
s .A. D~c . 8 3

COMPUTER

RECREATIONS

On the finite-state machine, a minimal model

ofmousetraps, ribosomes and the human soul

by Brian Hayes

The most powerful computers have
neither hardware nor software;
they are built out of pure thought

. stuff. Among these abstract machines
the most celebrated is the one invented
in 1936 by the British mathematician
Alan Mathison Turing. It ca n do more
tha n a ny computer made of mere silicon
ever could; indeed, it can comp ute any~
thing tha i can be computed. A relat
ed class of conceptual computers lack
the omnipotence of the Turing machine,
but they are no less interesting. They
are called finite-state machines or fi
nite-state automata, and they establish
the minimum specifications of a work
ing digital computer.

Properly defining a finite-state ma
chine call s for a degree of mathemat ical
rigor that is not appropriate here . The
nature of the concept can be made clear,
however, by means of a few examples.
When I went out Looking for finite·state
machines, I found an excellent specimen
in a sta tion of the Lexington A venue
subway in New York. It is a turnstile , an
old one made not with the compact steel
tripod of current practice but with four
oak crossarms, worn smooth by a river
of hands and hips.

The turnstile has two states: locked
and unlocked. Suppose it is in the locked
state, so that the arms cannot be turned.
Putting a token into the slot a lters the
internal mechanism in some way tha t
allows the arms to move; in othe r words,
the token induces a transition to the un
locked state. Rotating the arms by 90
degrees causes another transition that
restores the turnstile to the locked state.
The transitions are shown schematical
ly in the LIpper illustration on the next
page. The sta tes of the system are repre
sented by nodes (boxes) and the tran
sitions by arcs (arrows) between them.

I n the finite-state analys is of the turn
st ile , inserting a token and pushing on

the arms are the possible inputs to the
system. The response of the machine de
pends both on the input and on the state
at the time of the input. Pushing on the
crossarm when the turnstile has not yet

received a token will not gtt yo u a ride
on the subway. Inserting a token when
the arms are already unlocked is also
futile, although in a slight ly different
way. The second token is accepted, but
it has no effect on the stale of [he ma
chine; one person is admitted and then
the turnstile locks again. Three or four
tokens in sequence are likewise accep t
ed but buy only one ride. Skeptics may
want further evidence before accept ing
the generalization that all tokens after
the first have no effect, but they will
have to supply their own tokens.

The reason the turnstile cannot gi ve
multiple rides for multiple tokens is that
it has no means of counting the tokens it
has received. Its onJy form of memory is
a rudimentary one: by changing from
one state (0 the other it " remembers"
whether the most recent input was a to
ken or a push on the crossarms. All ear
lier inputs are lost. It is worth noting that
this forgetfulness can never work to the
disadvantage of the city. It could be
worse: a turnstile could be designed to
change state after every token, regard
less of the present state, in which case
two tokens in a row would admit no one.

The turnstile illustrates most of the
essent ial properties of a finite-sta te
machine. Obviollsly the machine m us[
have some sta tes, and there ca n be only
a finile number of them. There can
be inputs and outputs associated with
a ny state. The states must be discrete ,
or clearly distinguishable, and the tran
sitions between them must be effectively
instantaneous. In these matters much
depends on the point of view: day and
night are discrete states if one is wi lling
to define sunrise and sunset as insta n
taneous processes. The set of states, the
inputs and the outputs constitute the en
tire machine; there can be no a uxiliary
dev ices, and in particular no facilities
for the sto rage of information .

The rliles for building a finite-state
mCichine al low some scope for variation.
There arl;: deterministic and nondeter
mini stic machines, Moore machines and
Mealy machines. In a deterministic ma
chine a given input in a given state invar

iably has the same result; in a nondeter
ministic machine there can be several
possible transitions. In the Moore ma
chine (named for Edward F. Moore)
each state has a unique output. In the
Mealy machine (named for G . H. Mea
ly) the outputs are associated with the
transitions ra ther lhan the states. It turns
out, however, that the variety of archi
tectures is something of an illusion. Any
task that can be done by one kind of
finite-state machine can be done by
the other kinds as well, although the
number of stales needed may vary.
Here I shall discuss mainly determinis
tic Moore machines, which have the sim
plest structure.

