
M I C R O G R A P H I C S

40,000 Points of Light
By Brian Hayes

vjeorges Seurat's
dotty paintings
must have seemed
weird and wonder
ful a hundred years
ago. If he were
painting them to
day, however, the
world would likely
find his pointillist tytf
principles rather ,:;
humdrum. View
ers accustomed to
see ing pho to
graphs reproduced
by the halftone
process, and who
watch images pro
jected through the
shadow mask of a

Georges Seurat's Dimanche a la Grand Jatte (detail)television screen,
are no longer much
surprised at the idea of composing philosophy. Every image created in
a picture from dots of pure color. Seurat is defined as a locus of points

Today it seems obvious that ev- on a plane. In the present implem-
ery possible image can be repre- entation, the images are all black
sented by an array of pixels. An and white, but adding color would
interesting corollary is that a pro- be a straightforward extension. I
gramming language for computer should state at the outset that Seu-
graphics really needs only one primi- rat is probably not of much practi-
tive concept: the point. Most graph- cal use, at least for the current gen-
ics languages also provide a variety eration of graphics hardware. On
of higher-level constructs, such as the other hand, it allows certain
lines, arcs and polygons, and per- graphic concepts to be expressed
haps even Bezier curves and cubic with particular ease and clarity. In
splines, but none of these facilities those areas where the language
are strictly necessary. There is noth- works best, the programming starr
ing one can draw with them that ments needed to draw an object
could not also be created by assem- correspond closely to the mathe-
bling a selection of individual matical statements that define it.
p i x e l s . A n d s o m e o f S e u r a t ' s f a i l u r e s —

Here I shall describe a tiny pro- where expressing an idea turns out
gramming language I call Seurat, to be awkward, or where the fin-
which adopts a purely pointillist ished image is not what it ought to

be—are even more
interesting than its
successes.

1 What is a locus
s of points? Roughly
j| speaking, it is the
= analogue in ge-
g, ometiy of a set in
~ logic or number
0 theory. A locus
1 comprises all those

l! points that satisfy1 « ! c - i
! j some specifiedP condition or crite-
§5 rion. For example,® if the criterion is
c that x=y, then the
o corresponding lo

cus consists of all
the points along a
diagonal line. The

locus of points where ^ = 0 is made
up of all the points on the x axis,
and the locus where x >0 includes
all the points in the half plane to the
right of the y axis. The locus where
x= 0andj = 0 has just one member,
namely the origin of the Cartesian
plane. A locus can be discontinu
ous, or it can even be empty, as in
the case of the locus defined by the
simultaneous conditions x>l and
x< l .

My implementation of the Seu
rat programming language is built
inside a Lisp system and employs
Lisp syntax. Thus all expressions
are fully parenthesized, and opera
tions are given in prefix notation.
The locus of points where x=y is
defined like this:

(locus diagonal (= x y))

3 6

P I X E L

M a y / J u n e » i 9 9 0

not mean "burdensome for experts."
As a user gains experience with a
system, he/she should become faster
at performing tasks, rather than
being held back to the slowest
possible level of interactions.

Menu/Mouse Interfaces
With the advent of personal
computers, we have all come to ex
pect graphical user interfaces. They
have become a way of life, literally
transforming the world of com
puting, making it more accessible
to a large number of users. With the
proliferation of mouse-driven
applications, language-based or
command-line-oriented interfaces
have fallen by the wayside. While
this development is in some cases
entirely appropriate, for a large
number of applications, language-
based systems should not be
overlooked. Language is, after all,
one of our most powerful tools.
Why should we not use it as an
element of our new visualization
environment?

Rendering
Rendering puts the visual in visual
ization, and usually receives the
most attention by software
developers (partly, I suspect, because
of our own computer-graphics
backgrounds). There are available a
wide variety of useful techniques.
Simple two-dimensional line graphs
are quite effective at conveying the
results of an experiment and should
not be overlooked. Other times,
contour plots, height plots or more
complex graphics, such as particle
advection or volumetric visualiza
tion, are most appropriate.

A number of companies claim to
offer scientific visualization systems
when all they really give us are tra
ditional rendering tools. While these
tools may be useful to researchers,
scientists often use them for tasks
for which they are not well suited.

