
THEORY & PRACTICE

Mutant languages from the LISP lab

APL is like a diamond. It has a beau
tiful crystal structure; all of its parts
are related in a uniform and elegant
way. But if you try to extend this struc
ture in any way—even by adding an
other diamond—you get an ugly kludge.
LISP, on the other hand, is like a ball of
mud. You can add any amount of mud
to it and it still looks like a ball of mud.

—Joel Moses, as paraphrased
by Guy Lewis Steele Jr.
and Gerald Jay Sussman1

I f you ask the aver
age programmer-
I in-the-street what

is important or distinctive about LISP,
the answer will probably have something
to do with artificial intelligence. That
judgment is certainly understandable:
LISP and Al were born at the same time
and place to the same parents, which
makes them twin siblings. They remain
constant companions. Nevertheless, I
would argue that the real importance of
LISP lies elsewhere.

What sets LISP apart, in my view, is
its role as a language laboratory. LISP is
a culture medium for computer lan
guages: a nutrient broth where new ideas
emerge from the ooze, then mutate,
evolve, and cross-breed. Here I will re
view a few of the more interesting ex
periments to come out of the LISP
laboratory.

Why LISP
Why has LISP been the focus of all this
linguistic experimentation? A number of
hypotheses have been offered:

Ivory-tower theory. Until recently, the
economic significance of LISP program
ming was nil. There was little commer
cial pressure to standardize the language.
Thus LISP evolved freely while other
languages of the same generation, such
as FORTRAN and COBOL, were fro
zen in an early stage of development.

Mother-of-invention theory. LISP has
been used to attack hard problems,
which demand powerful tools. LISP itself
has not been adequate so there has been
no choice but to build new and better
languages.

Hotshot theory. LISP programmers

By Brian Hayes
are a bunch of malcontents who will not
leave well enough alone. They all think
they know better than anyone else how
the language ought to work.

Rolling-mudball-gathers-lots-of-moss
theory. LISP is so easily extended that it
sprouts new languages willy-nilly. Every
LISP program is a new version of LISP.

There may be truth in all of these pro
positions, but more substantial factors
are also at work. One important point is
that LISP has a simple syntax. Most of
the work of computation in a LISP pro
gram is done by a single kind of expres
sion, the function call, which takes the
following form: (function-name
argument, argument2 arguments...).
There is not much more to know about
the syntax of LISP programs.

Other computer languages, in contrast,
have given rise to strident debates over
syntactic issues. (Is it better to bracket
statements with begin...end or with {...}?
Should the semicolon be a terminator or
a separator of statements? What is the
best delimiter for comments?) In the
LISP community, questions like these
have largely been ignored. Most of the
languages that have grown out of LISP
have adopted the syntax of the parent
language with little change.

Dismissing the problem of syntax in
this offhand way has had two important
effects. First, it has focused attention on
semantics—on the meaning of expres
sions rather than their form. Second, it
has made the implementation of new lan
guages within LISP much easier. Be
cause parenthesized lists serve as a
notation for both programs and data, the
same expression can be interpreted as
data by the underlying LISP system and
as a program by the embedded language.

Parsing a program-which is a major
undertaking for a language such as Ada
or PL/I-becomes almost trivial. Most of
the work is done by the built-in function
ready which digests entire expressions in
a single gulp. There is a certain irony in
the longevity and stability of LISP syn
tax. The parenthesized prefix notation
was introduced in 1958 only as a tempo
rary measure to get the first LISP inter
preter running.2 The plan was to replace
it as soon as something better could be
devised. Evidently, nothing better has
turned up yet.

Planning and conniving
Some of the most influential variations
on LISP were conceived in the late 1960s
and early 1970s by Carl Hewitt of the
Massachusetts Institute of Technology.
The first of his languages, called PLAN
NER,3 added to LISP a facility for goal-
directed programming.

A PLANNER program had two parts:
a data base of assertions and a set of
procedures for proving theorems about
the assertions. For example, an assertion
might state that Socrates is human, and
a theorem might hold that anyone who is
human is mortal. Given the goal of prov
ing that Socrates was mortal, PLAN
NER would attempt to apply every
theorem it knew to every assertion in the
data base until it either satisfied the goal
or exhausted the possibilities.