W hen yo u start looking for finite
sta te machines. you find Ihem ev

erywheTe. Coin-operated devices are fa
vorite textbook examples. Some vend
ing machines are less rapaciolls than
the subway turnstile: once they have rc
ceived the proper amount of money
they enter a state in which all addition
al coins are rejected. The coin-operated
device with the largest number of pos
sible states is sure ly the Las Vegas slot
machine. In principle it is deterministic,
but finding an input (a coin and a plJIl
on the handle) that will CCi LI se a transi
tion to a partic ular final sta te is none
theless challenging.

Many household appliances can be
regarded as fulite- state machines, al
though they tend to be rather dull ones.
A clothes washer goes through an in
flexible sequence of states- filling, agi
tating, rinsing, spinn ing-and the few
meaningful inputs, such as plilling the
plug out of the electric outlet, generally
have the same effect in all the states.
Similarly, a traffic light has a small rep
ertory of states, which repeat indefinite
ly. To me the most boring of all fini[e
state machines is a digital clock. If it
displays the month, the date and the pas
sage of hours, minules and seconds, it
has some 31 million sta tes; in the course
of a year it visits each state exactly once.

A mousetrap is a finite -state machine;
the mouse, 'usually to its misfortune,
triggers a transition from the cocked
state to the sprung state. A combination
lock is a finite-state machine with many
possible inputs, only one of which caus
es a state transition. A telephone has
sta tes that might be labe led on hook, off
hook, waiting, dial tone, dialing. ringing,
connected and out of order. An automo:
bile can demonstra te vividl y tha l the ef
fect of an input varies according to the
present s tate of the system . What hap
pens when you press the accelerator
pedal to the floor? It depends. Is the en
gine running? Is the clutch engaged? Is
the parking brake off? Is the transmis
sion in gear? Is it in forward or reverse?
Is the garage door open?

In the living cell the molecular sys tem
made lip of the ribosome and the va ri

19

START
PUSH

LOCKED UNLOCKED
TOKEN

PUSH TO KEN

A state-transition diagram for (1 subway turll.~lilf!

START--;>i

EVEN ODD

The parity-testing machif/c

Oli S species of transfer RN A operates
as a finite-state machine. The inputs are
the fo ur nucleotide bases of messenger
RNA, designa ted by the abbreviations
U. A. G and C. The outputs are the 20
amino acid components of proteins. i\
chain of n ucleotides is recognized as a
valid inpu t to lhe machine onl y if it be
gins wi th the "start" signal A UG. There
after the machine reads the input stream
continuously, changing sta te as each co
don, or tri ple t of nucleotides. is recog
nized. The three special codons UAA,
VAG and UGA are "stop" slgnals: when
one of them is encountered, the machine
halls. Many other biological sys tems
can use fully be represented as fini te
sta te machines; examples that come to
mind arc the he moglobin molecule and
the promoter and repressor proteins of
bacteria.

In the theology of Thomas Aquinas
the soul is a finite -state machine, a won
derfull y e laborate and full y de terminis
tic onc. It is created in a state of jeopar
dy, as a conseq uence of original ·sin. On
baptism it enters a state of grace, bUl
certain acts (idolatry, blasphemy, adul
tery and so forth) induce a transition to a
state of sin. ConfeSS ion, repentance a nd
absolution arc the n needed to restore the
soul to grace. The effec t of a fin a l input,
death , depends critica ll y on the state of
the so ul at the moment of dea th: in a
state of grace death leads to salvation
but in a state of sin it leads to damna~
tion. The soul machine is actually ma rc
complicated than this description sug
gests. A full account would have to dis
tinguish among the various grades of sin
(venial and mona l, actual and habi tual)
and would h ave to include other possi
ble states of the so ul (such as those asso
ciated with limbo and purgatory) and
other possible inputs (such a s the Last
J udgm enl).

