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On the finite-state machine, a minimal model 

ofmousetraps, ribosomes and the human soul 

by Brian Hayes 

The most powerful computers have 
neither hardware nor software; 
they are built out of pure thought 

. stuff. Among these abstract machines 
the most celebrated is the one invented 
in 1936 by the British mathematician 
Alan Mathison Turing. It ca n do more 
tha n a ny computer made of mere silicon 
ever could; indeed, it can comp ute any~ 
thing tha i can be computed. A relat
ed class of conceptual computers lack 
the omnipotence of the Turing machine, 
but they are no less interesting. They 
are called finite-state machines or fi
nite-state automata, and they establish 
the minimum specifications of a work
ing digital computer. 

Properly defining a finite-state ma
chine call s for a degree of mathemat ical 
rigor that is not appropriate here . The 
nature of the concept can be made clear, 
however, by means of a few examples. 
When I went out Looking for finite·state 
machines, I found an excellent specimen 
in a sta tion of the Lexington A venue 
subway in New York. It is a turnstile , an 
old one made not with the compact steel 
tripod of current practice but with four 
oak crossarms, worn smooth by a river 
of hands and hips. 

The turnstile has two states: locked 
and unlocked. Suppose it is in the locked 
state, so that the arms cannot be turned. 
Putting a token into the slot a lters the 
internal mechanism in some way tha t 
allows the arms to move; in othe r words, 
the token induces a transition to the un
locked state. Rotating the arms by 90 
degrees causes another transition that 
restores the turnstile to the locked state. 
The transitions are shown schematical
ly in the LIpper illustration on the next 
page. The sta tes of the system are repre
sented by nodes (boxes) and the tran 
sitions by arcs (arrows) between them. 

I n the finite-state analys is of the turn
st ile , inserting a token and pushing on 

the arms are the possible inputs to the 
system. The response of the machine de
pends both on the input and on the state 
at the time of the input. Pushing on the 
crossarm when the turnstile has not yet 

received a token will not gtt yo u a ride 
on the subway. Inserting a token when 
the arms are already unlocked is also 
futile, although in a slight ly different 
way. The second token is accepted, but 
it has no effect on the stale of [he ma
chine; one person is admitted and then 
the turnstile locks again. Three or four 
tokens in sequence are likewise accep t
ed but buy only one ride. Skeptics may 
want further evidence before accept ing 
the generalization that all tokens after 
the first have no effect, but they will 
have to supply their own tokens. 

The reason the turnstile cannot gi ve 
multiple rides for multiple tokens is that 
it has no means of counting the tokens it 
has received. Its onJy form of memory is 
a rudimentary one: by changing from 
one state (0 the other it " remembers" 
whether the most recent input was a to
ken or a push on the crossarms. All ear
lier inputs are lost. It is worth noting that 
this forgetfulness can never work to the 
disadvantage of the city. It could be 
worse: a turnstile could be designed to 
change state after every token, regard
less of the present state, in which case 
two tokens in a row would admit no one. 

The turnstile illustrates most of the 
essent ial properties of a finite-sta te 
machine. Obviollsly the machine m us[ 
have some sta tes, and there ca n be only 
a finile number of them. There can 
be inputs and outputs associated with 
a ny state. The states must be discrete , 
or clearly distinguishable, and the tran
sitions between them must be effectively 
instantaneous. In these matters much 
depends on the point of view: day and 
night are discrete states if one is wi lling 
to define sunrise and sunset as insta n
taneous processes. The set of states, the 
inputs and the outputs constitute the en
tire machine; there can be no a uxiliary 
dev ices, and in particular no facilities 
for the sto rage of information . 

