
THEORY & PRACTICE

Scissors, paper, stone:

A tournament of Schemes

In an old episode of
the British tele A

vision series
Doctor Who, the Doctor and his compan
ion Romana are off in a corner of the gal
axy trying to keep peace between two
races of robots .

The Doctor observes that war among
perfectly rational and deterministic beings
can never end-or even properly get
started-because each side will always
avoid fighting unless it is sure of winning .
When a battle is imminent, each army will
assess the other's strength , and the weaker
will withdraw before a shot is fired.

To illustrate his point , the Doctor sug
gests a few rounds of scissors-paper
stone. In this children's game, as most
readers will re member, two players stand
face to face, each conceal ing one hand
behind his or her back. At a signal the
players bring their hands forward,
revealing either two fingers (scissors), an
open hand (paper). or a closed fist
(stone). The winner is determined by the
following circular relations: scissors cut
paper, paper wraps stone , stone dulls
scissors.

When the Doctor and Romana play,
they each win a few throws, and the lead is
traded back and forth . When two robots
try the game, the result is a scorel ess tie:
on each throw both robots make the same
choice, playing scissors against scissors,
paper against paper, and stone against
stone . Fina1ly the Doctor takes on one of
the robots and wins consistently. proving
yet again that logic must bow to intuition.

The notion that waging war requires a
measure of irrationality seems plausible
enough, but the robots' sorry perfor
mance in scissors-paper-stone leaves me
unconvinced . I suspect even a very dull
automaton could avoid the stalemate of
perpetual ties. And with only rudimentary
analytic skills a robot should be able to
hold its own against a human player.

In any case, there is no need to take the
Doctor 's word for it , or mine. One can
simply build a program to play the game,
and put it to the test directly.

The project provides an opportunity to

By Brian Hayes

explore PC Scheme, Texas Instruments'
new implementation of the Scheme pro
gramming language. Scheme is a dialect
of LISP, and in my view a particula rly
elegant one. A program for playing
scissors-paper-stone illustrates some of
Scheme's most interesting fea tures.

Playing at random
Scissors-paper-stone is an unusual game:
it has a perfect defensive strategy but no
reliable offense. In o ther words, you can
avoid losing but you cannot be sure of
winning. The unbeatable defense consists
in choosing your moves completely at ran
dom , so that your opponent cannot predict
what you wi ll do next. On any given throw
you are equally likely to play scissors ,
paper, or stone; in the long run, you can
expect -to win a third of all the throws, lose
a third, and tie a third . No other strategy
can be guaranteed to do better against all
possible opponents.

The Doctor might well attribute his
easy victory over the robots to thei r
inability to play randomly. By definition,
adeterministic machine cannot do any
thing at random . All the actions of a robot
or a computer are specified by an algo
rithm , and in principle they can be pre
dicted in full deiail. The crucial phrase,
however, is " jn principle" ; unless you
happen to know the machine's algorithm
and its initial state, outguessing a com
puter is exceedingly difficult.- Perhaps a
Time Lord from the planet Galifrei can do
it, bUi few earthlings can.

Although a compute r cannot act ran
domly, it can readily produce a pseudo
random sequence of moves - one that has
all the statistical properties of a truly ran
dom sequence and hence appears to be
patternless. As a matter of fact, comput
ers are a good deal better than people at
simUlating randomness. Without
resorting to external aids such as dice to
roll or coins to flip . a human player has a
hard time excluding all traces of pattern
from a series of moves. People tend to
make the sequence "too random ," avoid
ing all re petition of the same move. A
computer has no such unconsc ious biases
(unless the programmer implants them) .

A computer generating pseudorandom
moves for scissors-paper-stone should be
able to achieve a draw with a human

player, but can a machine go beyond trus
level of play and attempt to win a match?
This is a question best answered by
experiment , but before conside ring it in
detail some further analysis of the game
will be helpful.

