
T. Toffoli (ed.): submitted to Int. J. Theor. Physics

for a special issue on the Digital Perspectives workshop, Washington DC, July 2001.

Debugging the Universe

Brian Hayes
American Scientist, bhayes@amsci.org

1 Introduction

The first great age of automata began at the close of the medieval period
and lasted into the 17th century[31]. The technological marvels of that
era were clockwork confections machined from brass and iron—intricate
assemblies of gears, cranks, levers, escapements and ratchets. The clocks of
cathedrals and town halls displayed the phases of the moon and the progress
of the sun through the zodiac; animated figures pranced out to strike the
hours and entertain onlookers[21, 26, 30]. There was even a mechanized
doll that took up a quill pen and wrote, “I think, therefore I am.”[49]

From machines that imitate life and the heavens, it is an easy step to the
idea that life itself might be a mechanical process and that the stars could
be driven by some kind of celestial gear train. The vision of a clockwork
universe figures in the thinking of Dante, Galileo, Kepler and Newton.
Yet another exponent of gears in the sky was Descartes, who also likened
animals to mechanical automata. Then there was Rousseau, who wrote: “I
see nothing in any animal but an ingenious machine, to which nature hath
given senses to wind itself up. . . .” Ideas like these were very much in the air
a few hundred years ago; and yet, as far as I can tell, the clockwork universe
and the animal-as-automaton were always looked upon as metaphors rather
than literal mechanisms. The universe was like a clock, but no one believed
that the meshing of brass gears really moved the planets in their orbits.
And Rousseau knew that if he were to open up a living creature, he would
not find a mainspring inside.

Today we live in another age of automata, though ours are mostly made
of silicon rather than brass. The computer is everywhere in our lives, and so
we are predisposed to see the world in terms of computational processes. In
particular, if we seek a mechanistic understanding of the natural universe,
we are quick to adopt the vocabulary of symbolic logic, algorithms and
information theory, taking the viewpoint that the universe evolves by con-

1

tinually computing its next state. But is this computational model of the
universe just another metaphor—another exercise in “as if” reasoning—or
should it be interpreted more concretely? Some proponents of the com-
putational universe seem to be fully in earnest when they argue that the
ultimate basis of all physics is algorithmic[12, 13]. Others are a little coy
on this point, leaving open the possibility that the whole notion is merely a
useful fiction, a manner of speaking or thinking[34, 36, 48, 50]. And there is
a third faction that says the idea is not merely wrong but impossible[8, 35].

Popular culture has added another layer of confusion to this much-
muddied subject. For example, three recent films depict characters who
discover that their world is some kind of computer-generated simulation,
or who step into such a simulation and then have a hard time finding their
way out[9, 29, 37]. If stories of this kind are representative of what is meant
by the term “computational universe,” then the subject may well lie be-
yond the reach of scientific discourse. Asking whether we are bit players in
someone else’s virtual reality—or someone else’s screen saver—is no more
fruitful than asking if we are figments of the Red King’s dream[7]. The
question is metaphysical. (On the other hand, Hans Moravec tells a fable
of creatures inside a computational world who do make the discovery that
they live inside a program. They somehow escape this predicament and
become colleagues of their creator[33].)

Let us set aside for now these more flamboyant visions of a computer-
generated world. To suppose that the universe is a computational process
does not have to imply an intelligent design, or a computation performed for
some definite purpose, or the existence of a master programmer who pressed
“Enter” on a cosmic keyboard to set the whole works in motion. All that is
required is that the ultimate laws of nature have an essentially algorithmic
character. If the universe is computational, then at some level all events can
be described in terms of a finite set of elementary, deterministic operations
suitable for execution by a Turing machine or some other automaton. The
process of discovering these computational laws of nature—the instruction
set of the computational universe—becomes the primary aim of physics,
which is thereby transformed into a kind of reverse engineering.

Reverse engineering is a formidable challenge. In the present context, it
means taking the output of a computation and inferring or reconstructing
the program that generated the output. This inductive process is particu-
larly difficult when you don’t know whether a solution exists (the output
might not be the product of any computation at all) or whether the solu-
tion is unique (many programs might have the same output). To cite the
most obvious instance of the latter problem, the astrophysical “programs”
suggested by Ptolemy, Copernicus, Kepler, Newton and Einstein embody
very different algorithms, but they were all meant to explain essentially the

2

same data.
The obvious alternative to reverse engineering is forward engineering:

Instead of trying to infer the internal structure of nature’s program by ex-
amining its output, we can write a program of our own, aiming to produce
a world something like the natural one. Forward engineering is no cinch
either. The task amounts to nothing less than creating a universe—writing
a computer program whose output is the physics of some believable world.
But this synthetic approach has one key advantage: When we build a com-
putational world of our own, we know in advance, beyond all doubt, that
the physics of that world is computable down to the last detail. There can
be no spooky indeterminism or supernatural mental intuitions in this cre-
ated world (unless we put them there, in which case they won’t seem very
spooky or supernatural). And if something puzzling or unexpected does
turn up in the model universe, we can track it down in the source code—we
can debug the universe. In sum: A universe we make is a universe we can
know.

There is another advantage to the synthetic approach. If we try to imag-
ine the details of a program that might be running our own universe, there
is no avoiding some rather difficult physics. For example, any computa-
tional universe inconsistent with relativistic quantum field theories would
be a nonstarter. But when we set out to build worlds de novo, we can
make them as simple as we wish. In particular, can build a purely classical
universe, based on the physics of Newton and Laplace—or on the physics
of Aristotle, for that matter. In most of what follows I shall assume that
the computed world is indeed a simple place.