The rliles for building a finite-state 
mCichine al low some scope for variation. 
There arl;: deterministic and nondeter
mini stic machines, Moore machines and 
Mealy machines. In a deterministic ma
chine a given input in a given state invar

iably has the same result; in a nondeter
ministic machine there can be several 
possible transitions. In the Moore ma
chine (named for Edward F. Moore) 
each state has a unique output. In the 
Mealy machine (named for G . H. Mea
ly) the outputs are associated with the 
transitions ra ther lhan the states. It turns 
out, however, that the variety of archi
tectures is something of an illusion. Any 
task that can be done by one kind of 
finite-state machine can be done by 
the other kinds as well, although the 
number of stales needed may vary. 
Here I shall discuss mainly determinis
tic Moore machines, which have the sim
plest structure. 

W hen yo u start looking for finite
sta te machines. you find Ihem ev

erywheTe. Coin-operated devices are fa
vorite textbook examples. Some vend
ing machines are less rapaciolls than 
the subway turnstile: once they have rc
ceived the proper amount of money 
they enter a state in which all addition
al coins are rejected. The coin-operated 
device with the largest number of pos
sible states is sure ly the Las Vegas slot 
machine. In principle it is deterministic, 
but finding an input (a coin and a plJIl 
on the handle) that will CCi LI se a transi
tion to a partic ular final sta te is none
theless challenging. 

Many household appliances can be 
regarded as fulite- state machines, al
though they tend to be rather dull ones. 
A clothes washer goes through an in
flexible sequence of states- filling, agi
tating, rinsing, spinn ing-and the few 
meaningful inputs, such as plilling the 
plug out of the electric outlet, generally 
have the same effect in all the states. 
Similarly, a traffic light has a small rep
ertory of states, which repeat indefinite
ly. To me the most boring of all fini[e
state machines is a digital clock. If it 
displays the month, the date and the pas
sage of hours, minules and seconds, it 
has some 31 million sta tes; in the course 
of a year it visits each state exactly once. 

A mousetrap is a finite -state machine; 
the mouse, 'usually to its misfortune, 
triggers a transition from the cocked 
state to the sprung state. A combination 
lock is a finite-state machine with many 
possible inputs, only one of which caus
es a state transition. A telephone has 
sta tes that might be labe led on hook, off 
hook, waiting, dial tone, dialing. ringing, 
connected and out of order. An automo:
bile can demonstra te vividl y tha l the ef
fect of an input varies according to the 
present s tate of the system . What hap
pens when you press the accelerator 
pedal to the floor? It depends. Is the en
gine running? Is the clutch engaged? Is 
the parking brake off? Is the transmis
sion in gear? Is it in forward or reverse? 
Is the garage door open? 

In the living cell the molecular sys tem 
made lip of the ribosome and the va ri

19 



START 
PUSH 

LOCKED UNLOCKED 
TOKEN 

PUSH TO KEN 

A state-transition diagram for (1 subway turll.~lilf! 

START--;>i 

EVEN ODD 

The parity-testing machif/c 

Oli S species of transfer RN A operates 
as a finite-state machine. The inputs are 
the fo ur nucleotide bases of messenger 
RNA, designa ted by the abbreviations 
U. A. G and C. The outputs are the 20 
amino acid components of proteins. i\ 
chain of n ucleotides is recognized as a 
valid inpu t to lhe machine onl y if it be
gins wi th the "start" signal A UG. There
after the machine reads the input stream 
continuously, changing sta te as each co
don, or tri ple t of nucleotides. is recog
nized. The three special codons UAA, 
VAG and UGA are "stop" slgnals: when 
one of them is encountered, the machine 
halls. Many other biological sys tems 
can use fully be represented as fini te
sta te machines; examples that come to 
mind arc the he moglobin molecule and 
the promoter and repressor proteins of 
bacteria. 