An interesting property of the random
play strategy is that the opponent's
method of choosing moves has no bearing
at all on the .outcome of a match. Even a
strategy that seems quite foolish. such as
always making the same move, works as
well as any other; on the average each
player will win a third of the throws and
the rest will be ties .

Random play, however, is the only
strategy that has this property. Once a
player abandons random choice, the situ
ation grows more complicated.

Suppose you are making strictly ran
dom moves when you notice that yo ur
opponent is playing paper slightly more
often than either scissors or stone . You
could ignore this bias and still be con
fident of a tie, or you could attempt to
exploit your knowledge. By giving scis
sors a slightly higher weight in your own
choice of moves , you would skew the
probabilities in your favor and might hope
towin.

But making a bid fo r victory is a risky
business. If your opponent notices the
change in the statistics of your moves, he
or she can begin to play stone more often
and thereby turn your strategy against
you.

Whereas random choice makes all other
strategies irrelevant, any deviation from
randomness turns the game into a contest
of pattern recognition. A player aiming to
win must ex:amine the history of the game,
hoping to find some pattern that offers a
clue to what the opponent will do next . If
you can predict the 'next move with cer
tainty, you can win every throw. In gen
eral , certainty is out of reach, but
detecting even a slight bias in the proba
bilities can be helpful . For example, if all
you know is that paper is a little less likely
to be played next than e ither scissors or
stone, you can confidently choose stone as
your own move; the odds are it will win or
tie.

19

The more interesting programs for
playing scissors-paper-stone make judg
ments on the basis of a patlern analysis.
They accumulate information about their
opponent's habits and tendencies, then put
this knowledge to work in choosing their
own moves . It turns out that some sur
prisingly simple programs perform quite
well.

The scheme 01 things
A program to play scissors-paper-stone is
not the kind of software thai begins with a
full specification and develops through
top-down design. The point of writing the
program is not simply to get answers but
also to find out what questions are worth
asking . Such a program must evolve
through experiment and exploration.

Scheme is a language well suited. to the
exploratory style of programming. This is
not to say that you can begin without fore
thought. charge ahead blindly. and never
have to revise a line . With care, however,
a Scheme program can be built out of
small and versatile e lements that fit
together in many ways.

Scheme was devised in the 1970s by
Guy Lewis Steele Jr. and Gerald Jay
Sussman of the Massachusetts Institute of
Technology, Cambridge, Mass. At first
glance a Scheme program looks much like
code in any other LISP dialect: bOlh data
structures and program statements are
represented as lists, which are often
nested to form lists of lists . As in other
varieties of LISP, there are lots of
parentheses.

"thE BEst COmpilER tobay"

"Wizard's is the best compiler today. What it does have is
library source for a very large library, good documentation.
excellent support. and lint.

"Our choice if we could make our own? We wou ld take
Wizard.

Dr. Dobb's Journal
August. 1986

. the compiler's performance makes it very useful serious
software development."

PC Tech Journal
January . 1986

. written by someone who has been in the busin ess a
while. This especially shows in the documentation."

Computer Language
February, 1985

YOU'VE tRI€() thE R€st

nOW tRY thE B€st

(617) 641-2379

OnLy $4'50
SYSTEMS sonWARE, INC.

~ f"'Wl t1 Wlltow Court, Arlington, MA 02174

CIRCLE 96 ON READER SERVICE CARD

Under the sk.in. however, Schemedif
fers fundamental.ly from other LISPs.
Two unusual features of the language
deserve mention here: the use of block
structure, with lexical scope, and the idea
of first-class procedures.

Block structure and lexical scope
should hold no myste ries for anyone
familiar with PascaJ , Ada, or one of the
other offspring of ALGOL-60. In these
languages the names of variables and pro
cedures can be made local to a block of
code and thus invisible outside that block.
The rules that determine the scope of a
name are said to be lexical because the
name's meaning can be deduced from
where it appears in the program tex.t. In
most dialects of LISP (Scheme and Com
mon LISP are the major exceptions)
names have dynamic scope, and their
meaning can be determined only.at
ron time.