In quantum mechanics even the atom
becomes a finite-state machine, and
hencc so docs everything th at is made up
of atoms. The states of the atom a rc the
a llowed energy le vels; the inputs a nd
outputs are photons, or quanta of eJcc
trom agnel ic radiati on. In a precise de
scription I think the atom would be
c lass ified as a nondeterministic Mealy
machine with e psilon tTansitions. It is
nondeterministic beca use the effect of
an input cannot be predicted with cer·
tainty. It is a Mealy mach ine because
the nature o f the output (namely the en
ergy of the photon) is de term ined by
the transition, not by the stat.e en tered .
E psilon transitions arc those that can
take place in the absence o f any input;
they must be included in the model be
cause an a tom can emit a phoLOn and
change its state spontaneollsly.

I s the brain a fini te -state machine? As it
happens, the modern study o f fini te

state systems began with a mode l of
neural networks introduced in 1943 by
Warren S. McCulloch and Walter Pius.
T he ne urons of McCulloch and Pitts
were s imple cells with excitatory and in
hibitory inputs; each celt had a single
output and two internal states: firing and
not firing. The ce lls co uld be arrangcd
in networks to carry out various logic
funct ions, including the "and, " "or" and
"not" func tions that are now common
place ckments of electronic logic sys
tems. The equivalence of the idealized
neura l networks to sta te-transiti on dia
gra ms of the kind shown here was es tab
lished in 1956 by Stephen C. Kleene of
the U niversity of Wisconsin a l Ma dison.

Forty years after the work of McC ul
loch and Pitts it is still subject to dis
pute whether the bra in can reasonably
be classified as a finite-s tate system. Of
course the number of neurons is neccs

sarily finite, but that is not the only iss ue.
A rea l ne uron is far more complica t
ed than a two-sta te cell, and some of
its properties may va ry over a cont inu
ous ra nge rather than being constrained
to occ upy discre te states. F urthermore,
the prohibition of auxiliary information
storage in a finite-state model of the
brain is awkward a t best. If menta l life js
no more than a s ll ccession of instan
taneous states, without knowledge of its
own history, then what is memory?

The states of mind discllssed in psy·
chology, such as boredom, fear, thirs t,
ecstasy and grief, seem to fit more read i
ly into the apparatus of a noite-state the
ory. On the other h and, the sta tes are
so numero lls and the transitions arc so
poorly understood that the m odel is use
I css~ Only for lower a nimals is it possible
to draw more than isolated fragments
of the state-transition diagram, and in
those species the experimenter can have
no direc t access to the presumed mental
states. Indeed, much work of this kind
has been done by be haviorists who deny
the very existence of mental states.

The case of the digita l comp uter
and here ' mean the tangible machine,
the hardware-is also problematic. The
common mental model of a computer ,
formul ated by John von Ne uma nn , di
vides the machine into a central process
ing un it and an a rray of me mory cells.
There is no doubt that the f1nite~s tate
concept can be applied to the v<i rious
components of the centra l processor,
such as reg isters, addcrs and the contro l
mechanism that direc ts {he internal op·
erations of the processor.

The trouble beg ins when the memory
is taken into account. Under the rules
fo r building a finite-state machine no ex
ternal memory is aHowed, <iod so each
ccll must be viewed not as a storage fa
cility separa te fro m the processor but as
a part of the overall machine state. If
all the cells arc bla nk, the computer is
in one state; if a single cell is fill ed, an
other state is entered, and so on. This
concept ion of the computer is singular
ly unilluminating, in part beca use it
makes no connection between the s tate
of the machine a nd wha t it is do ing.
Moreover, the number of states is im
menSe. Even a com puter of triv ia l size
(100 binary elements), running contin
uously throughout the age of the uni
verse, could not possibly have worked
through all its states.