In the theology of Thomas Aquinas 
the soul is a finite -state machine, a won
derfull y e laborate and full y de terminis
tic onc. It is created in a state of jeopar
dy, as a conseq uence of original ·sin. On 
baptism it enters a state of grace, bUl 
certain acts (idolatry, blasphemy, adul
tery and so forth) induce a transition to a 
state of sin. ConfeSS ion, repentance a nd 
absolution arc the n needed to restore the 
soul to grace. The effec t of a fin a l input, 
death , depends critica ll y on the state of 
the so ul at the moment of dea th: in a 
state of grace death leads to salvation 
but in a state of sin it leads to damna~ 
tion. The soul machine is actually ma rc 
complicated than this description sug
gests. A full account would have to dis
tinguish among the various grades of sin 
(venial and mona l, actual and habi tual) 
and would h ave to include other possi
ble states of the so ul (such as those asso
ciated with limbo and purgatory) and 
other possible inputs (such a s the Last 
J udgm enl). 

In quantum mechanics even the atom 
becomes a finite-state machine, and 
hencc so docs everything th at is made up 
of atoms. The states of the atom a rc the 
a llowed energy le vels; the inputs a nd 
outputs are photons, or quanta of eJcc
trom agnel ic radiati on. In a precise de
scription I think the atom would be 
c lass ified as a nondeterministic Mealy 
machine with e psilon tTansitions. It is 
nondeterministic beca use the effect of 
an input cannot be predicted with cer· 
tainty. It is a Mealy mach ine because 
the nature o f the output (namely the en
ergy of the photon) is de term ined by 
the transition, not by the stat.e en tered . 
E psilon transitions arc those that can 
take place in the absence o f any input; 
they must be included in the model be
cause an a tom can emit a phoLOn and 
change its state spontaneollsly. 

I s the brain a fini te -state machine? As it 
happens, the modern study o f fini te

state systems began with a mode l of 
neural networks introduced in 1943 by 
Warren S. McCulloch and Walter Pius. 
T he ne urons of McCulloch and Pitts 
were s imple cells with excitatory and in
hibitory inputs; each celt had a single 
output and two internal states: firing and 
not firing. The ce lls co uld be arrangcd 
in networks to carry out various logic 
funct ions, including the "and, " "or" and 
"not" func tions that are now common
place ckments of electronic logic sys
tems. The equivalence of the idealized 
neura l networks to sta te-transiti on dia
gra ms of the kind shown here was es tab
lished in 1956 by Stephen C. Kleene of 
the U niversity of Wisconsin a l Ma dison. 

Forty years after the work of McC ul 
loch and Pitts it is still subject to dis
pute whether the bra in can reasonably 
be classified as a finite-s tate system. Of 
course the number of neurons is neccs

sarily finite, but that is not the only iss ue. 
A rea l ne uron is far more complica t
ed than a two-sta te cell, and some of 
its properties may va ry over a cont inu
ous ra nge rather than being constrained 
to occ upy discre te states. F urthermore, 
the prohibition of auxiliary information 
storage in a finite-state model of the 
brain is awkward a t best. If menta l life js 
no more than a s ll ccession of instan
taneous states, without knowledge of its 
own history, then what is memory? 

The states of mind discllssed in psy· 
chology, such as boredom, fear, thirs t, 
ecstasy and grief, seem to fit more read i
ly into the apparatus of a noite-state the
ory. On the other h and, the sta tes are 
so numero lls and the transitions arc so 
poorly understood that the m odel is use
I css~ Only for lower a nimals is it possible 
to draw more than isolated fragments 
of the state-transition diagram, and in 
those species the experimenter can have 
no direc t access to the presumed mental 
states. Indeed, much work of this kind 
has been done by be haviorists who deny 
the very existence of mental states. 

The case of the digita l comp uter
and here ' mean the tangible machine, 
the hardware-is also problematic. The 
common mental model of a computer , 
formul ated by John von Ne uma nn , di 
vides the machine into a central process
ing un it and an a rray of me mory cells. 
There is no doubt that the f1nite~s tate 
concept can be applied to the v<i rious 
components of the centra l processor, 
such as reg isters, addcrs and the contro l 
mechanism that direc ts {he internal op· 
erations of the processor. 