In Pascal the scope of a local variable is
an entire procedure . Scheme allows
names to be confined to an even smaller
compass. A common way of introducing
local variables is the lei statement, as in:

(lei ((vor exprl) stml, ...)

Here var is assigned the initial value
returned by apr and is accessible 10 any
statements within the parentheses that
delimit ler. Outside ofl.hose parentheses.
however, vardoes notexist .

The notion of first-class procedures is
perhaps the sweetest innovation in
Scheme, but to see it s significance one
must first recognize that the procedures of
other languages are in fact second-class
citizens.

In standard Pascal, for example, a pro
cedure can be passed as an argument to
another procedure, but it cannot be
returned as the value of a function or
stored as the value of a variable; there can
be no arrays of procedures. Even in LISP,
procedures require special treatment
under some circumstances.

Scheme abolishes all restrictions on the
handling of procedures. Indeed , every
Object in Scheme has first-class status;
anything that can be done with a simple
value such as a number can also be done
with a procedure, the environment in
which a procedure executes, or even the
default "future" ofa computation .

First-class procedures are not merely
theoret"ical niceties or tricks useful only in
cute, self-modifying programs. They add
much to the expressive power of Scheme,
and they promote a distinctive style of
program development. Procedures whose
returned values are other procedures are
at the heart of the scissors-paper-stone
program.

20

http:fundamental.ly

The referee
In an exploralOry program, versatility is
at a premium. What is needed in the
scissors-paper-slOne program is a con
venient means for creating a variety of
robot players and staging games
between a robot and a human player or
between twO robots.

One obvious decision is to make each
player an independent procedure. When
one of the player procedures is called, it is
expected to return a legal move: either
scissors, paper, or stone. The algorithm
the player uses to choose the move is an
internal maHer and is hidden from the rest
of the system. The human player can be
represented by a procedure much like any
other, except that when it is polled for a
move it gets it by reading the keyboard.

Along with the players, a master pro
cedure is also needed to act as a kind of
referee . It must call the two player pro
cedures , collect the responses, determine
the winner of each throw, keep score, and
report the results . Because the referee has
a central role in the program, it is a logical
place to start in laying out the structure of

Flr.t-cla•• praciadure.

IQN~V~L CALL, (BORIS IVAN)
(dofl.. sa....
Imak~amo •

the code .
In a quick first draft. the referee might

be a procedure that accepts two argu
ments , namely the two player procedures
competing in a game. Each lime the ref
eree is caBed, it caJis the two players in
lurn, compares the moves to decide the
winner, and updates the total score. The
value returned by the referee is a list of
five items: the two moves, the winner of
the throw, and the two players ' current
scores.

This plan is on the right Irack , but it has
a few subtle problems . Consider the
maHer of keeping score. If the variables
that hold the two scores were localao the
referee procedure, they would be resellO
zero allhe star! of each throw. The scores
could be made global variables, but that
also has certain drawbacks . In the first
place, it invites cheating: a player can eas
ily win every game if it has free access to
the scoreboard . More seriously. with
global score variables ending one game
and staning a new one becomes awkward.
We then wan! the scores reset to zero, and
some separate signal or procedure would
be needed to do it.

BORIS IVAN
MAKE-GAM~

Pot((IeIr-SCO,. 0)
li!t;;KOfOO)

r 1oyet(BORIS)I

I
I
I
I
I
I bound to

I Io"-ployer
L (rish,-plDyw(IVANJII

bound to
rlghl1'iayw

CAU, f)

BORIS

RETURN: ,< PROC>

CALL: ()

.lYAtl
(Iot((hl"ory '1n"")1

RETURN , #< PROC >

+

I

~

I

Ibound'D
game RETURN: 1< PROC>

The program for ploy'ng KlAC)fS;o-pap.r-ltone ,elill on MVetol procedure. whose

returned value. are them.lves proc.dures. Tn. u.... invok., the procedure mok..gome,

naming the players Boris ancllvan 01 arguments. Mok..gome i"rtionu, 'he local 'Iorie

obletle" ,1COte and riS"'escore, then calf, Bori, and 'von. Th. voiu.s feturMd by me two

playw. oro pr_du.... which oro bound to thor/obles WI.player and righl.play.,

FinoCiy ma'eegome "",,",1 ona",. procedure, which become, Ih. value of Ih.

yoriable 9ame.

figure 1.
22 COMPUTE RLANGUAGE. DECEMBER 1986

Scheme offers a clever solution. Instead
of building the referee procedure directly,
we can write a procedure that creates a
new, independent referee for each game.