2 Ground Rules

In a sense, the trouble with building a do-it-yourself universe is that it’s too
easy. Playing in your own sandbox, you can get away with almost anything;
you can make up whatever laws of nature please your fancy. Criteria for
judging the success of such a project tend to be disappointingly subjective
and aesthetic. There are too few constraints.

These criticisms are serious ones, and need to be borne in mind. But
it is not quite true that we can do anything we want when we invent a
computational universe. The computational process itself imposes a few
constraints. Assuming that the programmed universe is to run on a machine
something like the ones we know today, here are two rules that cannot be
violated:

• No continuum. Because we have only finite computational resources
available, all quantities in the model universe must be of finite mag-

3

nitude, and they can be computed with only finite precision, or else
selected from finite sets. Of particular importance, space and time
must have some kind of discrete structure, so that coordinates can al-
ways be expressed with no more than a finite amount of information.
Philosophers may continue to debate the status of the continuum in
our own world, but for any universe that fits inside a computer we
know how to build, the issue is settled.

• No randomness. Because the logical structure of our computers is
strictly deterministic, so are all the events that take place in the com-
puted universe. The chain of causality may be arbitrarily tangled, but
in principle it can always be traced. The only way around this re-
striction would be to import randomness into the model from our own
world—borrowing it from some source that we do not fully understand
ourselves. For present purposes I regard this as a form of cheating
(since the universe created is not entirely specified by the program),
and I assume it will not be done.

Common sense suggests a few more constraints, which we may choose to
impose on ourselves. There is nothing mandatory about these rules—it’s
easy to imagine a computational universe that would not observe them—
but without them the game of computational cosmogony is not very inter-
esting.

• No miracles. Like the original clockwork universe, this one is to be
set ticking and then left to evolve on its own. The programmer is not
allowed to intervene in its operation. A stronger version of this rule
insists that only the simplest and most elementary events are to be
specified directly in the model; everything else must be an emergent
phenomenon. For example, the model might spell out how elementary
particles interact to build nuclei and atoms, but the agglomeration
of the atoms to form molecules and larger structures would not be
separately specified.

• No shortcuts. Any approximations or simplifications built into the
program become exact laws of nature in the computed world. So do any
numerical roundoff errors. If calculations are done with IEEE floating-
point arithmetic, then scientists in the computed universe will find that
nothing can be measured with more than 16 digits of precision. The
no-shortcuts rule has an interesting interaction with the no-continuum
rule: In general we think of ∆x/∆t as an approximation to dx/dt,
which becomes exact only in the limit where ∆x and ∆t go to zero.
But in this context there must be some nonzero ∆x and ∆t that give

4

exact results. Differential equations become approximations to finite-
difference equations, rather than the other way around.

• No peeking. The state of the world at time t can depend only on events
at times prior to t. The program will not look into the future and use
what it learns there to reconstruct the past. There are arguments for
imposing an even stronger condition: At each instant t, the program
must calculate the state of the world at time t+ 1 based solely on the
state at t. “Leapfrogging” of information from t−1 to t+1 is forbidden.
The point of these restrictions is to enforce a mode of computation in
which the state of the world evolves or unfolds, one instant at a time,
just as we perceive our own existence. Note that the no-peeking rule
has nothing to say about time-reversal symmetry within the computed
universe. Microscopic events, such as particle collisions, might well
be reversible; but the program computing these events cannot jump
forward and backward in time.

The kind of program envisioned here is not a simulation of physics but
an implementation of it. The distinction has to do with both method and
intent. For example, a simulation of the dynamics of matter in a galaxy
might well operate in a “collisionless” regime, where stars interact through
long-range forces but never touch one another—even if they happen to
pass through the same point of space at the same instant. As long as the
density of stars is not too high, this simplification has little effect, and the
simulation can still make quite accurate predictions. But the idea behind
the computational universe is not just to make correct predictions but to
identify correct mechanisms. We want verisimilitude as well as accuracy.
It’s not enough that the output of a program mimic natural phenomena. We
should also be able to look inside the program, at the underlying algorithms
and data structures, and say, “Yes, nature could do it that way too.”

In what follows I discuss two broad approaches to building a computa-
tional universe, one scheme based on the dynamics of elementary particles
and the other on the wavelike mechanics of cellular automata. I compare
these computational models primarily by asking questions about the pro-
grams themselves, not about the universes they generate. In other words, I
am evaluating them according to the criteria of computer science, not those
of physics.

3 Particle Mechanics

The conceptual framework that has dominated physics for the past 150
years or more suggests that the most fundamental entities are pointlike

5

particles, which interact with one another by means of forces or fields.
This notion is so deeply entrenched in modern consciousness that you need
a pretty good reason before you set it aside and choose some other way of
thinking about the world. Thus particles and fields are probably the most
obvious candidates for basic building blocks of a computational universe.

The simplest version of the particle-and-field universe is purely Newto-
nian. A particle is a dimensionless object with an exactly defined position
and velocity and a few other invariant properties such as mass and electric
charge; once we have catalogued these features, there is nothing more to be
said about the particle. In other words, a particle can be fully described in
a data structure something like this:

particle

has

rest-mass (constant of type rational)

electric-charge (constant of type rational)

spin (constant of type rational)

x-position (variable of type rational)

y-position (variable of type rational)

z-position (variable of type rational)

x-velocity (variable of type rational)

y-velocity (variable of type rational)

z-velocity (variable of type rational)

It is worth emphasizing what’s not present in this data structure. The
particle knows its current coordinates and velocity, but not any higher
derivatives of these dynamical variables, and it carries around no explicit
record of its past states.