The idea of computing by proving
theorems has now become familiar
through the language PROLOG. PLAN
NER definitely influenced the develop
ment of PROLOG,4 but the connection
should not be overemphasized; there are
fundamental differences between the two
languages. In the first place, PLANNER
theorems were expressed in procedural
form, whereas PROLOG is a purely de
clarative language. Furthermore, PRO
LOG uses a more sophisticated theorem-
proving strategy, called unification.
(Soon after PROLOG appeared, of
course, it was implemented in LISP.5)

The most conspicuous innovation in
PLANNER was its control structure:
from the programmer's point of view,
there was none. Procedures were invoked
automatically by a pattern-matching
process.6 In proving the mortality of Soc
rates, any procedures matching the pat
terns (mortal ?x) or (human ?x) would
be triggered. The sequence of procedure
calls was not under the programmer's
control. PLANNER always made a
depth-first search of the data base and
backtracked when it came to a dead end.

The full PLANNER language was
never implemented, but a subset called
MicroPLANNER was written in Mac-
LISP (the MIT dialect of LISP) by Ger
ald Jay Sussman, Terry Winograd, and

23

Eugene Charniak.7 Its most celebrated
use was in Winograd's SHRDLU pro
gram, which answered natural-language
queries about a world of toy blocks.

Eliminating all control structures took
a lot of the bother out of programming,
but a search based on blind backtracking
did not make for dazzling efficiency.
CONNIVER,8 developed by Sussman
and Drew V. McDermott, was a succes
sor to PLANNER with provisions for ex
plicit control of execution. CONNIVER
was PLANNER with a manual trans
mission. Using the control facilities pro
vided by CONNIVER, the system could
be instructed to examine all assertions
about Socrates before looking at those
having to do with humans and mortals.

Acting
Hewitt's second linguistic experiment is
called the Actors model of computa
tion.9'10 Actors are independent entities
that encapsulate both data and proce
dures. A program (or a system of pro-
grams-the distinction is blurred)
constitutes a society of Actors that com
municate with one another by sending
messages. Each Actor is defined by two
components: the set of messages it recog
nizes and the set of acquaintances with
whom it can communicate.

Just as PLANNER is reminiscent of
PROLOG, the concepts underlying the
Actors model will be familiar to those
who know object-oriented languages such
as Smalltalk. Actors correspond to ob
jects in Smalltalk; actions are methods;
messages have the same name in both
languages. Once again, however, similar
ity is no guide to heritage. Actors and
Smalltalk were invented independently
and at about the same time; they both
owe much to Simula, which was devel
oped a decade earlier.

Hewitt and his colleagues implement
ed the Actors model in a language called
PLASMA (for PLANNER-like System
Modeled on Actors). PLASMA is built
within LISP, although, as will be dis
cussed later, it differs significantly from
most versions of LISP prevalent at the
time. Studies of the Actors model have
continued, including a project called the
Apiary," which proposes a parallel com
puter architecture in which each Actor
has its own processor. In recent years,
others in the LISP community have
adopted object-oriented programming
with enthusiasm, and several dialects of
LISP now have object-oriented exten
sions or sublanguages. The best known of
these are LOOPS12 (LISP Object-Ori
ented Programming System), Flavors'3,
and the public domain XLISP.14 (To add
to the confusion, the recently introduced
language ACTOR is object-oriented but

has little to do with Hewitt's work in
LISP; ACTOR is implemented in a
Forth-like language.)

Scheming
One small feature of the PLASMA lan
guage, seemingly nothing more than a
technical nicety, has had far-reaching
consequences. To make the Actors model
work properly, PLASMA was based on
lexical scope rules, in which the value of
a variable is determined by the textual
context in which it is defined. Tradition
ally, LISP has employed dynamic scope
rules, in which values are determined at
the point where a variable is referenced.
Lexical scope was essential in PLASMA
because the acquaintances of an Actor
are listed in the Actor definition and
must not be altered by any rebinding of
the same names elsewhere in the
program.

In 1975 Sussman and Guy Lewis
Steele Jr., while studying the Actors
model (out of "morbid curiosity," as they
put it), made a surprising discovery.13
They had written a small Actors inter
preter with lexical scope rules and had
found that the constructs representing
Actors took a familiar form: they were
simply lambda expressions.

