
THEORY & PRACTICE
Corf. L«nj. J^/xo

Eight diversions to keep your Cray
out of mischief on a cold winter's night

using at the key
board, trying to
[decide between

"which" and "that" or between "while
... do" and "repeat... until," I some
times think of the little forty-legged

prodigy deep inside the machine, and I
suffer a twinge of guilt and shame. While
I go off into a daydream, it twirls in a

tightly wound loop, killing time at a fran
tic pace, asking again and again, perhaps
half a million times per second, "Has he
made up his mindyer?" What a waste.

Until quite recently, CPU cycles were a

precious resource. With the cycles I fritter
away in the course of a year's wool
gathering, the hackers of the 1960s could
have found another Mersenne prime or

computed several thousand zeros of the
Riemann zeta function. They would have
been appalled at my profligacy. Some

years ago I was present at a reunion of two
such legendary code-tuners. Said one to
the other: "Getting any lately?" The
answer was: "Two MIPS in the daytime,
more at night."

Computing has changed since then.
With the next round of machines from
Atari and Commodore you may well be
able to buy two MIPS at K-Mart. We have

cycles to burn. No one ever really gets
enough, of course, but many of us get
more than we know what to do with. Per

haps we are headed for some dreadful
Malthusian catastrophe. The world popu
lation of computers is doubling every year
or so. Will the supply of computing prob
lems be able to keep up?

Twenty questions
The awful prospect of CPUs starving for
data has long worried certain alert and

public-spirited members of the computing
community. For example, in 1972 a list of
20 "proposed computer problems, in
order of increasing running time" was
offered as a means of postponing the cri
sis. The list was compiled by Michael
Beeler, Bill Gosper, and Rich Schroeppel,
who were all then working in the Al Labo

ratory of the Massachusetts Institute of
Technology, Cambridge, Mass. They pub
lished the list as part ofa miscellaneous

By Brian Hayes

document called HAKMEM,1 for "hack
ers' memorandum."

The HAKMEM list is biased toward

puzzles, games, and mathematical recre
ations. For instance, it calls for solutions
to four variations on the game of chess,
the simplest of these being minichess,

played on a 5-by-5 board. In this context
"solving" a game means finding
an unbeatable sequence of moves or else

proving no such sequence exists. Solving
the full game of chess is the 19th problem
on the list; the authors note that there are
about 1040 possible positions. The 20th

problem is solving the game of go, which
is said to have 10170 positions.

These last and most difficult challenges

carry the warning "considered
unfeasible," which seems a safe judg
ment. If we put a billion computers to
work on chess, each examining a billion

positions per second, it would still take
more than 10,000 times the present age of
the universe to finish the job. Go would
take 10'30 times longer still, which should
be long enough to boggle any mind,
human or mechanical.

But the rest of the list is not so reassur

ing. I happen to know that at least three of
the problems have been solved, and others

may have fallen without my knowledge.
Problem 4 was to find the smallest

squared square—a square completely
filled with smaller squares, no two of
which are allowed to be the same size. In
1978 the Dutch mathematician A.J.W.
Duijvestijn found a solution with 21
squares and proved it is the smallest
possible.

Problem 5 asked for a count of the

magic squares of order five; that is, it
asked how many ways the integers from 1
to 25 can be arranged in a square array so
that all columns, rows, and major diago
nals have the same sum. Schroeppel him
self dispensed with this one just a year
after the list was compiled. He found
68,826,306 distinct arrangements.

The third problem that must now be
crossed off the list is the most disturbing
because it was ranked among the most
difficult—16th out of 20. The challenge
was to solve three-dimensional tic-tac-toe
on a 4-by-4-by-4 board. Oren Patashnik,

using a computer dictionary of several
thousand opening plays, proved that the
first player can always win.

Given this depletion of the world's
reserve of hard problems, it seems only

prudent to extend the list as quickly as we
can. I have taken it upon myself to suggest

eight new problems. Readers are invited
to nominate more.

Hard choices
Since the HAKMEM group so thoroughly
covered mathematical games, I have

deliberately avoided them and looked for
diversion elsewhere. In selecting prob
lems I kept four criteria in mind.