If we ignore all interactions between particles, then a very simple program
will suffice to run a universe of this kind. At each time step, the program
has to update the position and velocity components of each particle; in fact
only the positions can change, because the absence of interactions means
there are no accelerations. For a universe with n particles, such a program
has running time proportional to n on a sequential computer. In a parallel
machine with n processors, the running time is constant (regardless of the
computer’s architecture; there is no communications overhead). This par-
allel implementation is particularly appealing if we choose to imagine that
the particles themselves are the processors, continually calculating their
own trajectories; then the number of processors is automatically matched
to the computing load, even if particles are created or annihilated from
time to time.

On the other hand, although the computational model is well-behaved,
the universe it describes is a very dull place. Nothing ever happens there.

6

The particles sail gracefully on their geodesic paths, oblivious of each other’s
presence. If we want to see any action, we need interactions.

Interactions can be added to the model in any of several ways, such as
by introducing direct pairwise forces, or by having the particles generate
and respond to fields. But first consider an even simpler scheme: a universe
of billiard-ball particles, which interact with one another only when they
come into direct, tangible contact. Thus the physics of interactions reduces
to detecting collisions and predicting the geometry of the rebound paths
(which are always geodesics between collisions).

In the world we live in, collision detection doesn’t seem like much of a
challenge. You don’t need to do any computing at all to know when you’ve
stubbed your toe. Likewise, real billiard balls require no instrumentation
or intelligence to detect each other’s presence; they simply obey the “law
of nature” that says two solid bodies cannot occupy the same space at the
same time. Ideally, objects in the computational universe would behave in
the same way—they would be endowed with the property of solidity, and
thus they would automatically rebound from obstacles—but such autonomy
of action is not to be found in worlds of our creation. When you build
a computational universe, nothing falls to earth unless you remember to
turn the gravity on. Nothing bounces unless you tell it exactly where and
when to bounce. Translating this principle into the idiom of computer
programming, collisions do not generate an interrupt; you have to poll to
detect them.

For dimensionless particles moving through a discrete space-time, it’s
not even entirely clear how best to define a collision. One choice is to say
that two particles collide when they lie at the same point in the lattice of
spacetime coordinates. Then detecting a collision between particles u and
v is just an equality test on the coordinates:

(ux = vx) ∧ (uy = vy) ∧ (uz = vz)

This scheme has the virtue of simplicity, but it offends against the intuition
that two solid bodies cannot be at the same place at the same time. The al-
ternative is to consider two particles as having collided whenever they reach
adjacent sites in the lattice. (In statistical mechanics this is known as a
hard-core lattice gas.) Here the collision-detection routine becomes some-
what more convoluted. On a cubic lattice, the particles have to evaluate
an expression that looks something like this:

((ux = vx) ∧ (uy = vy) ∧ ((uz = vz − 1) ∨ (uz = vz + 1))) ∨

((ux = vx) ∧ ((uy = vy − 1) ∨ (uy = vy + 1)) ∧ (uz = vz)) ∨

(((ux = vx − 1) ∨ (ux = vx + 1)) ∧ (uy = vy) ∧ (uz = vz))

7

Even if the collision-detection procedure can be made trivially easy,
adding it to the programmed universe has grave effects on the overall com-
putational complexity of the process. For a universe with n particles, de-
tecting all collisions requires n(n − 1)/2 operations at each time step; in
other words, the algorithm has O(n2) complexity on a sequential com-
puter.1 Moreover, providing one processor per particle does not reduce
the computation to constant running time. For that we would need one
processor for each pairing of particles, which is not a concept that maps
neatly into any obvious computer architecture. Because of this quadratic
complexity, a universe with collision detection will run faster or slower as
particles are created or annihilated. Just think: Somewhere in the com-
puted universe there’s a burst of matter-antimatter creation, and here in
our world the dynamos groan and the lights dim as the machine takes up
the added computational load.

Of course a universe full of hard-core-repulsive billiard balls is probably
not the model we most want to study anyway. Of greater interest are the-
ories where particles exert long-range attractions or repulsions on one an-
other. But introducing those forces certainly doesn’t make the computation
any easier. In the näıve algorithm for this n-body problem—based on pair-
wise interactions—the quadratic complexity remains: Every particle has to
consider forces generated by every other particle. The näıve algorithm is
not the only possible choice here; there are many other approaches[15, 5].
Most mesh and tree methods[2] have O(n log n) complexity, and the fast
multipole method[16] is usually described as O(n). (But see [1] for a dis-
senting view.) However, attaining these speedups entails some level of
approximation, since the algorithms lump together certain groups of parti-
cles and count only their smoothed or averaged influence. Thus a universe
that is supposed to have an inverse-square law of gravitation might exhibit
slightly different behavior when force calculations are performed using one
of these algorithms. Furthermore, the departures from an inverse-square
law would depend on the detailed configuration of the particles. In some
cases, the running time would also vary with the mass distribution, so that,
for example, a universe with dense clusters would go slower than one with
matter spread out more uniformly.2

1An alternative to detecting collisions is solving for them. Since the particles move in
straight lines at constant velocity, all collisions can be predicted by solving a system of
linear equations. But this procedure is a flagrant violation of the no-peeking rule. Also,
the technique may be less efficient than it seems. After solving for all pairwise collisions,
you have to throw away all but the first, since that collision can alter all subsequent
trajectories.

2Things could be worse. The O(n2) running time of a classical n-body algorithm
seems quick indeed compared with the equivalent computation in a quantum-mechanical
world. Almost all exact quantum-mechanical calculations have exponential running time

8

One entirely valid response to all these concerns over algorithmic com-
plexity is a shrug and a sigh. Who cares how fast the universe runs? There
is no fundamental reason that the program’s execution time could not be
quadratic in n, or even exponential in n. Any civilization that evolved
within the artificial universe would never know anything about the rate of
its own computation, because the ticking of clocks inside the program must
always remain synchronized with the execution of the program itself. (We
can’t measure the “speed of time” in our universe either.) Fluctuations in
the pace of the algorithm would also be undetectable from the inside. For
that matter, the program could be stopped altogether—keeping the created
world hovering in suspended animation—and then resumed. No one inside
would be any the wiser.