The trouble beg ins when the memory 
is taken into account. Under the rules 
fo r building a finite-state machine no ex
ternal memory is aHowed, <iod so each 
ccll must be viewed not as a storage fa
cility separa te fro m the processor but as 
a part of the overall machine state. If 
all the cells arc bla nk, the computer is 
in one state; if a single cell is fill ed, an 
other state is entered, and so on. This 
concept ion of the computer is singular
ly unilluminating, in part beca use it 
makes no connection between the s tate 
of the machine a nd wha t it is do ing. 
Moreover, the number of states is im
menSe. Even a com puter of triv ia l size 
(100 binary elements), running contin
uously throughout the age of the uni
verse, could not possibly have worked 
through all its states. 

The primary role of the finit e-sta te 
machine in computer science is at 

a higher leve l of abs traction than the 
clockwork mechanisms of the hard
ware. A computer running under the di
rect ion of a program is no longer an 
assemblage of logic ga tes, registers, 
memory ce lls and other elec tronic par
aphernalia; it is a "virt ual" machine 
whose working parts are defined by the 
program and can be redefined as neces
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sary. Whereas the hardware knows onry 
binary integers and simple comm ands 
for moving and manipula ting them, the 
virtua l computer dea ls with fa r morc 
express ive symbol systems: words, eq ua
tions, arrays, fun ctions. vectors, codons, 
lists, images. pe rhaps even ideas. Fini te
sta te techniques can be valua ble in 
crea ting the virtual computer, and some
times the virtual computer is a finit e
sta te machine. 

Consider a program whose objec t is to 
read a series of binary digits (1 's and 0'5) 
and report whether the num ber of ·l '5 

received is even Or odd. (The task has 
prac tical significance; for example, such 
parity-check ing program s arc em ployed 
to detcct c rrors when d igital da ta are 
transmitted by telephone.) The program 
can be constructed as a Rnile-sta te ma
chine with two sta tes, as is shown in the 
lower illustration on the o pposite page. 
Operation begins in the even sta te, be
cause initially no 1 's have been rece ived 
and 0 is considered an even n urn ber. 
Each 1 in the input strea m causes a 
change of state, whereas a 0 received in 
e ither state leaves the state unchanged. 
Even lhough the machine cannot "re
member" an y inputs be fore the most re
ccnt onc and certainly cannot count the 
1 's or 0'5, its output aJways re fleers the 
parity of the input s trea m. 

The finite-state model o f computa tion 

START 

is commonest in progra ms tha t dea l in 
some way with tex t or other information 
that takes a linguis tic form. The preemi
nent example is fo und in compilers: pro
grams tha t translate programming state
ments in a so urce lang uage into equiv
alent statemen ts in a target language, 
most often the "machine language" of 
a particul a r compute r. Compilers and 
other transla ting programs are essentia l 
to the notion of the vir tua l machine; 
they media te be tween symbols with hu
man meaning and those recognized by 
the computer. 

The part of a compiler that can be 
designed as a finite-state machine is 
called the lex ical scanner. Like the sub
way turnstile, it is a token-gobbling de
vice. In this case, however, the tokens 
a re the words, or fu ndamental lex ical 
units, of the language. T he scanner ex 
amines each gro up o f charac ters and de
termines whe ther it is a genuine to ken, 
sllch as a com mand or a number; if it is 
not , the scanne r rejects it as nonsense, 
just as the lurnst ile wo uld reject a slug. 

The operation of a lexical scanner can 
be illustra ted by a fmite-state m achine 
designed to recognize the tokens of a 
simple language, albeit one of limited 
expressive range: the tokens consist ex
clusively o f Ro man numerals. Indeed, 
only Ro man numerals of a special form 
are accepted; they must be gi ven in stric t 

additive no ta tion, so tha t 9 is represent
ed by VIIlJ rathe r .han by IX. (There is 
evide nce tha t the Romans themselves 
emp loyed the additive no ta lion; the sub
trac tive form is thought to have been a 
German innovation.) 