First, I looked for problems and tasks
that can be stated with at least fair pre
cision; it should be possible to decide
without great controversy when the prob
lem has been solved or the task has been

accomplished. "Write a program that
composes music better than Mozart's" is
not a well-formulated problem. Who's to
judge?

Second, I considered only specific
instances of problems, not entire classes.
There is no question the traveling-
salesman problem is "hard" in that the

computing time needed to plan a tour
grows exponentially with the number of
cities to be visited. But the difficulty can
be measured and expressed in absolute
terms only when the number of cities is

specified.
Third, for a problem to be included

here it should be primarily a computing

problem, not an intellectual one. The
boundary between these categories is
fuzzy, of course, and occasionally a prob
lem jumps the fence. (In the 1950s
machine translation of natural-language
text was considered difficult because we
lacked the computing resources; now the
reason is that we lack the techniques.)
Nevertheless, the distinction can gener
ally be made. A problem is very likely
intellectual if the main difficulty lies in

writing a program to solve it; it is proba
bly a computing problem if the hard part
is finding a machine on which to run the

program.
Finally, I favored "interesting" prob

lems. Recognizing membership in this
class is itself an intellectually hard prob

lem, but there are some basic principles

21

on which most people seem likely to

agree. Calculating the billionth digit in
the decimal expansion of pi is not very

interesting because there is no reason to
think the billionth member of an infinite
series will have any distinguishing traits.

Discovering that the first billion digits of
pi are not randomly distributed would be
much more interesting, but the search for
such patterns is a quest, not a problem. It

very likely has no end.
I attempted to arrange the problems in

order of increasing difficulty, but I would
not attempt to defend the ranking in
detail. It would surprise me to learn that
the first problem had turned out to be the
hardest or the last one the easiest, but
between those extremes much shuffling is
possible.

In some cases I attempted a quantitative
estimate of the amount of computing
needed to solve a problem. The unit of
measurement is the Cray-year: the num
ber of instructions a Cray 1 can execute in
a year. This number is itself quite difficult
to determine because it depends crucially
on what the instructions are. I have taken
it to be 10IS, a very crude estimate based
on the Cray 1 clock rate of roughly 100
MHz.

Here are the eight problems. If you
solve any of them, please send me a post
card (c/o Editor, COMPUTER

LANGUAGE).

Problem 1

Decompile a large file of machine code to
produce a corresponding program in a
high-level language such as Pascal or
LISP. The test of success is to recompile
the source code created in this way: the
result should be machine code that is func

tionally equivalent (although not neces
sarily identical) to the original.

One may be tempted to respond that
this task is trivially easy. After all, disas
semblers, which produce an assembly-
language listing from machine code, are
commonplace and fast. Another response
is that the task is impossible, because the
transformation from source code to
machine code is noninvertible. Informa
tion is irretrievably lost in the process of

compilation, and you can no more decom
pile a program than you can unadd two
numbers.

I take the safe (and dull) position that
the truth lies somewhere between these
extremes. Decompiling is not as easy as
disassembly because there is no one-to-
one mapping between machine-code
instructions and high-level language state
ments (as there generally is between
machine code and assembler mnemonics).
On the other hand, although it is true that
some aspects of the source code cannot be
reconstructed—there is no way to restore

comments, for example, or variable
names—I suspect that all the essential ele
ments ofa program's structure can be
recovered.

The problem as I have stated it does not
ask for a perfect reversal of the com

pilation process, merely for a source file
that can be recompiled to yield a program
of equivalent function. The original pro

grammer might have written a case state
ment that compiled to a series of test-and-
branch instructions; the decompiler might
then translate these instructions into a
series of nested //... then.. . else state
ments. The change is of no consequence
provided the two expressions are seman-
tically equivalent.