The real objection to quadratic complexity is not an issue of speed or
efficiency. Rather, the quadratic running time is a clue that the program
is doing something “unnatural,” something that we don’t see going on in
our own world and that we’d rather not include in an artificial physics. A
program that monitors all pairs of particles for collisions or that repeatedly
measures all pairwise forces probably has somewhere inside it a big list of
all the particles in the universe; the calculation is essentially an iteration
over this list. In the natural world we find no counterpart of such a data
structure. The existence of this master list seems just as implausible and
incongruous as polished brass gears that drive the heavenly spheres.

What seems most suspect about the particle-mechanics algorithms is
their extreme nonlocality. In these programs, a billiard ball rolling slowly
across a green felt table has to be continually checking the positions of
all the other billiard balls in the universe, lest a collision go undetected.
Perhaps this computation will produce results indistinguishable from the
events we observe on real billiard tables, but it also produces an overwhelm-
ing sense that there ought to be an easier way.

Locality is an even more contentious issue in physics than it is in com-
puter science, and perhaps a distrust of O(n2) algorithms in the context
of a computational universe simply mirrors the long debate in physics over
action at a distance. For a time, quantum field theory seemed to offer a
formalism in which all interactions could be understood in terms of strictly
local events, with forces being conveyed between particles by the exchange
of other particles. A relativisitic quantum field theory might also get rid of
the fixed frame of reference implied in the classical computational model
of particle mechanics. But there is a steep price to pay for these improve-
ments: Calculating a single exact interaction between particles could entail
summing an infinite series of Feynman diagrams. Furthermore, with the

(when performed on a classical computer). If the wave function of a single particle is
specified by m variables, then n particles require not mn variables but mn.[6]

9

constraints imposed by Bell’s inequalities, it’s not at all clear that even
quantum field theories can be made strictly local.

4 Wave Mechanics

One way to avoid awkward problems of nonlocality in a computational
universe is to change the locus of computation. Instead of associating pro-
cessors with particles, and having each particle ask all the other particles,
“Where are you?,” each site in space becomes a processor, and it asks the
neighboring sites, “Anybody there?” Thus only adjacent sites have to com-
municate with one another, and the computation is pleasingly local—or so
it seems on first glance. I refer to this computational scheme as “wave me-
chanics” because of the way information propagates from site to site, as if
in a discretized wave.

The obvious implementation of this idea is a cellular automaton—an
array of discrete cells communicating with their neighbors and continually
executing some rule or program to update their own state. Systems of
this kind were first studied in detail around 1950 by John von Neumann
and Stanislaw Ulam[44]; Konrad Zuse explored similar themes at about
the same time[50]. Two decades later, John Horton Conway’s Game of Life
popularized the concept of cellular automata and gave intriguing evidence
of intricate behavior in these systems[14]. Cellular automata were shown
to be an effective tool for modeling and simulation in the physical sciences
by the Information Mechanics Group at M.I.T., including Edward Fredkin,
Norman Margolus, Tommaso Toffoli and Gérard Y. Vichniac[10, 38, 27, 43,
39]. Toffoli also made the important discovery that interesting dynamics
can emerge in cellular automata based on invertible update rules. Later,
StephenWolfram systematically explored and classified some of the simplest
families of cellular automata, namely those defined on a one-dimensional
lattice, and showed that complex behavior can be observed even in these
systems[47].

Cellular automata resemble certain models developed independently in
other areas of physics, such as lattice gases in fluid mechanics, the Ising
model and its many relatives in condensed-matter physics, and the lattice-
gauge-theory formulation of quantum field theories. There are also close
connections with the study of symbolic dynamics in mathematics. The
versatility of the idea underlying all these systems is not surprising, because
(as Toffoli has emphasized) cellular automata can be viewed as a discrete
implementation of differential equations. This also makes them popular
candidates for the substrate of a computational universe.

In the simplest cases, a cellular automaton is built on a geometrically

10

regular lattice, such as an orthogonal grid, and all the cells are identical:
They have the same finite set of possible states, they communicate with
the same fixed set of neighbors, and they execute the same program to
calculate their next state. The specification of a single cell in such an array
might look like this:

cell

has

state (variable of type integer)

neighbors (constant array of type cell)

update-rule (constant of type procedure)

Note that once you have chosen the topology of the neighborhood and the
number of states per cell, there are only finitely many update rules. Specif-
ically, if a cell with m possible states considers the states of n neighboring
cells when calculating its next state, then there are mmn

update rules. This
is a large number even for modest values of m and n, but still it is finite.
In a sense, then, when we build a cellular automaton we are not designing
a universe but simply choosing one from a list of available models.3

Ideally, there would be a simple and direct mapping from the elements
of the cellular automaton to those of the computed universe. Indeed, the
temptation is almost irresistable to identify the cells of the automaton with
discrete volumes of space in the universe. In other words, each cell corre-
sponds to a specific point or region in space, and the topological neighbors
of the cell are the physical neighbors of the corresponding region. This
vision goes beyond “programmable matter”[41] to “programmable space.”
Space itself becomes a computational medium, and the universe computes
its own evolution, based entirely on the repeated evaluation of local update
rules. Conservation laws for basic quantities such as energy and momentum
can be built into the operation of the automaton, and there is also a natural
analog of the speed of light, since information cannot propagate through
the lattice any faster than one cell per time step. With a judicious choice of
update rule and neighborhood, one might hope to see interesting behavior
emerge at a scale somewhat larger than that of the underlying cells. For ex-
ample, there might be long-lived, coherent patterns of excitation resembling
waves or particles.