I have named !.he referee-building pro
cedure make-game. Each time it is
called , it creates and initializes a few local
variables- including variables for the two
scores-and then returns as its value a
procedure of no arguments. The latter
procedure is the actua] referee . Because it
is within the lexical scope of f1JlJke-game,
the referee can access the score variables ,
bUI those variables retain their values
between calls to the referee.

lYpicaliy, make-game would be invoked
by a statement like the following :

(define game

(make-game playerl player2)).

Here a new variable game is declared
and assigned the vaJue that resuhs from
evalualing (lTIilU-gome ployerl player21.
As already noted, the value of this expres
sion is a procedure of no arguments whose
lexical environment includes the two
score variables . EvaJuating the statement
(game) now invokes the synthesized pro
cedure, which calisployerl andployer2,
decides the winner, updates the scores,
and posts !.he results. Note that mak.e
game is called once for each game,
whereas game is called once for each
throw.

The players
Problems similar to those encountered in
makeegame arise in building the player
procedures.

Suppose a player named Ivan chooses
moves by consulting a history of all the
moves its opponent has made so far in a
game . The history cannot be stored in a
local variable , because the record would
be started fresh on each throw. Global
storage is also unacceptable. Again it
would make the player vulnerable to a
cheating opponent (which could alter
Ivan's memory!) and would require spe
cial measures for initialization. In addi
tion, the procedure might interfere with
its own operat·ion. Consider what would
happen iflvan were playing two games
simultaneously, or if Ivan were pitted
against Ivan in a single match.

The answer is again to write a pro
cedure that creates a procedure. The top
level procedure, which is the one named
Ivan, is called once at the beginning of a
game. It sets up the necessary variables
and then returns another procedure,
which does the actual playing. When the
latter procedure is called (once for each
throw), it selects and returns a move.

The relations between the referee and
player procedures are diagramed in Fig
ures I and 2 . Organizing the program in
this way makes each game and each player
a completely isolated entity. The modules
can communicate only through arguments
passed to a procedure and values returned

by it. When Ivan takes pan in a game, it is
not the globally defined Ivan that plays
but rather an instance of the Ivan algo
rithm , which lives io an environment sep
arate from any other instances of Ivan that
might be present in the system. The
sequence of statements:

(define gl (moke·game Ivon Ivon))
(define g2 (moke·gome Ivon Fred))

would set up twO games. named gl and 82,
played by three instances of Ivan and onc
instance ora player called Fred . Even if
8/ and g2 are executed alternately, there
can be no interference between the games
or between the players .

One other issue in the construction of
the player procedures requires comment.
If a player is to keep track of a game's his
tory. it must somehow be given access to
that history. There are several ways this
might be accomplished. The possibility of

Calling the players

TQP.~~V~L CALL, ()
(game) ,

storing the sequence of moves in a global
variable can bedismissed immediately,
for reasons that should already be appar
ent. Another approach would be to make
two calls on each player for each throw:
the first call would request a move and the
second wou ld report the outcome of the
throw. Or a player might consist of two
linked procedures. one to gene rate a move
and the other to accept a repon .

The method I have adopted is to make
each player a single procedure that
receives a single call for each throw.
ArgumenlS passed during .he call supply
information about the results of the pre
vious throw. The one disadvantage of this
arrangement is that special provisions
must be made for the first throw in a
game, but the burden of extra code is not
great.

