased more sumbers are incloded,
but even more arg mivsed. 1 the ramifi-
cations of the svstem could be oxplored
to infinite duplh, would all positve inte-
gers ultimately Bud 4 plage jo 17 Thal
s the bip gussiion yel 10 be answored

i
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n Ocioher wo combinstorial prob-
lems were mentionod as buing unbho-

Iy candidates for sololion by “nonal-
egorithmic” methods with an ¢igeronic
sproadshest, A number of readers were
s ’ guick 10 show that i oan be dopg,
! & at Spreadshees sohutions to the Tewer of
1 Hanoi problem were sent by David Be-
Il har, John B. Jones, Jr., George Arthur
I
1
11

!
!
i
e
!
i

¥

Miler, L B Sladen, Alun Wyn-jonres
and others. The wehnigues employed
were similar, As aigosithm in which
cdd-numbered  disks chenlts cloch-
wise ang cven-numbered ones counier-
cinchwise was disagsembled so that »
temporal sequense of instructions be-
vame 3 spatial ariay of them,

Berar, Mitler amd Sladon also solved
the cighi-gucens proplem. Fore the raan
adficuiny is the aead o bucktrack when
a developing solution fmils. ] had sup-
pused some record af previous npmsug-
cessful attempts would have 10 be Rept
hut that is not the ease. D L Fremls,
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i 5 commentary oo the spreadshest ape
pronch 10 the problems, polnted out 7a
meihod that will generaie all the moves
i furn without any memory aother than
what s displaysd. .. The {ormulas are
comanlicated and vvolve sequential ale
gorithms i they sre done in thelr pat-
wral forms, but aif these ook for

subroulings can be represented on the

spreadsheet by local calowlations.”
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Troe generaied by Inverting the halistone function