Over the years, a variety of cellular automata have been proposed as
models of fundamental physics in our universe—and have been met with
equally varied criticisms. One frequent objection is that the finite symme-

3Of course the same argument applies to any system with a finite number of compo-
nents interacting in finitely many ways, but the countability is seldom so clear as it is in
cellular automata.

11

tries of the underlying lattice would show through in macroscopic observa-
tions, whereas our actual world appears to be isotropic to high precision
(and special relativity implies exact isotropy). Those who argue for cellular
automata as realistic models of physics must answer these criticisms (and
indeed responses have been offered), but the issue is of little relevance here,
where we are constructing a computational universe of our own design. If
the regularities of the lattice show through in the fabric of such a universe,
so be it.

Instead of focusing on the physics of the cellular-automaton universe, I
want to consider a few aspects of its computation or implementation. One
immediate observation is that issues of time complexity are less trouble-
some here than in a universe based on particle dynamics. Whereas the
time needed to update the positions and velocities of interacting particles
is a nonlinear function of the number of particles, the computational load in
a cellular automaton should be directly proportional to the number of cells
(and perhaps also to the size of the neighborhood). Given the obvious paral-
lel implementation, with one processor per cell, the running time per update
should be a constant, regardless of the number of cells. Furthermore, the
running time is independent of the level of activity in the universe: There
is no worry that the computation will bog down whenever a new galaxy
coalesces from primordial chaos. Unfortunately, the program’s constant
running time is achieved by choosing always to do the maximum amount
of computing rather than the minimum: The cellular automaton does just
as much work calculating the next state of a completely vacant universe as
one teeming with activity. In the case of a universe like our own, most of
the cells would have nothing much to do most of the time. Fredkin calls
this “the problem of the missing workload”; by his estimate, the capacity
of a cellular automaton computer for our universe is greater than needed
by a factor of 1063. “Either something else is going on...,” he comments, or
“God was incompetent on a scale that boggles the mind.”[12] Still, from the
standpoint of computational complexity theory, this extravagant “waste” of
resources is of no consequence; it contributes only a constant factor to the
running time, and by the conventions of complexity theory any constant
factor, even 1063, reduces to O(1).

A different kind of timing issue—having to do with the synchronization
or sequencing of events in the cellular automaton—is more problematic. To
see the source of this difficulty, it’s necessary to go into some detail about
the internal operation of the automaton. Suppose that each cell displays
its current state by raising one of m differently colored flags on a mast.
Inside the cell is an algorithmic daemon whose endlessly repeated task is to
check the colors of k neighboring flags (possibly including its own flag) and
to hoist the appropriate flag on its own mast. The daemon chooses which

12

flag to display by consulting a table that lists all mk possible combinations
of neighboring flags, specifying a state for each such combination. This
lookup table constitutes the cell’s update function. There are no other
inputs to the function apart from the current colors of the k flags in the
neighborhood; also, the daemon has no scratchpad for storing and recalling
former states of its own cell or of its neighbors. The only element of the
system that might correspond to the concept of memory is the state of the
cell itself, as visibly encoded in the color of the flag flying from the mast.

This model seems to be fully explicit and deterministic—and for describ-
ing the behavior of a single cell, perhaps it is. But when you try to apply it
to an array of many cells, something is missing: There is no representation
of time. A daemon has to do everything at once—read the flags of the
neighboring cells, consult the lookup table, raise its own flag. Meanwhile
other daemons are simultaneously checking their neighborhoods and chang-
ing their own flags accordingly, which means the first daemon may need to
make another change, and so on. In the terminology of circuit engineer-
ing this is a race condition, and the outcome is indeterminate. (Or, more
precisely, the outcome is determined by details of implementation we don’t
want to think about—which transistor has a slightly higher β or a slightly
lower load resistance, etc. These are not the kinds of factors that ought to
determine the fate of a universe.)

The quick cure for this disease is to discretize time.4 We can synchro-
nize all the daemons by adding a global clock signal, perhaps a bell that
rings to tell them when to begin their observations. But even this device
will not quite solve the problem if the daemons work at different speeds.
When the bell rings at time t, the fastest daemon will immediately sur-
vey its k neighbors—which are necessarily still displaying signals from time
t − 1—and quickly raise its time-t flag. Hence the neighbors of this cell
will see one time-t flag and k − 1 flags left over from time t− 1. Daemons
elsewhere will observe various other combinations of flags, possibly includ-
ing indeterminate states in which a cell is displaying two flags at once or
no flag at all. Again, the outcome of the process depends on unspecified
variables in the implementation of the daemon. What’s needed to restore
uniformity and determinism is a two-phase clock: a bell that prompts all
the daemons to make their observations and begin the calculation of the
next state, followed some time later by a whistle, which is the signal to raise
the flag marking the new state. But in order to implement this scheme,
still more is needed: Each cell must now have some way of remembering,
during the interval between the ringing of the bell and the blowing of the
whistle, which flag it will eventually hoist. In other words, the state of

4By most definitions, the system does not even become a proper cellular automaton
until time is made discrete.

13

the cell now encompasses more than just the manifest color of the flag on
the mast; there are also secret variables,5 which affect the behavior of the
system but are not externally observable.

This scheme for synchronizing the daemons adds a fair amount of com-
plexity to the cellular automaton, and yet it still does not solve all timing
problems. In 1984 Vichniac[43] analysed a version of the two-dimensional
Ising model implemented as a cellular automaton. In this model each cell
has two possible states, interpreted as up and down spins of the atoms in
a ferromagnet. The neighborhood consists of the cells at the four cardinal
compass points, and the update rule favors configurations in which adjacent
cells have the same state (that is, the spins point in the same direction, as
in a magnetized material). With parallel updating as described above—
so that a cell choosing a state for time t sees all four neighbors at time
t− 1—Vichniac observed that the system evolves not toward the expected
low-energy ground state (with uniform spins, either all up or all down) but
instead toward a physically implausible oscillation, alternating between the
two highest-energy states of the lattice, with checkerboard configurations
of opposite up and down spins. The cause of this anomaly is a runaway
feedback loop. In the checkerboard geometry, each up cell is surrounded by
four down cells, and vice versa. Accordingly, the update rule causes all the
spins to flip on every time step. An up spin changes to down in order to
match its neighbors, but meanwhile all those neighbors have flipped to up.