Five arguments accompany each call to
a player. They tell the player its own pre
vious move; its opponent's previous

< PROC> RETURNED CAll: (sciuors paper win 2 1)
BY MAKE·GAME

(Ieft-player Kinon
paper
win2 1)

bound to
ieh·mo...

(right.player paper
seinors
lose 1 2)

.

bound to
right..rnove

(winner left·move
right-move)

•#<PROC> RETURNED,y BORIS

RETURN: 'SCISSORS I
CAll: (paper scinors 10.. 1 2),

< PROC > RETURNED
BY IVAN

(cons 'scisson history)

RETURN : 'STONE J
CAll: (scissors stone) ,

WINNER

RETURN: 'RIGHT I
(bumpl right-Kor.

PRINT:
(WlsorS stone I
right 2 2) RETURN: (SCISSORS STONE RIGHT 2 2)

Game is invoked at the lop level. It calls the procedure that was earlier returned by mole...
go"". This procedure in tum plOCM calls to the procedur81 that were returned by Boris
and Ivan, supplying the appropriate argumentJ. Finally winner is called, the scar. is
updated. and outcome i. reparted to the top level.

~.

move; whether it won, lost, or tied; its
own score; and its opponent's score. Nat
urally, the player does nol have to make
use of all this information; indeed, some
players ignore all of il.

Strategies
Of the dozen players I have developed and
tested, the twO simplest are named Adam
and Boris.

Adam is the proxy procedure for the
human player; when it is asked to seleci a
move, it simply awaits instructions from
the keyboard.

Boris chooses its moves randomly. To
do so il makes use of the built-in Scheme

Co lat/on a"aly.'.
Prod...d moV<l

SCS PAP STN

o 2

3 :2

3 o
O.pjh I

Pr.cttCted move

SCS PAP STN

Oop'" 3

procedure (random n), which generates a
pseudorandom integer between 0 and
n - I. Thus (raruiom 3) yields one of the
Ihree integers 0, I, and 2, and these va lues
can be associated with the lega l moves
scissors , paper, and stone .

From our analysis of random play, one
would expect Boris to have indifferent
success against all comers. Experiment
seems to confi rm this prediction . In a
series of 55 games against II opponents,
Boris won 25 games and lost 30; in
another series of 60 games againsl four
opponents, it won 29 and lost 31.
Although I have not attempted a statistical
analysis. the record of wins and losses has

the look of a random distribution. On
occasion Boris defeated some of the stTon
gest players and lost to some of the
weakest.

In my own games against Boris , I some
times relieved the tedium of thinking up
new moves by repeating Boris 's own pre
vious move. It was a simple matter to cre
ate a robot player thai turned this lazy
habit into an algorithm; I called the player
Claude. It turns out the copycal strategy
works well enough against Boris- but
then any strategy has an equal chance
against Boris. Against most other players
Claude failed miserably; in the 55-game
tournament it scored 17 victo ries.

SCS PAP STN

SCS

PAP

STN

Oop.h 1

0 2 2

3 I 2

1 3 0

SCS PAP STN

SCS

PAP

STN

1 2 0

0 3 3

2 1 1

Ooprh 2

SCS PAP STN

SCS

ESCS
E1

0

o 3

2

5."".
2 o]

Scissors

Paper

Stone

Pop.r

5."",
Prodi".d man

SduorsSCS PAP STN

Paper

510..

PAP

~ STN

~ SCS
~
C

o 2

2 3 o L-___ PAP• PAP Popo<

Poper STN1STN

Scluor. Ooplhl

Poper

Pred~ion 8 oSeinors
SCS PAP STN

Stone

0 1 2 .

2 3 0

I I 2

Kurt, the Itrongest c:.f the robot play.tl, ottempilio pr.diCl lh opponent's odion' by d«ecrlng corre.loJio"s between a give" move and
the subsequent moVI'. Thl Clarr~tion.. or. stored in on orroy of tobllt . In the'1tatl of the tYlf., fhown here the four most fecent movl'
orl lloa., paper, sauon, and stOMI. frorfl 'his Mqu,nC8 th, followIng correkstlons con bl d,~d: sdsson predlds stone wilt b, the
r-xt moY,~ pap.r predlch stone will t.a played two mo....' lallr, and Iton, predids tlone will be r.peated a ft.r IhrH moves. Th.
correlations or. recorded by 'nerem.nilng tM opproprio •• lobi••nlril' (lei')' The" Kurt attempts to prldict the nlxt move by consuh
ing the approprioillobil fot'lOm of .h. past three move •.