Lambda is the mechanism of proce
dural abstraction in LISP, the means by
which an expression or a series of expres
sions is wrapped.up to form a unit of ex
ecutable code. For example, whereas
(+ x x) evaluates immediately to twice
the value of x, (lambda (x) (+ x x))
yields a procedure that doubles the value
it is given as an argument. Like an Ac
tor, a lambda expression has two parts:
the code to be executed—(+ x x) in this
case—and the environment in which that
code is to be evaluated. The code corre
sponds to the actions taken by an Actor
in response to messages. The environ
ment, which is a list of the variable bind
ings in effect when the lambda form is
defined, corresponds to an Actor's list of
acquaintances.

Out of this small observation Sussman
and Steele (with later contributions by
many others) constructed an entire new
dialect of LISP called Scheme.16 Among
the experiments discussed here, Scheme
is the only one yet to have escaped from
the laboratory and proved its mettle in
the wild. At last count some nine imple
mentations were available, including
some for microcomputers.

Like PLASMA, Scheme has lexical
scope rules, but its most remarkable de
parture from established custom is the
first-class status it accords to procedures.
A first-class object in a programming
language is one that has no arbitrary re
strictions on where it can go and what it
can do. A first-class object can be as
signed as the value of a variable, passed
as an argument to a procedure, returned
as the result of a function, or stored in a

compound data structure. In most lan
guages only simple values, such as num
bers, have all of these rights and
privileges, and in earlier LISPs proce
dures were unquestionably second-class
citizens. Scheme emancipates them.

The combination of lexical scope and
first-class procedures encourages a dis
tinctive style of programming in Scheme,
emphasizing modularity and data ab
straction. For example, a procedure
named make-db might set up a private
data base and then return another proce
dure as its value. When the latter proce
dure is called it has exclusive access to
the data base. Moreover, each invocation
of make-db creates a new instance of the
data base and a new access procedure.

Naming
Just as Scheme liberates procedures from
their second-class status, a language
called Symmetric LISP is built on the
concept of first-class environments. Sym
metric LISP is currently being developed
by David Gelernter of Yale University,
Suresh Jagannathan of MIT, and Thom
as London of AT&T Bell Laboratories.17
An environment is essentially a diction
ary in which one can look up any vari
able name and find the corresponding
value or definition. A common way of
implementing an environment is by using
the data structure known in LISP as an
association list, or a-list. The environ
ment ((x 3)(y 4)), represented here as an
a-list, records two facts: that the variable
x is bound to the value 3 and that y is
bound to 4. If the procedure represented
by (lambda () (+ x y)) is executed in
this environment it returns the value 7.

Gelernter and his colleagues point out
that associating names with values is a
central activity in many areas of comput
ing. Structures analogous to environ
ments are needed to support the global
and local variables of any language with
lexical scope. Packages or modules for
separate compilation also establish name
spaces. Records with named fields, as in
Pascal, are merely a variation on the
same theme. Even a directory of disk
files is organized as a dictionary associat
ing file names with file contents. In Sym
metric LISP, all of these forms of
naming (and others) are handled by a
single data structure—the first-class
environment.

The programmer's basic activity in
Symmetric LISP is to build up nested
environments in which names are bound
to the values of arbitrarily complex ex
pressions. Even lambda expressions are
represented as environments, where the
bindings are those of the formal param
eters. Evaluating an environment yields a
new environment whose bindings have
been updated. The ultimate result of a

24 COMPUTER LANGUAGE ■ APRIL 1987

computation is an environment in which
variables are bound to answers.

A major motivation for the develop
ment of Symmetric LISP is parallel pro
cessing. As a rule, all the name-value
pairs in an environment can be evaluated
concurrently. Where one binding depends
on a value calculated in another binding,
the conflict can be detected automatical
ly; no special control structures are need
ed to synchronize parallel execution.
Implementation of Symmetric LISP on a
multiprocessor system is currently under
way; at the moment a Symmetric LISP
interpreter runs (without parallelism) on
a sequential LISP system.

Xapping
Parallel processing has become a major
preoccupation of the LISP community in
recent years, and Symmetric LISP is by
no means the only result. Several other
language proposals take the control-
structure approach to parallelism. An ex
ample is Multilisp, created by Robert H.
Halstead Jr. of MIT.18

Multilisp is a dialect of Scheme aug
mented with constructs for the control of
parallel execution. The most important
of these constructs is called future. An
expression of the form (future x) has two
effects: it starts the calculation of x,
which can be any expression, and it also
immediately returns a placeholder value,
which will eventually be replaced by the
actual value of jc. Hence, (cons (future
x) (future y)) would launch the calcula
tion of both x and y while simultaneously
allowing cons to return a placeholder
value to its caller.