Why is this a computationally hard
problem? Basically because high-level
languages are carefully designed to be
easily compiled whereas machine lan
guages are not designed with decom
pilation in mind. A compiler can march
straight through a source program, never
backtracking and looking ahead only a
limited distance. A decompiler, on the
other hand, might have to repeatedly
revise its hypothesis about the structure
and function of a program; the last
instruction in a file could conceivably
alter the interpretation of all those that

precede it.
A practical decompiler would be a valu

able tool in debugging, in porting pro

grams from one machine to another, and
in various forms of software larceny. As
far as I know, a successful decompiler has
never been written. Some interesting
related work is being done by Valentin F.
Turchin of the City College of New York,
who is exploring the idea of what he calls
a supercompiler.2 Instead of translating a
source program, the supercompiler

paraphrases it, reading the text, digesting
its meaning, and writing a new program in
the target language.

Problem 2
Create a concordance to the human

genome.
A number of biologists in the U.S. and

Europe have proposed a major project to
determine the sequence of base-pairs in
all the DNA that makes up the genetic
endowment ofa human being.3"5 The
information would be stored in a com

puter data base that would be large but by
no means beyond the bounds of current
practice. There are an estimated three bil
lion base-pairs (combinations of the four
nucleotide bases designated A,T,G, and

C) in the human genome. The most effi
cient possible encoding would use two bits

per base-pair, which yields a data base of
six billion bits or about 750MB.

The problem is not in storing the infor
mation but in making effective use of it.
Consider what happens when the last few
sequences are being added to the almost

complete data base. It is important to
learn whether each new sequence is
related to any other sequence already on
file. At first this appears to be a simple
matter of string searching, for which
there are efficient algorithms: just check
to see if the same pattern of As, Ts, Gs,
and Cs appears anywhere in the 750MB
of data.

A conventional string search, however,
will find only an exact match, which is
most unlikely for any sequence longer
than about a dozen base-pairs. What the

biologist wants to know is whether any
known sequence is similar to the new one,

allowing for random changes from one
base to another and for random insertions
and deletions. Measuring resemblance in
this way makes the problem much harder.

There is another complication. In many
cases what is really of interest is not the

similarity of two DNA sequences but the
similarity of the proteins they encode.
Each triplet of base-pairs in DNA speci
fies one amino acid unit in the protein, but
there is much redundancy in the code: 64
possible triplets correspond to 20 amino
acids. Thus both CGTand AGA specify
the amino acid arginine, and this redun

dancy would have to be recognized by the
search software. To make matters still
worse, the DNA can be interpreted in six
"reading frames," depending on where
the grouping of base-pairs into triplets

begins on either of the two strands of the
double helix. All six reading frames must
be checked for a match.

Roughly one-tenth of one percent of the
genome is already on file in a facility at
the Los Alamos National Laboratory in
New Mexico. They use a Cray to do

sequence searches and comparisons. A
recent report mentions that one such com

puter run took a little under three hours.
Linear extrapolation suggests that search

ing a data base 1,000 times larger would
take about four Cray-months, but the rise
in search time as a function of data base
size may in fact be far worse than linear.

Problem 3
Given a detailed description of weather
conditions at noon on Wednesday, predict
whether or not it will rain on Saturday's

picnic.
"That's done already," you object.

"There's a three-day forecast every night
on the TV news."

But do you believe what the weather
man tells you? The issue here is what is
meant by the verb "predict." If an astron
omer says the sun will rise at 6:33 tomor
row morning or the moon will eclipse the
sun at a certain moment 50 years hence,
few skeptics dare to doubt. If a meteor

ologist assures us the clouds will scatter
by lunchtime, prudent people take along

22 COMPUTER tANGUAGEB FEBRUARY 1987

an umbrella. What this problem asks for
is reliable prediction.