Figure 3.

The crudest son of pattern recognition
is frequency analysis. A player keeps
track of the number oflirncs its opponent
has played scissors, paper, and stonc,
assumes the same frequency distribution
will be maintained in the future, and choo
ses its move accordingly.

For example, if the opponent has
favored scissors. then slone is the recom
mended move. The player David relies on
this strategy. In the tournament it gener
a lly either shut out its opponent 5-0 or lost
0-5; overall it had 31 victories.

The strangest pair of players is Edgar
and Fred. The rationale for Edgar's algo
rithm is the observation that when people
try to play randomly. they tend to avoid
making the same move twice in a row.
They create a sequence of moves that has
fewer and shorter runs than a truly ran·
dam sequence would . Edgar exploits this
tendency in choosing its own moves. If
the opponent has j ust played scissors,
Edgar assumes that scissors is the least
likely next move.

Out of curiosity, 1 also wrote a converse
procedure, Fred, whose working assump·
tions are the opposite of Edgar's . If seis·
so", has just been played, Fred bets it wi ll
appear again. 1 could see no argument in
favor of this strategy. and I fully expected
Fred to be the whipping boy of all the
players. The results came as a surpri se.
Both Edgar and Fred scored three wins
against Boris, which of course is a matter
of chance. Edgar a lso defeated Claude
5-0, but lost all 45 games against the other
players. Fred, in contrast , finished a
strong fourth in the tournament, with 38
wins overall .

George is a trick player. It makes an
initial run , repeatedly playing the same
move, in an attempt to establish a lead; if
it succeeds, it swi tches to random play.
The rationale for this strategy is similar to
the one for Edgar: j ust as people tend to
avoid long runs in their own play, they
tend to doubt that an opponent's run will
be continued. The results were similar [0

Edgar's : George won only 14 games.
Herman's strategy is to reward success.

Each ti'!li a move wins a throw, that move
is give~a higher weight in the choice of
subsequent moves. Curiously, Herman's
tournament record is closely correlated
with that of David, the player whose
moves are based on frequency analysis.
Par the most pan they won and lost tbe
same matches and by the same 5-0 or 0-5
margin.

Ivan has already been mentioned as a
procedure that maintains a historical
record of each game. It uses the record to
count how many times in the past 10
throws the opponent played each of the
three legal moves; it then chooses a move
on the assumption that the opponent will
tend to equalize the distribution. For
example, if scissors has been played three
times , paper twice, and stone five limes,
Ivan will expect to sec paper or scissors

next. This is anot.her variation of the
Edgar strategy. and like Edgar it per
formed dismally : Ivan won seven games
out of 55.

PaHern analysis
The players introduced so far all rely on
simple rules of thumb to pick a move. At
best they are clever rather than smart.
Players that attempt a deeper analysis of
the game should be able to do better.

The procedure Jim chooses a move on
the basis of a first-order correlation anal
ys is. On each throw the opponent's move
is appended to a list of past moves, which
thus grows continuously throughout the
game . This archive is then consulted to
predict the opponent's next move .

Suppose the most recent move is paper.
Jim looks through the archive in chrono
logical order, taking note or each time
paper was played and of what move fol
lowed paper. The probabilities for the
next move are assumed 10 match the his
to rical distribution . In other words, iflhe
opponent has shown a tendency to play
stone following paper, then stone is the

move to expect.
The idea behind correlation analysis is

to detect Lbe panerns that infect human
players ' moves no matter how hard they
try to suppress them. The aJgorithm
seems to work well against both machines
and people. Jim defeated all but two of the
other robot players and had a total of44
wins.