A state-transition diagram for the Ro
man -numera l machine is shown in the 
ill ustra ti on on the next page. Its alpha
bet of inp ut symbols includes the le t
ters M , D, C, L , X, V and I as well as 
the space symbol, or blank. Any ini
tia l blanks a re simply ignored, bu t once 
the nrst letter is rece ived the program 
ma kes an immediate transitio n to a s ta te 
identi fie d (for convenience) by the name 
o f the letter. If the fi rst letter is an M, it 
can be followed by any character fro m 
the allowed set, including another M. If 
the nex t character is a D, however, the 
situation is different. From the 0 state 
no transition back to the M sta te is de
fined, because any series of sym bols that 
includes OM cannot be-a well -formed 
token in the language of addit ive Ro
man numera ls. Furthermore, there is no 
transition from the D sta te to the D sta te 
ilse lf, so that DD is a lso an excluded 
sequence . (The reason is tha t the " hCllf 
va lue" 'symbols D , L and V ca nnot be 
repea ted in proper Roman numerals.) 

In the 0 state the only recognized let
ters are the lower-valued ones C, L, X, V 
an d l. The same set is accepted in the C 
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state (because C cail be repeated), but in 
the L state onl y the leLters X, V and f :ire 
recognized. The rule governing the tran
si tions should be clear. T he states arc 
arranged in a hierarchy, and once a giv
en level has been reached the mach ine 
can never return to a h igher le vel; in the 
half-va lue levels it cannot even remain 
at the same leveL By the time the I state 
is reached o nl y an ad ditional Jo r a blank 
is a llowed. The blank, entered at this 
point or a1 any other li me after the firs t 
le tter. indicates the end of the token 
and sends the machine back to its sta rt
ing state, ready to rece ive the next Ro
man numera l. 

N o programming language known to 
me allows numbers to be entered in 

Rom an form, but virtuaHy all such lan
guages have faci lities for handling A ra
bic numbers. The techniques for recog
nition arc similar, a lthough there is a 
greater va riety of formats. Simp le in
tegers such as 137 can be ha ndled in 
principle by a one-state machine. but 
the several parts of a number such as 
+6.625 X 10 - 27 req uire a more elabo
rate lex ical analysis. 

Th e ribosome-transfer-RNA system 
can be regarded as a lexical scanner that 
recognizes biologically mea ningful nu
cleotide sequences in a.mo lecu le of mes
senger R NA. To be accepted a sequence 
mllst begin with a start codon a nd end 
with one of the three stop codons; be
tween these bounda r ies any combina 
tion of the input symbols U, A, G and C, 
taken th ree at a time, is a llowed. 

Lex ical a nalysis is only the firs t step in 
the process of compilation.. The compo~ 
nents of the compiler tha t are called into 
ac tion after the lexica l scanner are the 
parser and the code genera to r. The pars
er takes as its input the tokens identified 
by the scanner and a nalyzes the ir syn
tactic relations; this is the closest the 
compi ler comes to understanding the 
meaning of the progr.am statements it 
translates. The code generawr writes a 
program in the target language that ca r
ries out the functions specified by the 
parsed statements. 

For the toy languagesconsidtred here 
the tasks of the parser and the code gen
erator are trivial. The compiled form of 
a statement in 'the Roman-numeral lan
guage might be sim ply the Arabic equ iv
alent o f the number. It could be gen
erated by the following strategy. Be
fore a token is scanned a storage ce ll is 
specified and is se t eq ua l to ze ro. Then 
each time the scanner en ters the M state 
1,000 is added to the va lue in the ce ll ; 
for the D state 500 is added, and so 
on. When the scanning is comple te, the 
memory cell holds the value of the Ro
man numeral. Note that the toy compil
er is no longer a pure fin ite-state ma
chine, because it has aux iliary storage. 

A compiler for the genetic code is 
even simpler and can be rea lized entire
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ly within [he context of a finite-state sys
tem. The compiled "program " is a se
quence of the standard three-Ieuer sym
bols for amino acids; the symbols can be 
generated as the output of the states of 
the scanner thaI recognize codons. The 
three 's tates corresponding to stop co
dons have no output. 