A scientific Tenderer should
concentrate on producing images
which clearly convey the maximum
amount of information. A scien
tific renderer should avoid making
dangerous assumptions about data,
particularly during the interpola
tion steps that form an integral part
of most rendering algorithms. At
the least, assumptions and interpo
lations should be documented so
that researchers can better under
stand the output from rendering
systems and prevent a misleading
interpretation of scientific data.

Very simple graphical techniques
can be used for scientific visualiza
tion. The goal is not to produce a
realistic image, but one that con
veys the relevant information. Pro
gressive techniques, which render
images incrementally, can be useful
because they allow a researcher to
get part of the answer quickly and
decide whether the rest of the data
set needs to be processed.

Expandability
New techniques in scientific
visualization are being explored
every day. As new techniques are
tried and found to be useful, one
would like to be able to integrate
these new tools with those that
already exist. This expandability is
absolutely necessary to support
research.

Expandability can be provided
in manvwavi Snurre-rone availa

bility allows the adaptation of soft
ware to the more specific needs of
some applications. Other users may
be satisfied with being able to call
their own specific routines via
"hooks" into the visualization soft
ware. Other systems provide com
plete languages for data retrieval
and manipulation. Each of these
options allows expansion of the
visualization environment to areas
the original designers may never
have imagined.

INTRODUCING
Powerful and
easy-to-use
computer mathematics
for scientists
and engineers

Und a i"TH-» -olutlon

fr lo order 0 bIvi-ii

fnt

w-f-kx*

y-j ! 1 - 0+Ml),»l
! | . . i . i i - ' . : i \ , . - ' - 1

" »'(0)-0, »"|I))-U

l_l

"^^^5S
k -^ « ! ! ! ^ t _ •

MAPLE
Throw out your
old manuals
calculators and
scratchpads and get
the right answers fast.
• Maple is the most comprehensive

and best-tested Symbolic Math
Software Environment available
today.

• Maple gives answers symbolically,
numerically and graphically.
Maple is easy-to-use.

" Maple is inexpensive.

™ For more information about Maple and a

| FREE Copy of
II! Computer Mathematics"
I Call Waterloo Maple Software at

(519)747-2373 or write:
I Dept.SPOl-WATERLOO MAPLE SOFTWARE

1160 Columbia Street WestWaterloo, Ontario N2L 3L3, Canada

I() Please send me a FREE copy of"Understanding Computer Mathematics"

I and a complete Maple Information Kit.() Please send me a license & order form.
! () Please have a salesperson call.

Company.

C i t y S t a t e Z i p .

T e l . # F a x #
Copyright© 1989, University of Waterloo.

I' 1 X E L

M a y / J u n c * i 9 9 0

M I C R O G R A P H I C S

Here locus is a keyword that in
troduces the definition of a locus,
diagonal is a name by which this
particular locus will be identified,
and the expression (= x y) speci
fies the test that must be applied to
a point to see if it is included in the
locus.

Defining a locus does not actu
ally draw anything. To see a repre
sentation of the locus, it is neces
sary to issue another command:

(draw diagonal)

Here is the result of executing
the draw command:

Of course the illustration does not
exhibit the entire locus, which in
cludes an infinite number of points
along a line of infinite extent. By
default, the draw command dis
plays a region of 200 X 200 pixels
centered on the origin, but other
regions can be specified. Here is a
different view of the same diagonal
locus:

The graph was generated by the
command:

(draw diagonal -50 -25 150 60)

The numbers following the name
of the locus are coordinates specify
ing a rectangular region to be dis
played. For clarity, the x zndy axes
are also shown (as dotted lines);
they too are defined as loci.

The ability to work easily with
an infinite locus is one of the pleas-
anter features of Seurat. Most other
graphics notations can accommo
date only line segments; indeed, a
"line" is often defined by giving its
endpoints, which is not very help
ful when you want to talk about a
line that has no end. In Seurat, the
complete mathematical line exists,
and it is clipped to finite bounds
only when the time comes to paint
it on a screen or a page of finite size.