Still another form of parallelism is be
ing explored by Steele and W. Daniel
Hillis of Thinking Machines Corp.19 In
Connection Machine LISP they intro
duce a new data structure called a xap
ping that serves to organize fine-grained
parallelism (the concurrent execution of
many small operations rather than a few
large blocks).

A xapping is a collection of pairs,
where the two items making up each pair
are called an index and a value. Thus a
xapping maps (or rather xaps) indices
onto values. In the xapping { x-*2 y-+3
z-»4}the indices are x, y, and z and the
values are 2, 3, and 4. The mapping from
indices to values suggests that a xapping
is somewhat like an association list, but
in other respects it is quite different. The
pairs of a xapping have no intrinsic or
dering and, most importantly, they can
be operated on concurrently.

Parallel operations on xappings are in
troduced by an operator, a, that carries
the meaning "apply to all." For example,
a square {x-+2y-+3z—4} would apply the
function square to the value of each pair
in the xapping, yielding the new xapping
{x-*fy-*9z-»-i6'}.Assuming that enough
processors are available, all of the squar-
ings can be done simultaneously.

Add Data Security to Your C Programs
1

The SECURITYmUBRARY,
Add Fast or Thorough Encryption
or Compression to Your Programs

WITHOUT Royalties
Build the safest and most popular methods of

protecting your data directly into your program
without paying royalties. Don't worry if you're
not sure what to use. The discussion of security
methods in the manual (with demos on disk)
will help you make a choice based on your
application.
With Security Library you can:

• Keep files secure on a multi-user network
• Speed up data transmission and

communications through data compression
• Control access based on privileges given to a

hard disk or LAN user
"I create custom software for business
applications. I'm using the Security Library to
encrypt so that certain information will not be
readily available. The documentation is
excellent. It gives a thorough explanation about
how you can secure a file."

— Bruce Philips, Custom Software Design
Virginia Beach, CA

Requires MSDOS 2.0 +. Wivki with Microsoft C md Computer Inmnaliora'
C86. Ptcax specify compiler when you order.

You Choose the Security Level
Algorithms provided include The National

Bureau of Standards' Data Encryption Standard
(DES) and the Vernam and Vegenere ciphers.
Encrypt a 10K file in 3 seconds with one method
or 50 seconds with another.
Six algorithms are provided, along with

password and non-password encryption
schemes.

Valuable Extras
The Huffman coding routine can reduce the

size of a file by 25 to 50%. The routine to change
the attribute bytes of a file can make that file
invulnerable to casual browsing or accidental
deletion. There's even a program to change
every byte of a file to a null character - not
even un-erase programs can recover it then!

Call 800-821-2492 to order Security
Library risk-free for only $125. Source
& Object is $250.

^Solution
<5ystems
335-L Washington St.
Norwell, MA 02061
(617) 659-1571

CIRCLE 15 ON READER SERVICE CARD

Personalize
your computing

environment.
The MKS Toolkit now contains

the Korn shell command interpreter.
The MKS version of Bell Labs' Korn shell has this and more
• the full power of the UNIX System V.2 • command aliases

Bourne shell
• the most requested features of

Berkeley's C shell• the full-UNIX utility of executable shell
files

• interactive command-line facilities
• previous command history and editing
• a powerful programming language
• shell variable expansion
• arithmetic evaluation

All this has been fine-tuned to create the optimum environment under DOS. The Kom
shell is just one of over 100 commands — fully compatible with UNIX System V.2 —
now contained in the MKS Toolkit, including the following:

a w k c a t c h m o d
d d d f d i f f
fi l e fi n d h e a d
n m o d p a s t e
spl i t s t r ings ta i l

emp
du

help
Pg

time

cp
echo
jo in
prof

touch

cpio
ed
1c
rm
t r

ctags
egrep

Is
sed
uniq

cut
ex

more
size
vi

date
fgrep
mv
sort
w c

and much, much more...
These programs run from the shell orcommand.com under DOS on machines such as
the IBM PC, XT, and AT, the AT&T 6300, and most PC compatibles. Full documentation
is included. Phone support is available 9-6 EST. Not copy protected.