The primary role of the finit e-sta te
machine in computer science is at

a higher leve l of abs traction than the
clockwork mechanisms of the hard
ware. A computer running under the di
rect ion of a program is no longer an
assemblage of logic ga tes, registers,
memory ce lls and other elec tronic par
aphernalia; it is a "virt ual" machine
whose working parts are defined by the
program and can be redefined as neces

20

sary. Whereas the hardware knows onry
binary integers and simple comm ands
for moving and manipula ting them, the
virtua l computer dea ls with fa r morc
express ive symbol systems: words, eq ua
tions, arrays, fun ctions. vectors, codons,
lists, images. pe rhaps even ideas. Fini te
sta te techniques can be valua ble in
crea ting the virtual computer, and some
times the virtual computer is a finit e
sta te machine.

Consider a program whose objec t is to
read a series of binary digits (1 's and 0'5)
and report whether the num ber of ·l '5

received is even Or odd. (The task has
prac tical significance; for example, such
parity-check ing program s arc em ployed
to detcct c rrors when d igital da ta are
transmitted by telephone.) The program
can be constructed as a Rnile-sta te ma
chine with two sta tes, as is shown in the
lower illustration on the o pposite page.
Operation begins in the even sta te, be
cause initially no 1 's have been rece ived
and 0 is considered an even n urn ber.
Each 1 in the input strea m causes a
change of state, whereas a 0 received in
e ither state leaves the state unchanged.
Even lhough the machine cannot "re
member" an y inputs be fore the most re
ccnt onc and certainly cannot count the
1 's or 0'5, its output aJways re fleers the
parity of the input s trea m.

The finite-state model o f computa tion

START

is commonest in progra ms tha t dea l in
some way with tex t or other information
that takes a linguis tic form. The preemi
nent example is fo und in compilers: pro
grams tha t translate programming state
ments in a so urce lang uage into equiv
alent statemen ts in a target language,
most often the "machine language" of
a particul a r compute r. Compilers and
other transla ting programs are essentia l
to the notion of the vir tua l machine;
they media te be tween symbols with hu
man meaning and those recognized by
the computer.

The part of a compiler that can be
designed as a finite-state machine is
called the lex ical scanner. Like the sub
way turnstile, it is a token-gobbling de
vice. In this case, however, the tokens
a re the words, or fu ndamental lex ical
units, of the language. T he scanner ex
amines each gro up o f charac ters and de
termines whe ther it is a genuine to ken,
sllch as a com mand or a number; if it is
not , the scanne r rejects it as nonsense,
just as the lurnst ile wo uld reject a slug.

The operation of a lexical scanner can
be illustra ted by a fmite-state m achine
designed to recognize the tokens of a
simple language, albeit one of limited
expressive range: the tokens consist ex
clusively o f Ro man numerals. Indeed,
only Ro man numerals of a special form
are accepted; they must be gi ven in stric t

additive no ta tion, so tha t 9 is represent
ed by VIIlJ rathe r .han by IX. (There is
evide nce tha t the Romans themselves
emp loyed the additive no ta lion; the sub
trac tive form is thought to have been a
German innovation.)

A state-transition diagram for the Ro
man -numera l machine is shown in the
ill ustra ti on on the next page. Its alpha
bet of inp ut symbols includes the le t
ters M , D, C, L , X, V and I as well as
the space symbol, or blank. Any ini
tia l blanks a re simply ignored, bu t once
the nrst letter is rece ived the program
ma kes an immediate transitio n to a s ta te
identi fie d (for convenience) by the name
o f the letter. If the fi rst letter is an M, it
can be followed by any character fro m
the allowed set, including another M. If
the nex t character is a D, however, the
situation is different. From the 0 state
no transition back to the M sta te is de
fined, because any series of sym bols that
includes OM cannot be-a well -formed
token in the language of addit ive Ro
man numera ls. Furthermore, there is no
transition from the D sta te to the D sta te
ilse lf, so that DD is a lso an excluded
sequence . (The reason is tha t the " hCllf
va lue" 'symbols D , L and V ca nnot be
repea ted in proper Roman numerals.)

In the 0 state the only recognized let
ters are the lower-valued ones C, L, X, V
an d l. The same set is accepted in the C

LAST
JUDGMENT

LIMBO

DEATH

ORIGINAL SIN

BAPTISM

SALVATION

LAST
JUDGMENT

PURGATORY

EXPIATION

DE AT H DEATH
MURDER. ETC. r- ----;.