Weather forecasting is one of the classic
CPU-intensive applications of computers.
It has a longer history than most people
realize. During World War I the British
meteorologist Lewis Fry Richardson6
made an extraordinary, premature attempt
to predict the weather by numerical meth
ods based entirely on hand calculation

(some of it done in a rest billet just behind
the lines in France). His prediction was a

flop— largely because of errors in his ini
tial data—but his methods were sound.
Richardson also proposed a marvelous

parallel computer for weather prediction,
in which the 64,000 computing elements
were people equipped with adding

machines.
The basic technique of numerical

weather prediction is to define the state of
the atmosphere at some initial moment
and then apply the laws of fluid dynamics
to determine the state at some future time.
The initial data come from measurements
of temperature, barometric pressure,
wind velocity, and so forth made at a grid
of points covering much of the earth's sur
face and extending to altitudes in the

stratosphere. The accuracy of the predic
tion depends strongly on the density of the

grid; unfortunately, so does the com
putational burden.7,8

At the European Center for Medium

Range Weather Forecasts in Reading,
England, most calculations are based on a
grid with stations spaced about 200 km

apart, with measurements made at 15
altitudes—a total of 273,630 points. The
state of the atmosphere is computed for
15-minute intervals, so that a three-day
forecast entails 288 calculations for each

point and not quite 80 million calculations
in all.

The center uses a Cray for this work,
which takes from 15 to 20 minutes per
forecast day. If the density of the grid
were doubled in all three dimensions and
the time interval were halved, a three-day
forecast would require 1.2 billion calcula
tions and would take 12 hours of CPU
time. With another doubling of the model

resolution, Saturday's weather report
would not be ready until the following

Thursday.

Professional Programming Products
for Microsoft C, PASCAL, FORTRAN, and Assembly Language

\\,i U/.

PC-write™ text editor, and
SOURCE CODE

PROGRAMMERS AND SOFTWARE DEVELOPERS - LOOK AT THESE PRODUCTS!

NO ROYALTIES REQUIRED

ASMLIB
The Programmer's Library

A Multipurpose set of over 200 Assembly Language sub
routines supplied in the form of a linkable library. w \

Virtual disk file handling.

Int. driven asynch. support. a*
o<

Graphics on EGA, here, and CGA. ^O^

Floating point math and trio/founnes with 8087 support.

Installable key board ^ctwated programs are easily written
with ASMLIB's spsdUnunctions.

Plus much-Mjcn more.

SuppliedVith complete source code.

Only $149°° Complete

asmTREE
The Programmer's B+Tree Data File

Management System ~ *•
A complete single/ multiuser database manaejfnent system

; the Lattice "C"written entirely in Assembly Language
or Assembly Language programmer $£§6 capabilities.

U p t o 2 5 6 u s e r s . q P

Up to 256 index and data fi^sl *

Multiple key types. ,ep

Multiple indices oer Index file.

Duplicate andy&riable length keys.
Virtual fita handling

Plus^wrch, much more
Supplied with complete source code.

Only *395°° Complete

B C ASSOCIATES
3261 No. Harbor Blvd., Suite B

Fullerton. CA 92635

1-800-262-8010
in Calif. Call

(7 1 4) 5 2 6 - 5 1 5 1

•FREE Assembly Language SOURCE CODE !

Outside CA, call TOLL FREE 1-800-262-8010

USE YOUR VISA OR MASTERCHARCE

All prices include UPS shipping within continental United
States. Outside U.S. please add $10 per package. Calif,
residents please add 6.5% sales tax.

CIRCLE 12 ON READER SERVICE CARD 23

Problem 4
Find the prime factors of an arbitrary

100-digit number.
Readers who have kept up with devel

opments in cryptography over the past 10
years will immediately recognize the sig
nificance of this problem. Several recent

cipher systems derive their strength from
the computational difficulty of factoring
large numbers.910

The factoring problem is closely related
to the testing ofa number for primality

(that is, showing that the number has no
factors other than 1 and itself). There are
efficient methods for finding primes
(much better than the well-known sieve of
Eratosthenes) and for distinguishing them
from the nonprimes or composite num
bers. Proving that a number can be fac

tored, however, gives no clue whatever to
the identity of the factors.