Everything for only $139.
Mortice Kern Systems Inc.

43 Bridgeport Road East, Waterloo, Ontario, Canada N2J 2J4
For information or ordering call collect: (519) 884-2251

Prices quoted in U:S. funds. MasterCard and VISA orders accepted. OEM and dealer inquiries
invited. UNIX is a trademark of Bell Labs. MS-DOS is a trademark of Microsoft Corp.

CIRCLE 16 ON READER SERVICE CARD

25

Reflecting
In this resume of LISP daydreams, the
prize for unfettered imagination goes to
Brian Cantwell Smith of the Xerox Palo
Alto Research Center and Stanford Uni
versity. Smith has proposed an "intro
spective" dialect of LISP. Its most
distinctive feature is that it requires an
infinite number of interpreters, all run
ning simultaneously.20 Furthermore,
Smith and others have shown that such
an ungainly monster can actually be
built and made to work efficiently.

When an ordinary LISP program is
being run by an interpreter there are
three levels of active computation: the
user program is running, the interpreter
is running, and the machine that serves
as host to the interpreter is running. But
suppose the interpreter itself is written in
LISP. Then the interpreter can start an
other copy of itself, which can start an
other copy, which can start....In this way
we build an infinite tower of interpreters.

Why would anyone want to do such a
thing? Smith points out that an inter
preter often has information about the
state of a computation that is not direct
ly available to the interpreted program.
A debugger uses such information when
it displays a trace of procedure calls or
lists the contents of a stack.

Many languages (including versions of
LISP) provide ad hoc mechanisms for
gaining access to the interpreter's inter
nal knowledge. Smith has created a new
language, 3-LISP, incorporating a sys
tematic and well-structured method for
allowing programs to reflect on their own
execution. 3-LISP is a descendant of
Scheme, with certain additional features;
in particular, a procedure can be desig
nated either simple or reflect. A simple
procedure executes at its own level, but a
reflective one passes its code up to the
next higher level in the tower to be
executed.

The trick is to avoid creating an infi
nite tower of interpreters. In fact, a finite
tower will suffice, provided there is some
level in the hierarchy above, which only
nonreflective procedures are being ex
ecuted; the interpreters above this level
will never be called on explicitly, so they
can be omitted. Daniel P. Friedman of
Indiana University and Mitchell Wand
of Northeastern University have since
shown that all the properties of the infi
nite reflective tower can be emulated by
a single interpreter written in Scheme.21,22

Predicting
In nature most mutations are unhelpful,
if not disastrous. However, in nature mu
tation is a random process, whereas the
mutant LISPs described here have been
carefully and deliberately designed. Even

so, I feel perfectly safe in predicting that
most of them will not survive, simply be
cause there is not room enough in the
world for dozens of LISP-like languages.

PLANNER and CONNIVER are al
ready extinct. The Actors model, on the
other hand, has children and grandchil
dren in abundance—so many, in fact,
that they may suffocate their parent. An
other LISP derivative, Logo, seems to
have the opposite problem: Logo itself is
thriving, but it may prove to be sterile. If
parallel hardware ever catches on, at
least one of the parallel LISPs will surely
succeed. As for 3-LISP, I would not dare
to guess its fate. The one sure winner
among the new LISPs is Scheme, which
already has a secure place in the aca
demic world and bright prospects
elsewhere.

Meanwhile, LISP itself lumbers on, al
though its days of carefree oat-sowing
are probably over. LISP programs are no
longer without economic value and the
demand today is for portable, produc
tion-quality, industrial-strength compil
ers. The urge to standardize seems
irresistable. Presumably, the standard
will be Common LISP,23 although not ev
eryone is happy with that choice.24 Per
haps the eventual outcome will be
something like this: Common LISP will
become the FORTRAN of Al, while an
other language—probably Scheme or a
descendant of Scheme—becomes the new
culture medium, the new breeding
ground for linguistic innovation. H