This blinking-checkerboard pathology is certainly not to be seen as a
fatal flaw of all cellular automata. It is peculiar to the specific update rule
of the Ising model, and even in that case it can be remedied in various
ways (such as by employing sequential instead of parallel update). What
is unsettling about this situation is the way details of the implementation
have leaked into the physics. The original statement of the Ising model
says nothing about the order in which spins interact with one another, and
one would prefer that the behavior of the model be independent of such
technicalities. Thinking about events in real ferromagnets suggests that the
root of the problem lies in the excessive abstractness of the model itself;
the spurious antiferromagnetic state would probably not appear in a deeper
and more detailed model, one that took into account thermal fluctuations
in the position and energy of individual atoms, as well as quantum effects.
But the option of choosing a deeper and more detailed representation is not
available in the case of a computational universe, where by definition the
program is already operating at the bottommost level!

Invertible cellular automata with time-reversal symmetry introduce still
more complications. The standard recipe[40] for creating an invertible au-

5A more natural term might be “hidden variables,” but this is misleadingly evocative
of the controversy over hidden-variable theories in quantum mechanics.

14

tomaton relies on an update rule in which a cell’s state at time t+1 depends
not only on the state of the neighborhood at time t but also on the cell’s
own state at time t − 1. Thus the cell must have some explicit means of
storing and recalling its past state, not just from one clock phase to the
next but across a full cycle of the automaton. The strong version of the
no-peeking rule would forbid such dependence on the past.

Some of the most interesting invertible cellular automata add layers
of spatial as well as temporal structure. For example, the Margolus
neighborhood[27] (the basis of such ingenious models as the billiard-ball
computer) relies on two superimposed lattices, which are active on alter-
nate clock cycles. And the SALT automaton introduced by Fredkin[13]
requires six clock phases, in each of which the automaton surveys a differ-
ent neighborhood.

At this point we have come a long way from the minimalist vision of a cel-
lular automaton with memoryless elements that locally and autonomously
compute their own next states. To get interesting and well-defined behav-
ior from the system, we have been compelled to equip each cell with a
secret memory of its own history, and we have put the entire array under
the control of a global synchronizing clock. And in some cases both time
and space have been endowed with nontrivial discrete structures. Do these
intricacies make cellular automata less attractive as a basis for building a
computational universe? This depends on how highly you value simplicity,
or perhaps on how you measure it.

The global clock is surely an uninvited guest in the world of cellular au-
tomata. Having taken pains to create a purely local computational physics,
we then introduce a signal that must be broadcast to every point in the
universe in every moment of time. What could be less local than that? But
the damage is less severe than it might seem. Although distributing a global
clock signal could well be a serious engineering challenge for the builder of
the cellular automaton, the violation of locality does not carry through to
the computed universe. Events at distant sites may become correlated as
a result of the clock (if only in the trivial sense that they happen at the
same time), but the clock signal cannot carry information from one cell to
another.

The introduction of memory in each cell is a more disturbing change. The
“primitive,” memoryless cellular automaton is a device that one can look
upon as a direct mechanization of Laplace’s idea of simple determinism.[23]
At any instant, each cell in the array has a definite state, and the state
embodies everything there is to know about the cell at that moment. If
you comprehend the laws of physics (i.e., the update rule) and you can
identify the states of all the cells at any one moment, then the entire fu-
ture of the universe is open to you. (If the update rule is invertible, then

15

the past is also available.) Endowing the cells with an additional, secret
variable—the memory of a past state or the premonition of a future one—
compromises this deterministic purity.6 7 No longer can you predict the
evolution of the universe from its visible state; you also need access to secret
compartments—you need “root privileges.”8

A plausible riposte to this complaint is that knowing two consecutive
states of a cell is much like knowing the position and velocity of a particle.
We routinely define the state of a particle to include both x and ẋ—both
position and the first derivative of position. The discretized analogue in the
world of cellular automata would be knowing the state s and also ∆s, some
measure of the change in the state. Since in fact s is a nominal variable for
which ∆s has no clear meaning, by default we get to know s(t) and s(t−1).
This is an appealing argument, but it does not quite dispel the mystery of
a point in space that somehow remembers its past state. The position
and velocity of a particle are properties we know how to measure (even if
quantum mechanics puts constraints on simultaneous measurements). In
contrast, there is nothing we can do to a point or a region in space that
will persuade it to divulge its history. Points in space simply don’t seem
to retain that information. And where, physically, would they keep it?
Perhaps it is also worth mentioning that if such secret history bits do exist
in our world, then by gaining access to them we could toggle the direction
of time.

5 Closing Thoughts

The fact that we run into so many obstructions and obscurities when trying
to build the simplest possible computational universe could be considered
either disappointing or intriguing. It might be a clue that the whole un-
dertaking is misguided. Or it might signal the existence of some principle
or constraint from which we can hope to learn something interesting; there
may be a good reason that the most primitive models don’t work as we
might want them to.

Nature offers no guarantee that our own universe will be the simplest
one imaginable. Consider the famous quip of I. I. Rabi when the muon was
recognized to be a heavy electron: “Who ordered that?” The new particle

6Of course one can redefine the state of the cell so as to include the new variable,
making an n-state automaton into an n × n one, but the change accomplishes nothing
unless all the states are outwardly distinguishable.