Another simple locus is defined
by the expression:

(locus disk
(<=(sqrt(+ (*xx) (*yy)))

5 0))

The locus consists of all points in
the plane whose distance from the
origin is less than 50; in other words,
it is a disk with a radius of 50 pixels.

(We can gain a bit of efficiency by
eliminating the square-root opera
tion, which is relatively expensive.
The criterion (<= (+ (* x x)
(* y y)) 2500)) defines the same
locus.) The complementary locus—
made up of all the points in the
plane except those included in the

disk locus—could be defined sim
ply by replacing the <= operator
with a > sign. The same end is
achieved by the following defini
tion:

(locus hole
(not (disk x y)))

which makes explicit the comple
mentary relation between the two
loci: a point is a member of the
hole locus if and only if it is not a
member of the disk locus.

Clearly any locus can be inverted in
this way. You need not know any
thing about the geometry of the
original locus in order to write a
definition for the inverse.

Creating a filled square is just a
little more trouble than defining a
circular disk:

(locus square
(and (< (abs x) 50)

(< (a b s y) 5 0)))

P I X E L

M a y / J u n e " 1 9 9 0

37

This time it is not the Pythagorean
distance from the origin that must
be less than 50 but the absolute
value of the x and y coordinates.
The constraints on the x and y
values must be satisfied simultane
ously, a requirement enforced by
the and combining form. If an or
form is substituted, the result is a
different locus:

Program constructs such as and
and or allow loci to be combined
in a variety of ways. For example,
the locus of all points that are mem
bers of square but are not mem
bers of disk is calculated by this
expression:

(locus squarcle
(and (square x y)

(not(disk x y))))

The result looks like this:

ceivable image in Seurat. At worst,
the definition of the image would
simply be a giant or clause, con
taining a long list of and clauses,
like these:

(or (and (=x0) (=y0))
(a n d (= x 0) (- y l) J
(and (=x0) (=y 2)) . . .)

In this way a Seurat program can
control every pixel individually. In
the standard 200 X 200 pixel neigh
borhood, a total of 240-000 black-
and-white images could be created.

The dotted-line axes that ap
pear on one of the diagonal il
lustrations above were added to the
image by means of an or clause.
For a slightly different effect, we
might try the exclusive-or relation,
abbreviated xor. In the example
below, the axes are black where the
image is otherwise white, but on
the black disk the axes are "dropped
out," becoming lines made up of
white dots.

By combining enough and and or
clauses, one could draw any con-

The Seurat code for this image
reads as follows:

(locus disk-with-axes
(xor (axes x y)

(disk x y)))

A pixel is turned on if it is a mem
ber of the axes locus or if it is a
member of the disk locus, but not
if it is a member of both loci.

The inner workings of the Seu

rat language are remarkably simple.
The basic idea is to examine every
pixel in the image area and ask
whether or not it is a member of the
locus being drawn; depending on
the answer, the pixel is then set to
either black or white. The appara
tus for performing this survey of
pixels consists of just two routines,
which implement the locus and
draw commands.

Locus is the keyword ofa Lisp
macro, which transforms a textual
definition into an executable pro
cedure. Thus the Seurat expres-

(locus wedge (> x y))

introduces the term wedge as the
name ofa variable, and binds it to a
procedure that carries out the op
eration specified by the expression
(> x y). The procedure has two

parameters, namely the x and y
coordinates of a point, and it re
turns as its value either true (if xis
greater than y) or false (if x is not
greater thany).

Every Seurat definition has this
same basic structure. The proce
dure created by the definition is
invariably a predicate: a procedure
whose returned value must be ei
ther true or false. The procedure's
only duty is to determine whether
or not a given point satisfies the
relation set forth in the definition.
Note that the procedure has no
need to know anything about the
overall geometry of the locus. The
procedure's operations are strictly
local; indeed, the procedure has the
narrowest possible focus, examin
ing a single point.

The code for the locus macro—
written in the Scheme dialect of
Lisp—is given in the listing on
page 35. The same listing also in
cludes a simplified version of the
draw routine. (The simplification
does not alter the basic structure of
draw; it merely reduces clutter by

P I X E L

M a y / J u n c * i 9 9 0

eliminating facilities for handling
the optional extra arguments that
specify a region to be displayed.)