References
1. Steele, Guy Lewis Jr., and Gerald Jay Suss
man. "The Revised Report on Scheme: A
Dialect of LISP." Artifical Intelligence Memo
No. 452, MIT, Cambridge, Mass., Jan. 1978.
2. Wand, Mitchell. "What Is LISP?" Ameri
can Mathematical Monthly. (Jan. 1984):32-
42.
3. Hewitt, Carl. "PLANNER: A Language
for Proving Theorems in Robots." Proceed
ings of the International Joint Conference on
Artificial Intelligence. (1969):295-301.
4. Kowalski, Robert. "The Origins of Logic
Programming." Byte. (Aug. 1985):192-193.
5. Robinson, J. A., and E. E. Sibert. "LOG-
LISP: Motivation, Design and Implementa
tion." Logic Programming. Academic Press,
1982, pp. 299-313.
6. Kornfeld, William A. "Pattern-Directed In
vocation Languages." Byte. (Aug. 1979):34-
48.
7. Sussman, Gerald Jay, Terry Winograd, and
Eugene Charniak. "MicroPLANNER Refer
ence Manual." Artificial Intelligence Memo
No. 203A, MIT, Cambridge, Mass., 1971.
8. Sussman, Gerald Jay, and Drew V. McDer-
mott. "Why Conniving Is Better Than Plan
ning." Artificial Intelligence Memo No.
255A, MIT, Cambridge, Mass., 1972.
9. Hewitt, Carl. "Control Structure as Pat
terns of Passing Messages." Artificial Intelli
gence, vol. 8, no. 3 (June 1977):323-363. Also
published in Artificial Intelligence: An MIT

Perspective, vol. 2:435-465, The MIT Press,
1979.
10. Pugh, John R. "Actors—The Stage is
Set." SIGPLAN Notices, vol. 19, no. 3 (Mar.
1984):61-65.
11. Hewitt, Carl. "The Apiary Network Ar
chitecture for Knowledgeable Systems." Con
ference Record of the 1980 LISP
Conference. Association for Computing Ma
chinery (reprinted). (1985):107-117.
12. Bobrow, Daniel G., and M. J. Stefik. The
LOOPS Manual. Xerox Corp. 1983.
13. Weinreb, Daniel and David Moon. "Fla
vors: Message Passing in the Lisp Machine."
Artificial Intelligence Memo No. 602, MIT,
Cambridge, Mass., Nov. 1980.
14. Betz, David. "An XLISP Tutorial." Byte.
(Mar. 1985):221-236.
15. Sussman, Gerald Jay, and Guy Lewis
Steele Jr. "Scheme: An Interpreter for Ex
tended Lambda Calculus." Artificial Intelli
gence Memo No. 349, MIT, Cambridge,
Mass., Dec. 1975.
16. Rees, Jonathan, and William Clinger, ed.
"Revised3 Report on the Algorithmic Lan
guage Scheme." Artificial Intelligence Memo
No. 848a, MIT, Cambridge, Mass., Sept.
1986.
17. Gelernter, David, Suresh Jagannathan,
and Thomas London. "Environments as First
Class Objects." Proceedings of the Fifteenth
ACM Symposium on Principles of Program
ming Languages. Jan. 1987 (in press).
18. Halstead, Robert H. Jr. "Multilisp: A
Language for Concurrent Symbolic Computa
tion." ACM Transactions on Programming
Languages and Systems, vol. 7, no. 4 (Oct.
1985):501-538.
19. Steele, Guy L. Jr. and W. Daniel Hillis.
"Connection Machine Lisp: Fine-Grained
Parallel Symbolic Processing." Proceedings
of the 1986 ACM Conference on Lisp and
Functional Programming. (Aug. 1986):279-
297.
20. Des Rivieres, Jim, and Brian Cantwell
Smith. "The Implementation of Procedurally
Reflective Languages." Proceedings of the
1984 ACM Symposium on LISP and Func
tional Programming. (Aug. 1984):331-347.
21. Friedman, Daniel P., and Mitchell Wand.
"Reification: Reflection without Metaphys
ics." Proceedings of the 1984 ACM Sympo
sium on LISP and Functional
Programming.(Aug. 1984):348-355.
22. Wand, Mitchell, and Daniel P. Friedman.
"The Mystery of the Tower Revealed: A Non-
Reflective Description of the Reflective
Tower." Proceedings of the 1986 ACM Con
ference on LISP and Functional Program
ming. (Aug. 1986):298-307.
23. Steele, Guy L. Jr., et al. Common LISP:
The Language. Digital Press, 1984.
24. Allen, John R. 'The Death of Creativity:
Is Common LISP a LISP-like Language?"
Al Expert, vol. 2, no. 2. (Feb. 1987):48-61.

26 COMPUTER LANGUAGE ■ APRIL 1987