7Matherat and Jaekel, in Ref.[28], discuss the interesting relations between causality,
determinism and memory, all in the context of synchronous and asynchronous circuits.

8To pile one yet another metaphor from the world of computing: Cells with memory
transform a program written in the functional style into one with side effects.

16

seemed to be a gratuitous embellishment, unnecessarily complicating the
world for no apparent reason other than the vex physicists. But its exis-
tence is a fact not to be argued with. Perhaps the need for memory and
multiphase clocks in a cellular automaton universe, or for O(n2) algorithms
in particle dynamics, should be accepted in the same spirit.

The one unquestionable benefit of thinking about physics from a com-
putational point of view is that it encourages total explicitness. But this
benefit may be lost if algorithms are described only in abstract terms, as if
in a high-level programming language. Most of the issues discussed above
become apparent only at the register-transfer level or in a timing diagram.
You cannot write a program for a computational universe—and fully specify
its behavior—without reaching this level of detail.9

I want to conclude by mentioning one more example of this phe-
nomenon. In Fredkin’s SALT automaton[13], adjacent cells interact ex-
clusively through one pleasingly simple protocol: They swap their states.
This mechanism is not only maximally local but also automatically enforces
a conservation law, since the exchanged state information is never altered.
As an abstraction, ‘swap’ seems like the ideal primitive operation for a com-
putational universe. Looking at it more closely, however, there are nagging
questions about how best to implement the swap operation. To exchange
the values of cells A and B, it is not enough to write a pair of assignment
statements, A := B and B := A. If those statements are executed serially,
both cells wind up with the same value (either the original value of A or
that of B, depending on the sequence). If the statements are executed in
parallel, the outcome is indeterminate.

The usual remedy for this problem requires some form of auxiliary stor-
age. With a temporary buffer T , the statements can be rewritten as T := A;
A := B; B := T . This strategy certainly works, but as with other forms of
memory, it raises the question of where the buffer T exists. If it is inside the
cells, then again the state of the cells includes secret variables. If the buffer
is external to the cells—somewhere in the interstices between them—then
the universe is more than a cellular automaton; it has extra parts that need
to be included in the description. Neither choice is a welcome addition to
the model.

There is an alternative, usually known as the XOR trick. The values
of two variables can be swapped, without use of auxiliary storage, by a
sequence of three properly arranged bitwise exclusive-OR operations: A :=
A XOR B; B := A XOR B; A := A XOR B. As far as I know this idea

9One might argue, on the contrary, that architectural details of a cosmic computer
are totally irrelevant. As long as the underlying computer is Turing universal, it can
emulate any other computer. Fair enough: But in that case we must be totally explicit
about the details of the emulation program.

17

was first published in the MIT compendium called HAKMEM[4], where
it appears as Item 161, attributed to R. William Gosper. Perhaps this
triple-XOR shuffle seems just too cute and clever to be the basis of cosmic
evolution at the deepest level. On the other hand, maybe no one will be
surprised to learn that the most fundamental laws of physics were dreamed
up at meetings of the Tech Model Railroad Club.

6 Acknowledgement

This paper is loosely based on a talk given at the Digital Perspectives meet-
ing in Arlington, Va., in July 2001. I thank Edward Fredkin and the other
organizers and sponsors of that meeting for inviting me to participate. I
am also indebted to Tommaso Toffoli, Norman Margolus, Gérard Vichniac,
Charles Bennett and the late Rolf Landauer for advice, instruction and
even debugging. A few passages in this article appeared in a somewhat
different form in the earlier publications[18, 19].

References

[1] Aluru, Srinivas. 1996. Greengard’s N-body algorithm is not order N . SIAM Journal

on Scientific Computing 17(3):773–776.

[2] Barnes, Josh, and Piet Hut. 1986. A hierarchical O(NlogN) force-calculation algo-
rithm. Nature 324:446-449.

[3] Baertschiger, Thierry, and Francesco Sylos Labini. 2001. On the problem of initial
conditions in cosmological N-body simulations. arXiv:astro-ph/0109199 v1 13 Sep
2001.

[4] Beeler, M., R. W. Gosper and R. Schroeppel. 1972. HAKMEM. MIT AI Memo 239.
See Item 161.

[5] Blelloch, Guy, and Girija Narlikar. 1997. A practical comparison of N-body algo-
rithms. In Specification of Parallel Algorithms: DIMACS Workshop, May 9–11,
1994, Guy E. Blelloch, K. Mani Chandy and Suresh Jagannathan, eds. Providence,
R.I.: American Mathematical Society.

[6] Ceperley, D. M. 1999. Microscopic simulations in physics. Reviews of Modern

Physics 71:S438–S443.

[7] Dodgson, Charles. (Lewis Carroll). 1871. Alice through the Looking Glass. In The

Annotated Alice, with intorduction and notes by Martin Gardner. New York:
Bramhall House, 1960.

[8] Dreyfus, Hubert L. 1972. What Computers Can’t Do: A Critique of Artificial Rea-

son. New York: Harper & Row.

[9] eXistenZ, directed by David Cronenberg.

[10] Fredkin, Edward, and Tommaso Toffoli. 1982. Conservative logic. International

Journal of Theoretical Physics 21:219–253.

[11] Fredkin, Edward. 1990. Digital mechanics: An informational process based on re-
versible univeral cellular automata. Physica D 45:254–270.

18

[12] Fredkin, Edward. 1992. A new cosmogony. http://www.digitalphilosophy.org/new cosmogony.htm

[13] Fredkin, Edward. 2002.Digital Philosophy. http://www.digitalphilosophy.org/digital philosophy/toc.htm

[14] Gardner, Martin. 1984. Wheels, Life, and Other Mathematical Amusements. New
York: W. H. Freeman.