The input to draw is a proce
dure—specifically a procedure of
the kind created by the locus
macro. A loop inside the draw
routine steps through all the pixels
in the displayed region and invokes
the supplied procedure on each
pair of coordinates. If the proce
dure returns a value of true, draw
turns on the corresponding pixel;
otherwise, the pixel remains off.
Actually, the draw loop is a nested
loop-within-a-loop: the outer loop
progresses through rows of pixels,
while the inner loop examines the
pixels within each row. Both loops
are defined by Scheme do forms.

In comparison with other graph
ics languages, what is most notable
about the implementation of Seu
rat is what is missing from it. There
are no algorithms for drawing lines
or arcs or other geometric figures.
All the knowledge of geometry is
incorporated into the individual
locus definitions.

Simplicity is Seurat's one virtue.
Every image is defined in the same
way and rendered by the same draw
ing mechanism. But the price for
this simplicity is paid in efficiency.

Consider the locus defined by
the expression:

(locus origin
(and (=x0) (=y 0)))

When this locus is plotted in the
standard 200 X 200 neighborhood,
exactly one pixel is activated
(namely the pixel at the origin);
nevertheless, the draw routine must
examine all 40,000 pixels in the
region, invoking the origin pro
cedure on each pixel in turn. As the
size of the displayed region in
creases, the computational burden
grows still larger. With a 1,000 X
1,000 pixel display, there are a mil

lion pixels to be checked, no matter
how few or how many will be turned
on. A more efficient algorithm
would require an amount of com
putation proportional to the num
ber of active pixels, rather than pro
portional to the total number of
pixels in the drawing area.

The cure for all such problems of
speed and efficiency is well known:
all we need is faster hardware and
parallel processing. In this case the
ideal solution would be a display
system with one processor per pixel.
The nested loops of the draw rou
tine would then be eliminated alto
gether. A copy of the procedure
implementing a locus would be
supplied to each processor, and cal
culations for all the pixels would be
carried out independently and si
multaneously. (It is worth noting
that this is one of those rare cases
where adopting a highly parallel
architecture simplifies a program
ming task rather than complicating
it.)

The idea of providing a proces
sor for every pixel is not quite as
outrageous as it might seem on first
examination. Machines approach
ing the necessary scale of integra
tion arc being built already. Some
models of the Connection Machine,
for example, have 64,000 proces
sors. Perhaps more to the point, an
active-matrix liquid-crystal display
can be regarded as a processor-per-
pixel device, although the "proces
sors" are extremely simple. (They
consist ofa single transistor.)

Oeveral of the loci I have been
exploring with Seurat exploit the
modulo operation. They generate
repetitive patterns that could po
tentially tile the entire plane. A
simple example is defined by the
expression:

(locus v-str ipes
(= (modulo x 5) 0))

The analogous wallpaper with hori
zontal stripes is created by substi
tuting y for x in the formula.
Here are the results.

We can now invert and combine
the two patterns, according to the
formula:

(locus checks
(and (not (v-stripes x y))

(not (h-st r ipes x y))))

The result looks like this:

Another application of the
modulo operation is in forming
the dotted axes that appear in a few
of the illustrations reproduced here.
The code for the xaxis is as follows:

(locus x-axis
(and (= y 0)

(= (modulo x 5) 0)))

Variations on the same technique
give rise to more elaborate patterns
of dots and dashes, as in these ex
amples:

P I X E L

M a y / J u n c • i 9 9 o

Here is still another pattern whose
generating function relies on the
modulo operator, although in a
less-obvious way:

The texture can be applied to other
figures by the usual methods of
and and or combination:

rr-r> •!Vt:»r.

The Seurat definition that gives
rise to this image is quite simple,
and yet it is not easy to guess:

(locus orchard
(or(=y 0)

(= (modulo x (- y)) 0)))

The locus consists of all those
points on the plane where x is di
visible by y. (Special provisions
have to be made for the case of
y=0, since an attempt to evaluate
(modulo x 0) causes a divide-
by-zero error. And the locus speci
fies (- y) rather than y alone so
that Seurat will not turn the or
chard upside-down.)