The brute-force approach to factoring
is to attempt division by all possible prime

factors, starting with 2,3,5,7,11, etc.,
and continuing up to the largest prime less
than the square root of the number. If any
division yields a remainder of 0, the
divisor is a factor. The square root ofa

100-digit number is approximately 10so,
and there are roughly 1048 primes less than
1050. A few tricks are known to speed up
the calculation somewhat, but none of
them make enough of a difference to bring

100-digit numbers into range.
The odd and disarming thing about fac

toring is that no one has yet proved it to be
an intrinsically hard problem. Someone
may come up with a quick and efficient
algorithm tomorrow.

Because of the recent practical interest
in factoring for cryptography, several
mathematicians have published estimates
of the time needed to find the factors of

large numbers. The estimates are not con
sistent with one another and cover a wide

range—from 1016 years for a 126-digit
number to a billion years for a 200-digit
number down to 8,200 years for a

100-digit number. Although I am a little
skeptical of this last value, the conser
vative course is to accept the smallest esti
mate and rate the problem at a few thou
sand Cray-years.

Incidentally, if you solve this problem, I
don't want to hear about it. Tell it to the
National Security Agency. As the old joke

goes, there's no need to look up their
number; just pick up the phone and start
talking.

Problem 5
Given the amino acid sequence ofa pro
tein made up of at least SO amino acids,

predict the molecule's three-dimensional
structure.

A protein is a linear polymer: an

unbranched chain of amino acids. In most
cases the chain folds up spontaneously to
form a tangled, globular mass whose

shape has everything to do with the mole
cule's biological function. Determining
the amino acid sequence of the protein is

comparatively easy, but figuring out the
folding pattern is an arduous process that
can take years or even decades. It would

certainly make life—and the study of
life—easier if the three-dimensional

shape could be predicted from the
sequence.

The basic principles that control the

folding are straightforward enough.""13
The forces acting on each amino acid are
the electrical attractions and repulsions of
all the other amino acids and of the sur

rounding water molecules. The protein
will tend to adopt whatever shape min
imizes the energy associated with these
forces. For example, amino acids that are

repelled by water will tend to congregate
in the interior of the tangled skein, where

they are protected by the rest of the chain
from the aqueous environment. Amino
acids that attract each other will have a
lower energy if they are close together.

The plan, then, is simple: calculate the

energy for each possible configuration
and pick the lowest. After all, that's what
the protein itself does. But the protein is a

very fast analog computer. For a chain of
50 amino acids there are an estimated 1050

distinguishable conformations. Even if
the energy of each folding pattern could
be calculated in a single machine cycle,
the computation would take a vast stretch
of Cray-eons.

To make predictions at all, various

approximations and simplifications must
be adopted. A common approach is to
consider only short stretches of the chain
at one time and to predict their local fold

ing into sheets and helices (called the mol
ecule's secondary structure). Even this
makes prodigious demands on the com

puter, and the success of the results is sub
ject to dispute.

In 1973 Georg Schulz of the Max
Planck Institute for Medicine in Hei

delberg, Germany, solved the full struc
ture of a medium-size protein by experi
mental methods. Before publishing his
results he invited several chemists and

biologists to predict the secondary struc
ture by computational means. All of the
predictions were wrong, although some
were less wrong than others. What is most

discouraging is that when the procedure
was repeated a year later with another

protein, a different set of programs per
formed best.

Problem 6
Confirm or refute Catalan's Conjecture,

namely that 8 and 9 are the only two con
secutive perfect powers among the

integers.

Mathematics is full of problems where

computing machines might be useful. In
recent years there have been two cele
brated cases—the proof of the four-color

conjecture and the classification of the
finite simple groups—where computers
contributed materially to understanding.
For the most part, however, the computer
is quite useless as a tool for establishing
mathematical truth. You cannot prove
most theorems about numbers by testing
individual cases because there are

infinitely many cases to be tested.
There is one conspicuous exception to

this rule. The 19th-century mathematician

Eugene Charles Catalan pointed out that 8
and 9 are the only known consecutive

integers that are perfect integer powers (8
is equal to 23 and 9 is equal to 32). Catalan

speculated that there are no other con
secutive perfect powers but was unable to

prove it. This conjecture would be like
many others in mathematics—where com
putational experiments are futile because
there are infinitely many cases— except
for a result proved in 1974 by Robert

Tijdeman.141 find the result extremely
weird. Tijdeman showed that if there is
another pair of consecutive powers, they
are less than some finite value.