[15] Graps, Amara. 2000. Amara’s recap of particle simulation methods
http://www.amara.com/papers/nbody.html

[16] Greengard, L., and V. Rokhlin. 1987. A fast algorithm for particle simulations.
Journal of Computational Physics 73:325–348.

[17] Greengard, Leslie. 1990. The numerical solution of the N-body problem. Computers

in Physics 4:142–152.

[18] Hayes, Brian. 1984. Computer recreations: The cellular automaton offers a model
of the world and a world unto itself. Scientific American 250:(3):12–21.

[19] Hayes, Brian. 1999. Computing Science: Computational Creationism. American

Scientist 87:392–396.

[20] Ilachinski, Andrew. 2001. Cellular Automata: A Discrete Universe. Singapore:
World Scientific Publishing.

[21] King, Henry C. 1978. Geared to the Stars: The Evolution of Planetariums, Or-

reries, and Astronomical Clocks. In collaboration with John R. Millburn. Toronto:
University of Toronto Press.

[22] Landauer, Rolf. 1967. Wanted: a physically possible theory of physics. IEEE Spec-

trum 4(9):105–109.

[23] Laplace, Pierre Simon, Marquis de. 1820. Theorie Analytique des Probabilités. Paris:
Courcier.

[24] Lin, Ming C., Dinesh Manocha, Jon Cohen and Stefan Gottschalk. 1997. Collision
detection: Algorithms and applications. In Algorithms for Robotic Motion and Ma-

nipulation: 1996 Workshop on the Algorithmic Foundations of Robotics, edited
by Jean-Paul Laumond and Mark Overmars, pp. 129–142. Wellesley, Mass.: A K
Peters.

[25] Lind, Douglas, and Brian Marcus. 1995. An Introduction to Symbolic Dynamics

and Coding. New York: Cambridge University Press.

[26] Lloyd, H. Alan. 1958. Some Outstanding Clocks over Seven Hundred Years 1250-

1950. London: Leonard Hill [Books] Limited.

[27] Margolus, Norman. 1984. Physics-like models of computation. Physica D 10:81–95.

[28] Matherat, Philippe, and Marc-Thierry Jaekel. 2001. Concurrent computing ma-
chines and physical space-time. arXiv:cs.DC/0112020

[29] The Matrix, directed by Andy Wachowski and Larry Wachowski.

[30] Maurice, Klaus, and Otto Mayr (editors). 1980. The Clockwork Universe: German

Clocks and Automata, 1550-1650. New York: Neale Watson Academic Publications.

[31] Mayr, Otto. 1986. Authority, Liberty, and Automatic Machinery in Early Modern

Europe. Baltimore: The Johns Hopkins University Press.

[32] Minsky, Marvin. 1982. Cellular vacuum. International Journal of Theoretical

Physics 21:537-551.

[33] Moravec, Hans P. 1988. Mind Children: The Future of Robot and Human Intelli-

gence. Cambridge, Mass.: Harvard University Press.

19

[34] Noyes, H. Pierre, with J. Amson, T. Bastin, T. Etter, L. H. Kauffman, C. W.
Kilmister and D. O. McGoveran. Edited by J. C. van den Berg. 2001. Bit-String
Physics: A Finite and Discrete Approach to Natural Philosophy. Singapore, River
Edge, N.J.: World Scientific. Series on knots and everything, Vol. 27.

[35] Penrose, Roger. 1989. The Emperor’s New Mind: Concerning Computers, Minds,

and the Laws of Physics. New York: Oxford University Press.

[36] Schmidhuber, Jürgen. 1997. A computer scientist’s view of life, the universe and
everything. In C. Freksa, ed., Foundations of Computer Science: Potential, Theory,

Cognition. Berlin: Springer-Verlag. http://xxx.lanl.gov/quant-ph/9904050

[37] The Thirteenth Floor, directed by Josef Rusnak.

[38] Toffoli, Tommaso. 1982. Physics and computation. International Journal of Theo-
retical Physics 21:165–175.

[39] Toffoli, Tommaso, and Norman Margolus. 1987. Cellular Automata Machines: A

New Environment for Modeling. Cambridge, Mass.: MIT Press.

[40] Toffoli, Tommaso, and Norman H. Margolus. 1990. Invertible cellular automata: A
review. Physica D 45:229–253.

[41] Toffoli, Tommaso, and Norman Margolus. 1991. Programmable matter: concepts
and realization. Physica D 47:263–272.

[42] Toffoli, Tommaso. 1992. What are nature’s ‘natural’ ways of computing? Proceed-

ings of the Workshop on Physics and Computation, October 2–4, 1992, Dallas,
Texas, PhysComp ’92, pp. 5–9. IEEE Computer Society Press.

[43] Vichniac, Gérard Y. 1984. Simulating physics with cellular automata. Physica D

10:96–116.

[44] von Neumann, John, with Arthur Burks. 1966. Theory of Self-Reproducing Au-

tomata. Champagne: University of Illinois Press.

[45] Wheeler, John Archibald. 1982. The computer and the universe. International Jour-
nal of Theoretical Physics 21:557-572.

[46] Wheeler, John Archibald. 1994. It from bit. In At Home in the Universe, pp. 295–
311. Woodbury, NY.: American Institute of Physics.

[47] Wolfram, Stephen. 1986. Theory and Applications of Cellular Automata. Singapore:
World Scientific.

[48] Wolfram, Stephen. 2002. A New Kind of Science. Champaign, Ill.: Wolfram Media,
Inc.

[49] Wood, Gaby. 2002. Living Dolls: A Magical History of the Quest for Mechanical

Life. London: Faber.

[50] Zuse, Konrad. 1982. The computing universe. International Journal of Theoretical
Physics 21:589–600.

20