Another interesting class of loci
are based on a pseudorandom func
tion. Turning pixels on with a
probability of one-third creates a
pleasant mezzotint texture:

(locus mezzotint
(= (random 3) 0))

A density gradient forms when the
probability of turning on a pixel
varies over the visual field. Here the
probability increases linearly with
distance from the origin:

(locus circle-gradient
(< (random 10000)

(+ (* xx) (* y y))))

And in this case the density follows
hyperbolic contours instead of cir
cular ones:

(locus hyper-gradient
(< (random 10000) (abs (*xy)))

The images I have presented so far
show those things that Seurat does
well. But there are also areas where
the language seems to make life
harder rather than easier. The most
fundamental problem is best re
vealed by means of a simple ex
ample.

The locus disk is made up of
all the points that are either on or
inside a circle, and the locus hole
consists of all those points outside
the same circle. The definition of
disk employs the operator <=,
and the definition of hole relies
on >. It seems straightforward to
draw the circle itself by construct
ing a similar expression with the
operator =, as follows:

(locus circle
(= (+ (* x x) (* y y)) 2 5 0 0))

Unfortunately, the result of draw
ing this locus is not the circular
form one might hope or expect to

P I X E L
u n c • i 9 9 o

What has gone wrong here? Why
does Seurat draw only a ring of
bullet holes instead ofa full circle?
The problem turns out to be a kind
of aliasing. I have been using the
terms "point" and "pixel" as if
they were interchangeable, but in
fact there is an important distinc
tion between these concepts. Points
on the plane are infinitely dense,
but pixels exist only at discrete inter
vals. There are infinitely many
points on the circle, but very few of
them happen to lie exactly at the
coordinates ofa pixel.

One approach to solving this
problem is to adopt a more liberal
dpfmirinn r»f pnimhrv In Srheme
this is easily arranged; we can de
fine an operator meaning "approxi
mately equal to" as follows:

(define =
(lambda (abtolerance)
(<= (abs (-a b))tolerance)))

A predicate constructed with ~ will
return trueitthe arguments a and b
differ by no more than toler
ance. By choosing an appropriate
value for tolerance we can now
draw a fairly smooth circle:

(macro locus
(lambda (definit ion)

(l i s t d e fi n e (c a d r d e fi n i t i o n)
lambda (x y) , cadr definition)))))

(define draw
(lambda (locus-procedure)

(let ((xmin -100) (ymin -100) (xmax 100) (ymax 100)
(do ((y ymin (+ y 1)))

((> = y max))
(do ((x xmin (+ x 1)))

((> = x max))
(if (locus-procedure x y)

(draw-point x y)))))))

lines in a picture can introduce
problems of another kind. The lo-
nis T"i nrrs ciuo-hr rn nrnrhirp a <;p-
ries of concentric circles:

(locus rings
(= (modulo (+ (*xx) (*yy))

1000) 0 200))

When the locus is drawn, however,
the black rings become progres
sively thicker toward the ori;
and indeed the central annulus has
filled in entirely:

This one was done with toler
ance set to 50. Thus the marked
pixels include all those for which
the square of the distance from the
origin lies anywhere between 2,450
and 2,550.

But artificially thickening the

This is not the result intended. The
situation worsens as we attempt to
represent more rings and finer lines.
At this point the image is domi
nated by a false or aliased pattern;
most of the real information has
been lost. (On the other hand, the
aliased pattern may well be more
interesting than the real one.)

There are further remedies we

B T ™

Vi!"!i,i|"'"

might yet try. For example, we
could create fat lines, as in the two
illustrations above, and then shrink
them again with one of the many
thinning algorithms developed for
optical pattern recognition. An
other idea is to have nearby pixels
communicate; thus all the pixels in
a neighborhood could get together
and decide which one is closest to a
line or curve, and only that closest
pixel would be activated. Such
schemes are surely possible. On the
other hand, if they were built into
the Seurat interpreter, the language
would no longer be so remarkably
simple. The better strategy might
be to introduce lines, circles and
other geometric figures in their own
right. Or perhaps the problem
should be left for a later language to
resolve: Klee or Kandinsky might
have something to contribute, or
maybe Miro.

P I X E L

M a y / J u n e ' 1 9 9 0