A first-order correlation analysis looks
for a connection between consecutive
moves. There could also be a correlation
between a given move and the move made
two, three. or more throws later. In other
words, the fact that move 0 is scissors
might be a strong indication that move 2
will be stone or move 3 will be scissors
again. The player Kurt searches for such
correlations to a depth of eight throws .

Kurt could employ the same method for
detecting correlations as Jim, but Kurt
would have to make eight passes through
the entire history of moves on every throw
and would therefore take at least eight
times as long. A more efficient approach
is to record the correlations in a table as
each new move is reported. For each
depth , or correlation distance , Lbe table
has nine entries, which correspond to the

nine possible combinations of antecedent
and predicted moves. The way the tables
are compiled and used for prediction is
illustrated in Figure 3.

Kurt proved 10 be a highJy successful
indeed . form.idable-player. Apart from a
chance dereat by Boris, it lost aga inst only
one other player, namely Jim . Possible
reasons for this one loss will be discussed
later.

Both Jim and Kurt treat a series of
moves as if it were a stream of symbols
generated in isolation, not in the give-and
take of a two-player game . In practice a
player's moves might depend not on.ly on
his Dr her own past actions but also on
what the opponent has done .

Thus a logical extension to Kurt's cor
relation analysis is to include both sides'
moves in the history. Lars makes this
extension. Like Kurt, it searches for cor
relations to a depth of eight throws, but
because each throw includes two moves
Lbe depth of search is 16 moves .

Lars was a great disappointment. It is a
ponderous and elaborate procedure that
does a great deal of ca reful analytic work

Tournament re.ult.

.....,. Claud. David Edgar Fred c;-g. Horman Ivan Jim Kurt Lars Munuy Wins

loris 3 2 2 2 2 3 4 4 2 0 25

Claud. 4 0 3 0 I 5 1 0 2 0 17

David 2 4 5 0 5 5 5 0 0 5 0 31

Edgar

Fr.d

3

3

5

2

0

5 5

0 0

5

0
5

0

5

0
~

0

0

0

2

0

4

8

38

G.orge

H.rmon

3

3

0

4

0

0

5

5

0

0 5

0 5

5
0
0

0

0

1

2

0

1

14

25

Ivan 2 0 0 5 0 0 0 0 0 0 0 7

Jim 1 4 5 5 3 5 5 5 4 5 2 44

!Curt 1 5 5 5 5 5 5 5 1 5 3 45

Lan 3 3 0 5 3 4 3 5 0 0 0 26

Munay 5 5 5 5 S 4 5 3 2 5 45

losses 30 33 24 47 17 36 30 48 11 10 29 10

Adam:
'Ofi~
Oaucf.:
O.Wld,
Ed;an
hod,
GeMv·,
H.mtOftr
Iwan:
JI,";
Kurt:
Lan:
M,,"ClY:

The humgn "Joreri aeu mOYth\ frotn !be ke,.bocrd
aD~ mq'Ves al r,Miocn wiih IInl'QINI"I di '''butlon
Reproduces opponlftr's Il'tOS.t roeml niO~.
~lUmt!I opponenh mQYfl hpvo eQ",.tcmt frtrqiNllnql dntnbutlOl1
"'ilumei oJjOOr'onl ~O t\d ,.peot (flO f'CItrte IIlOVt.
COhVDl1e of Edgar; Q,w:m11 ~ttnt will rlllH':Ol l
Mo~.. hWIKJI IV" of :r:hK1 ~. thell Pars fClfldontJ"
C"OOMa th. mO¥B'ho hos won ~I frequend~ i" the pm'
AnumE:' y",fcrmcfiJirlbutlp" a;.""!Ir G' 'POrl~' 10 ma¥1I"L
pan Nf1IJ-<Kd,r correlation onat~ill; of Dpponl!(th mO'ill!t..
Don elgiltbouHn· cD~lali.on (IDD I ~-of ~po"~I .. ,.-IO...ct.
Oncs l6tb·cwdortofTrJafl~ ooUllys.ts 0' bo •• d.,· mow.,
A -melDfloloY8i ~J ~ft'ICWCI'l~.o by cOt\l,u!1Cn11J1oya:r1I.