SLOTH. ETC. MURDER. ETC. MORTAL SIN
GRACE VENIAL SIN

ABSOLUTION
MURDER, ETC.

'<e- !
SLOTH. ETC.

SLOTH, ;- ABSOLUTION
ETC. DEATH

\"'.Y -V

DAMNATION

LAST
JU OG MENT

~
SUl/tot of the soul i ll fh e theology of Thome'S Aquiltas

21

I

START-7

BLANK

'V

M BLANK
0 ,
C V
L M X
X - L
V C ,

M 0

V

r
BLANK ,

'7 0
V
X
L
C

'"BLANK ,
'-7 c V

r c
X
L

~

,.
~I L BLANK ,

V ~
X

BLANK
X , f-

X V

~

) ·V BLAN~ ~

,[,

I, BLANK1, ,

I

I END I

A fexical !if.:allller Jo/' a lal1guage of Roman lIumel'ftfs

state (because C cail be repeated), but in
the L state onl y the leLters X, V and f :ire
recognized. The rule governing the tran
si tions should be clear. T he states arc
arranged in a hierarchy, and once a giv
en level has been reached the mach ine
can never return to a h igher le vel; in the
half-va lue levels it cannot even remain
at the same leveL By the time the I state
is reached o nl y an ad ditional Jo r a blank
is a llowed. The blank, entered at this
point or a1 any other li me after the firs t
le tter. indicates the end of the token
and sends the machine back to its sta rt
ing state, ready to rece ive the next Ro
man numera l.

N o programming language known to
me allows numbers to be entered in

Rom an form, but virtuaHy all such lan
guages have faci lities for handling A ra
bic numbers. The techniques for recog
nition arc similar, a lthough there is a
greater va riety of formats. Simp le in
tegers such as 137 can be ha ndled in
principle by a one-state machine. but
the several parts of a number such as
+6.625 X 10 - 27 req uire a more elabo
rate lex ical analysis.

Th e ribosome-transfer-RNA system
can be regarded as a lexical scanner that
recognizes biologically mea ningful nu
cleotide sequences in a.mo lecu le of mes
senger R NA. To be accepted a sequence
mllst begin with a start codon a nd end
with one of the three stop codons; be
tween these bounda r ies any combina
tion of the input symbols U, A, G and C,
taken th ree at a time, is a llowed.

Lex ical a nalysis is only the firs t step in
the process of compilation.. The compo~
nents of the compiler tha t are called into
ac tion after the lexica l scanner are the
parser and the code genera to r. The pars
er takes as its input the tokens identified
by the scanner and a nalyzes the ir syn
tactic relations; this is the closest the
compi ler comes to understanding the
meaning of the progr.am statements it
translates. The code generawr writes a
program in the target language that ca r
ries out the functions specified by the
parsed statements.

For the toy languagesconsidtred here
the tasks of the parser and the code gen
erator are trivial. The compiled form of
a statement in 'the Roman-numeral lan
guage might be sim ply the Arabic equ iv
alent o f the number. It could be gen
erated by the following strategy. Be
fore a token is scanned a storage ce ll is
specified and is se t eq ua l to ze ro. Then
each time the scanner en ters the M state
1,000 is added to the va lue in the ce ll ;
for the D state 500 is added, and so
on. When the scanning is comple te, the
memory cell holds the value of the Ro
man numeral. Note that the toy compil
er is no longer a pure fin ite-state ma
chine, because it has aux iliary storage.

A compiler for the genetic code is
even simpler and can be rea lized entire

22

http:progr.am

ly within [he context of a finite-state sys
tem. The compiled "program " is a se
quence of the standard three-Ieuer sym
bols for amino acids; the symbols can be
generated as the output of the states of
the scanner thaI recognize codons. The
three 's tates corresponding to stop co
dons have no output.

Crea ting a comp iler for a language
large enough to be of genera l utility is
nOl a casual undertaking, but the under
lying architecture of the finite-state ma
chine can at least provide an organizing
principle. If the syntax o f the language is
specified with sufficient precision, part
of the work can even be mechanize d: it
can be done by a compiler compiler, a
program whose input is <l formal de
scription of a language and whose out
pUl is another program that translates
sta tements in the language. As far as I
know no one has yet wr itten a compiler
compiler compiler.