Crea ting a comp iler for a language 
large enough to be of genera l utility is 
nOl a casual undertaking, but the under
lying architecture of the finite-state ma
chine can at least provide an organizing 
principle. If the syntax o f the language is 
specified with sufficient precision, part 
of the work can even be mechanize d: it 
can be done by a compiler compiler, a 
program whose input is <l formal de
scription of a language and whose out
pUl is another program that translates 
sta tements in the language. As far as I 
know no one has yet wr itten a compiler 
compiler compiler. 

T he identificat ion o f tokens by a lexi
cal scanner is in itself a kind of pars

ing, and the set of all possible sequences 
of symbols in a token is a kind of lan 
guage. Indeed, it is an infinite language: 
unJess some. artificial limit is put on the 
length of individual sequences, an infiv 
nite variety of recognizable tokens can 
be formed. H ow can a machine with 
only a finite number of parts recognize 
an infinity of well-formed statements 
and exclude an infinity of ill -formed 
ones? The key is in the structure of the 
language itself. 1f the statements of an 
infinite language a re to be recognized 
by a finite-state machine, they must be 
formed according to strict rules. 

The rules were set forth by Kleene in 
1956; they define a class of languages 
called regular languages or regular sets. 
Kleene proved that a finite·stale ma
chine can recognize a language only if it 
is regular, and further that every reg ular 
language can be recognized by some 
finite-stale machine. What is meant 
by reg ula r can be indicated briefly (al
though nOl rigorously) by two rules. 
First, any finit e language is regular and 
therefore can be recognized by a finile v 
state machine; after all, one could build 
a machine with a state for each possible 
expression of the language. Second, if a 
language is infinite, it must be possible 
to parse a ll its statements by rectding One 
symbol a t a time from left ( 0 right, or 
beginning [0 end, without backtracking 
or looking ahead. If the acceptability of 
any symbol is contingent on the pres
ence of another symbol, the governing 
symbol mllst be the one immediately to 
the le ft. 

The second rule is a direct conse
Quence of the limi(ations of a finite-state 
machine, which can neither foresee its 
fut ure sta tes nor keep a record of its 
past ones; it must choose a state transi
tion based on ly on the current state and 
the current input symbol. It is for this 
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rcason that the s ubtract ive notation for 
Roman numerals cannot be handled 
by a finite-state machine. If the expres
sion X I is read and the machine inter
pre ts it as It , it cannot go back to revise 
the va lue when the next character turns 
out to be V. Many other functions are 
ruled out by the same limitation. For 
example, it is not possible to build a 
finite-state machine that reads a se" 
quence of binary digits and determines 
whether the number of l's is equal to 
the number of O's. Similarly, a lthough 
a finite-state machine can add binary 
numbers. it ean no r muhiply them; I 
leave it 10 the reader 10 deduce why. 

Beyond finite-state machines and rcg
ular languages there extends a hier· 

archy of more powerful machines and 
more general languages. It is called the 
Chomsky hierarchy, after the linguist 
Noam Chomsky, who investigated the 
various formal languages as possible 
models of natural language. The morc 
general la nguages are created by relax
ing constraints on the gra mmatica l rules 
of reg ular se ts; the machines are built by 
addlng memory clements to the basic 
finite -stalc model. 

Thc next machine in the series is 
called the pushdown automaton. It con
sists of a finite-state machine with the 
addition of a memory array that has an 
infinite capacity but a peculiar organiza
tion. The memory takes the form of a 
stack, like a counterweighted stack of 
cafeteria trays. An item of information 
can be s tored only by putting it on top of 
the s tack ; when the information is re 
trieved, any o verlying items must first be 
removed. Thus the last item in is the first 
one out. 