Tijdeman's result can be expressed
more formally as follows. A pair of con
secutive powers would provide a solution
to the equation:

xm - yn = 1

in which x, y, m, and n all have integer
values. Tijdeman proved that all four
numbers, if they exist, must be less than
some constant C. Thus Catalan's Conjec
ture can be settled simply by checking all

possible solutions to the equation using
integers less than C.

There is a catch, of course. C, although

finite, is huge; indeed, as far as I know its
value has not even been calculated. It is a
mark of the difference between mathe
maticians and the rest of us that most of
them quite lost interest in the Catalan

Conjecture after Tijdeman published his
proof. The question is considered settled;
even though we don't know the answer,
we know how to get it. All that's needed is

perhaps a few Cray-millenia of grunt
work.

Problem 7
Predict, within 20%, the change in the
Dow-Jones industrial average over a
period of one week. Consolation prize:
merely predict whether the average will
rise or fall in the course of a week.

I suspect most readers will classify this
an impossible challenge. I don't disagree,

yet it's not immediately obvious why the

24 COMPUTER LANGUAGE ! FEBRUARY 1987

problem is so hard. There are fewer
stocks traded on Wall Street than there are

base-pairs in the human genome. And the
main economic force at work—the law of

supply and demand—does not seem any
more complicated than the electrostatic
force that guides the folding ofa protein
molecule. (People are attracted to wealth
and repelled by poverty.)

Models of entire economies, such as the
input-output matrices of Wassily
Leontief, have on the order of 10,000
variables; they are not very complex com
pared with the other systems considered
on this list. One such model, which is run

monthly by the Federal Reserve Bank of
Minneapolis, makes modest demands on
the time ofa Cray-1 at the University of
Minnesota.13 If the entire economy can be
simulated, why not the stock market,
which is a small part of that economy?
What do you say we spend a year coding
up a fancy simulation, connect the Cray to
an on-line ticker service, then sit back and

get rich?
Some economists might argue that the

basic constraint is lack of input data. The
stock market is not a closed system, they
would point out, and you cannot predict
tomorrow's prices from today's trading in
the same way you can (or might) predict
tomorrow's weather from the state of

today's atmosphere. Personally, I think
there is a more fundamental problem. The
most important elements of the simulation
would not be stock shares and dollars but
the people who trade them. Even when the
forces acting on people have a simple

character, their responses to those forces
can be baffling.

There is also a cruel twist to the entire
undertaking. Suppose you wrote a perfect
simulation that consistently predicted
tomorrow's closing prices to the penny.
You would shortly grow to be as rich as

Jay Gould. Furthermore, like Jay Gould,
you would become a significant force in
the market, able to alter prices by your
own trading alone. Could your program
take into account the effects of its own
decisions? And if you can write such a

program, so can many other readers of
COMPUTER LANGUAGE. At that point
second guessing the market is no longer

enough; you must nth guess it.

Problem 8
Prove the correctness ofa large software
system such as the set of programs pro
posed for the Strategic Defense Initiative.

Writing the 10 million lines of software
for SDI—the Star Wars weapon system-

might in itself be considered a candidate

for inclusion on this list.16,17 It is not
included simply because it is a human

problem rather than a computer problem
and will remain so no matter how much

design automation and Al magic are
brought to bear on it.

Proving the correctness of all that soft
ware is an inhuman problem. That it needs
to be proved is not in much dispute. Noth

ing that big has ever worked the first time
before (and there cannot be a second

time); since the whole point of building
the system is to create a "credible count-

erthreat," some evidence that it just might
work would seem to be required.

I put this problem at the end of my list,

implying that I consider it the hardest of
them all. I cannot substantiate that judg
ment of computational complexity,

although I think it is fair to say that doing
anything at all with 10 million lines of
code—reading it, printing it, compiling
it, much less proving theorems about its
logical structure—is a formidable under
taking. The problem earns last place,
however, simply because I believe the task
impossible.