T he identificat ion o f tokens by a lexi
cal scanner is in itself a kind of pars

ing, and the set of all possible sequences
of symbols in a token is a kind of lan
guage. Indeed, it is an infinite language:
unJess some. artificial limit is put on the
length of individual sequences, an infiv
nite variety of recognizable tokens can
be formed. H ow can a machine with
only a finite number of parts recognize
an infinity of well-formed statements
and exclude an infinity of ill -formed
ones? The key is in the structure of the
language itself. 1f the statements of an
infinite language a re to be recognized
by a finite-state machine, they must be
formed according to strict rules.

The rules were set forth by Kleene in
1956; they define a class of languages
called regular languages or regular sets.
Kleene proved that a finite·stale ma
chine can recognize a language only if it
is regular, and further that every reg ular
language can be recognized by some
finite-stale machine. What is meant
by reg ula r can be indicated briefly (al
though nOl rigorously) by two rules.
First, any finit e language is regular and
therefore can be recognized by a finile v
state machine; after all, one could build
a machine with a state for each possible
expression of the language. Second, if a
language is infinite, it must be possible
to parse a ll its statements by rectding One
symbol a t a time from left (0 right, or
beginning [0 end, without backtracking
or looking ahead. If the acceptability of
any symbol is contingent on the pres
ence of another symbol, the governing
symbol mllst be the one immediately to
the le ft.

The second rule is a direct conse
Quence of the limi(ations of a finite-state
machine, which can neither foresee its
fut ure sta tes nor keep a record of its
past ones; it must choose a state transi
tion based on ly on the current state and
the current input symbol. It is for this

r

STtRT

-'I'

V
c
G

W

U -
e r--
G -

t
U l-
C r---- U
GI-

r!en -'>

C I-

A I-

G

y

u ~ C----" A ~ G

V
C
~-A ~ ~~ G

A[\ gfY ~
Ah

G I GI--'

gp~-L.;
A
Gt~

~r ~~

V

A ~i~J
c

G

~A~ C
V ~
AG
G ~~
V
C 0>1 Arg ,~ A

G
~
~ r ~ S-

G ~

~ ~~ ~~
gP-~ ~

?lliB:~ ~p-

U

G

U :JCy
~ :J---

r ~~
~U~Ala eU I

A~ g~
~ P)LQI&

y ~~
A jiflile-.~/ale machine (mll.tlttleS the gellelic code i llio pro/eill

STOP

27

--

rcason that the s ubtract ive notation for
Roman numerals cannot be handled
by a finite-state machine. If the expres
sion X I is read and the machine inter
pre ts it as It , it cannot go back to revise
the va lue when the next character turns
out to be V. Many other functions are
ruled out by the same limitation. For
example, it is not possible to build a
finite-state machine that reads a se"
quence of binary digits and determines
whether the number of l's is equal to
the number of O's. Similarly, a lthough
a finite-state machine can add binary
numbers. it ean no r muhiply them; I
leave it 10 the reader 10 deduce why.

Beyond finite-state machines and rcg
ular languages there extends a hier·

archy of more powerful machines and
more general languages. It is called the
Chomsky hierarchy, after the linguist
Noam Chomsky, who investigated the
various formal languages as possible
models of natural language. The morc
general la nguages are created by relax
ing constraints on the gra mmatica l rules
of reg ular se ts; the machines are built by
addlng memory clements to the basic
finite -stalc model.

Thc next machine in the series is
called the pushdown automaton. It con
sists of a finite-state machine with the
addition of a memory array that has an
infinite capacity but a peculiar organiza
tion. The memory takes the form of a
stack, like a counterweighted stack of
cafeteria trays. An item of information
can be s tored only by putting it on top of
the s tack ; when the information is re
trieved, any o verlying items must first be
removed. Thus the last item in is the first
one out.