The language recognized by a push· 
down automaton is called a context-free 
language. In parsing its statements lhe 
acceptability of a symbol can depend 
both on the symbol immediately to the 
left and on the one immediately to the 
right. This bidirectional dependency is 
permissible because any symbols whose 
interpretalion cannot be decided imme-
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diately can be stored on the stack un
til the ambiguity is resolved. Hence a 
pushdown automaton can work with 
subtractive Roman numerals, and it can 
identify expressions with equal numbers 
of 1's and O's (or other symbols, such as 
left and right parentheses). On the oth
er hand, it cannot detect sentences with 
equal numbers of three symbols, s uch as 
O's, l's and 2'5. Most programming lan
guages are context-free, and the parser 
of a compiler is generally a pushdown 
a utomaton. Many computers include 
hardware facilities for organizing a part 
of the memory capacity as a pushdown 
stack. One programming language, 
Forth, makes a stack the primary mem
ory structure. Of course, the stack in any 
rea l machine cannot have infinite depth. 

The context-free languages merit 
their name because the parsing of any 
symbol can be influenc-cd directly only 
by the symbol's two immediate neigh
bors, not by the wider context in which it 
is found . Removing this constraint gives 
rise to a context-sensitive language and 
once again increases the difficulty of 
interpretation. Now widely separated 
symbols can interact; in the worst case it 
is not possible to interpret the first sym
bol in an expression until the last one 
has been rcad. In exchange for the added 
complexity somewhat greater capability 
is gained. A machine based on a conlexl
sensitive language can determine wheth
er an expression incl udes equal numbers 
of three symbols. 

The machine that can recognize a 
context -sensitive language is a linear
bounded automaton. In addition to the 
usual finite -state apparatlls it has a 
memory organized in such a way that 
any storage location can be reached at 
any time; it is a random-access machine. 
The memory is only finite in capacity, 
but it is assumed to be large enough [ 0 

hold any input the machine rece ives. 
The linear-bounded a utomaton seems a 
good approxima tion of lhe von . Neu 
mann model of a digital computer. Odd
ly, thollgh, the corresponding context
sensitive programming languages seem 
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to be rare; evidently the simpler context
free structure almost always has .suffi
cient.expressive· power. 

All the languages described above 
have a property in common: they arc 
said to be recursive. What this designa
tion amounts to is that one can imagine 
a procedure for genera ting all possible 
" utterances" in the language in order of 
increasing length. It follows that there is 
a guaranteed method of deciding whet.h
er any given statement of finite length 'js 
a member of the, language:, simply gen
erate all the statemcnts ,up to that length 
and compare t!x.m.· 

There are.languages that cannot meet 
even this minimal standard of tractabili 
ty. For them Ihere is only one possible 
recognizing machine: it is the computer 
of last resort, the Turing machine, a fi 
nite-stale automaton a llowed to roam 
freel y through an unbounded memory. 
In the description given by Turing the 
memory is a tape, infinite in both direc
tions and marked off into cells, which 
the finite -s tate apparat us can write on, 
read or erase. 

Looking down rrom the elevated per
spective of the Turing machine. the re
lations of the lesser computing devices 
become clearer. The hnear-bounded 
automaton is s imply a Turing machine 
wi th a finite tape. The pushdown all tom 
aton has a tape that is infinite in one 
direction, but the "head" for reading 
and writ ing On the [;;Ipe always remains 
fixed over the last nonblank cell. The 
tinite-state machine is a T uring machine 
with no tape at alL 

Brand-name-conscious readers, eager 
to parse nonrecllfsive languages, may 
already be out shopping for a Turing 
machine. They should be warned that 
the ultimate computer a lso has irs weak
nesses. There are languages with gram
milrs so preposterous (hat even il Turing 
machine cannot be counted on to recog
nize the ir statements in a finite amount 
of time. So far such l;;lnguages have 
found little use in the world of com
puting machines, bu( people somehow 
manage to speak them. 
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l1w Chomsky hieranhy offiniU! (/11d infinite mochines 
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