Suppose we ran the 10 million lines of
source code through some hypothetical
and fully automatic program-proving pro

gram, and after churning away for some
unpredictable number of Cray-years the
verifier issued its answer: Q.E.D. Could
we believe it? Who verifies the verifier?
Moreover,, the proof would not consist of
a single line of output. Instead it would be
another 10 million lines of logic, fully as

opaque to human readers as the original
program. Do we then devise another pro
gram to check the proof and another to
check the output of the proofchecker?
Where, if anywhere, does this regress
stop?

The largest software proof I know of
was constructed by a group from Honey

well, the University of Texas at Austin,
and the University of Minnesota.18 Their
aim was to verify the security of a pro

gram rather than its correctness, but the
problems and techniques are very similar.
The system being verified was the kernel
of an operating system, far smaller and
less complex than the SDI software, but
still much bigger than the toy programs
used in most studies of program
verification.

The group completed the proof to their
own satisfaction. They also wrote: "The

proofs of complex systems tend to be
extremely long and tediously detailed.
Indeed, a long computer-generated proof
may not be read even by the person super
vising the proof. Consequently claims of
correctness are often underlain by con
fidence in the verification system rather

than by confidence in the proof the veri
fication system has generated. Yet, in the

end, a proof that cannot be understood
proves nothing."

Q.E.D. |]

References
1. Beeler, M., R.W. Gosper, and R. Schroep

pel. "HAKMEM." Artificial Intelligence
Memo No. 239, Massachusetts Institute of
Technology, Cambridge, Mass., 1972.

2. Turchin, Valentin F. "The Concept ofa
Supercompiler." ACM Transactions on Pro
gramming Languages and Systems (July
1986): 292-325.

3. Wade, Nicholas. "The Complete Index to
Man." Science (Jan. 2,1981): 33-35.

4. Goad, Walter B. "GenBank." Los Alamos
Science(Falll983): 53-63.

5. Friedland, Peter, and Laurence H. Kedes.
"Discovering the Secrets of DNA." Com
munications of the ACM (Nov. 1985):
1164-1186.

6. Richardson, Lewis F. Weather Prediction by
Numerical Process. Dover Publications,
1965.

7. Williamson, David L., and Paul N. Swartz-
trauber. "A Numerical Weather Prediction
Model—Computational Aspects on the
Cray-1." Proceedings of the IEEE (Jan.
1984):56-67.

8. Kerr, Richard A. "The Race to Predict
Next Week's Weather," Science (Apr. 1,
1983): 39-41.

9. Rivest, R.L., A. Shamir, and L. Adelman.
"A Method for Obtaining Digital Signa
tures and Public-Key Cryptosystems."
Communications of the ACM (Feb. 1978):
120-126.

10. Hellman, Martin E. "The Mathematics of
Public-Key Cryptography." Scientific
American (Aug. 1979): 146-157.

11. La Brecque, Mort. "Protein Folding."
Mosaic (May-June 1983): 2-9.

12. Seibel, George. "Computational Chem
istry of Biomacromolecules." Cray Chan
nels (Spring 1985): 2-7.

13. Sternberg, Michael J.E., and Janet M.
Thornton. "Prediction of Protein Structure
from Amino Acid Sequence." Nature (Jan.
5,1978): 15-20.

14. Wei, Julie. "Pure Mathematics: Problems
and Prospects in Number Theory." Univer
sity of Michigan Research News (Mar.
1979).

15. "Econometric Supercomputing." Cray
Channels (Spring 1986): 20-23.

16. Parnas, David Lorge. "Software Aspects
of Strategic Defense Systems." Communi
cations of the ACM (Dec. 1985): 1326-1335.

17. Lin, Herbert. "The Development of Soft
ware for Ballistic-Missile Defense." Sci
entific American (Dec. 1985): 46-53.

18. Young, W.D., W. E. Boebert, and R. Y.
Kain. "Proving a Computer System
Secure." Scientific Honeyweller (July
1985): 18-27.

26 COMPUTER LANGUAGE! FEBRUARY 1987