The language recognized by a push·
down automaton is called a context-free
language. In parsing its statements lhe
acceptability of a symbol can depend
both on the symbol immediately to the
left and on the one immediately to the
right. This bidirectional dependency is
permissible because any symbols whose
interpretalion cannot be decided imme-

PUSHDOWN

AUTOMATON

- FINITE·STATE
MACHINE

, , SEMI-INFINITE
: STACK

diately can be stored on the stack un
til the ambiguity is resolved. Hence a
pushdown automaton can work with
subtractive Roman numerals, and it can
identify expressions with equal numbers
of 1's and O's (or other symbols, such as
left and right parentheses). On the oth
er hand, it cannot detect sentences with
equal numbers of three symbols, s uch as
O's, l's and 2'5. Most programming lan
guages are context-free, and the parser
of a compiler is generally a pushdown
a utomaton. Many computers include
hardware facilities for organizing a part
of the memory capacity as a pushdown
stack. One programming language,
Forth, makes a stack the primary mem
ory structure. Of course, the stack in any
rea l machine cannot have infinite depth.

The context-free languages merit
their name because the parsing of any
symbol can be influenc-cd directly only
by the symbol's two immediate neigh
bors, not by the wider context in which it
is found . Removing this constraint gives
rise to a context-sensitive language and
once again increases the difficulty of
interpretation. Now widely separated
symbols can interact; in the worst case it
is not possible to interpret the first sym
bol in an expression until the last one
has been rcad. In exchange for the added
complexity somewhat greater capability
is gained. A machine based on a conlexl
sensitive language can determine wheth
er an expression incl udes equal numbers
of three symbols.

The machine that can recognize a
context -sensitive language is a linear
bounded automaton. In addition to the
usual finite -state apparatlls it has a
memory organized in such a way that
any storage location can be reached at
any time; it is a random-access machine.
The memory is only finite in capacity,
but it is assumed to be large enough [0

hold any input the machine rece ives.
The linear-bounded a utomaton seems a
good approxima tion of lhe von . Neu
mann model of a digital computer. Odd
ly, thollgh, the corresponding context
sensitive programming languages seem

LINEAR-BOUNDED

AUTOMATON

FINITE·STATE
MACHINE

FINITE
MEMORY ARRAY

to be rare; evidently the simpler context
free structure almost always has .suffi
cient.expressive· power.

All the languages described above
have a property in common: they arc
said to be recursive. What this designa
tion amounts to is that one can imagine
a procedure for genera ting all possible
" utterances" in the language in order of
increasing length. It follows that there is
a guaranteed method of deciding whet.h
er any given statement of finite length 'js
a member of the, language:, simply gen
erate all the statemcnts ,up to that length
and compare t!x.m.·

There are.languages that cannot meet
even this minimal standard of tractabili
ty. For them Ihere is only one possible
recognizing machine: it is the computer
of last resort, the Turing machine, a fi
nite-stale automaton a llowed to roam
freel y through an unbounded memory.
In the description given by Turing the
memory is a tape, infinite in both direc
tions and marked off into cells, which
the finite -s tate apparat us can write on,
read or erase.

Looking down rrom the elevated per
spective of the Turing machine. the re
lations of the lesser computing devices
become clearer. The hnear-bounded
automaton is s imply a Turing machine
wi th a finite tape. The pushdown all tom
aton has a tape that is infinite in one
direction, but the "head" for reading
and writ ing On the [;;Ipe always remains
fixed over the last nonblank cell. The
tinite-state machine is a T uring machine
with no tape at alL

Brand-name-conscious readers, eager
to parse nonrecllfsive languages, may
already be out shopping for a Turing
machine. They should be warned that
the ultimate computer a lso has irs weak
nesses. There are languages with gram
milrs so preposterous (hat even il Turing
machine cannot be counted on to recog
nize the ir statements in a finite amount
of time. So far such l;;lnguages have
found little use in the world of com
puting machines, bu(people somehow
manage to speak them.

TURING

MACHINE

.

FINITE·STATE
MACHINE

, , INFINITE
i MEMORY ARRAY

l1w Chomsky hieranhy offiniU! (/11d infinite mochines

28