Eadl player campl.ted ~ve games. agoind~. oth.r11 ployer.. R.oding oarou Q row gives the number of wins Kored in each match;
reodlng down a column gl_!fIe """,be< of 10..... A ga_ was _ by Ihl «,,' ploY"" 'a reach SO pain'"

Table 1.

26 COMPUTER lANGUAGE. DECEMBER 1986

(and spends a fair amount of time) in
choosing each move. Nevertheless, it
failed to improve on Kurt and also fell
behind four other players. The full expla
nation is not clear, but pan of the answer
may be that the correlations Lars looks for
simply do not exist. As a result the signal
detected by Kurt is obscured by the noise
of random coincidences,

The final player in this ca",log has no
strategy of its own, It is Murray the meta
player, which draws on the collective wis
dom of several other players in choosing
its moves, First-class procedures are
essential to Murray 's operation, It works
Ii.lc:e this : when Murray is first caUed, it
places calls in tum to all the procedures
on a Jist ofconsultant players. For each
throw &.hereafter, Murray passes on the
information supplied by the referee and
collects the moves suggested by the con
sultants . The move submined by the con
sultant with the best winning percentage is
rerumed to the referee as Murray 's move.

In the L2-player tOurnament Murray's
list of consuilants included the nine play
ers from Boris through Jim. (Kurt and
Lars were kepi off the list because they
are too slow. Murray itself was also
excluded, and the reason is worth a
moment 's thought: what would happen if
Murray were on the list ofprocedures
called by Murray?) With all this talent on
call, the metaplayer did quite well, win
ning 45 games and tying with Kurt for
first place.

Match point
The results of the tournament are sum
marized in Table I, Who takes the grand
prize? It is difficult lO say. Kurt and Mur
ray won the most games, but Kurt was
beaten by Jim, and Murray was beaten by
both Kurt and Fred. Kurt and Jim lost to
Boris, There is a tangle of non transitive
relations here: just as scissors beats paper
beats stone beats scissors, Kurt beats
Murray beats Jim beats Kurt.

To settle the question I organized a
playoff tournament for the four leaders
Kurt, Murray, Jim, and Fred-with Boris
included as a kind of mindless ballast. I
also changed the playing conditions. In
the main tournament each match consisted
of five games, and a game was won by the
fiTst player to reach 50 points. Games of
this length are probably adequate to test
most of the strategies, but Kurt and Lars,
searching for long-range correlations,
may have had too linle chance to show
their prowess. in particular, the short
games may explain why Kurt and Lars
lost to Jim , the player with the similar but
simpler Slrategy of examining only first
order correlations. In the playoff a match
lasted for 15 games of l50 points each .

The longer games made a difference.
Kurt emerged the clear victor, winning 51
of 60 games. The scores are given in
Table2.

In roughly 150 matches among a

dozen robot players the kind of stalemate the human player fit into the ranking? I
envisioned by the Doctor occurred just cannot give a firm answer, for two rea·
once. George and Claude had a tour sons. In the first place, 1 doubt my own
nament record against each other of 0-0; qualifications to carry the standard for all
neither of them was able to win more than humanity in this competition , (l tried to
one throw, and their games would have recruit an Intergalactic Grandmaster, but
gone on indefinitely if the referee had not the Doctor was not in.) Second, although
intervened, Recall that George makes the writing programs to play scissors·paper
same move repeatedly unless it gets the stone is mOderately diverting, actually
lead, and Claude copies its opponent's last playing the game is not a whole 101 of fun,
move. I should have foreseen how these Afterthe first few hundred throws it
strategies would interact; no doubt the wears thin. I have not played enough
Doctor would have. games to have much confidence in my

So much for robot wars, Where does judgment.

Th. championship playoff

Boris Fred Jim Kurt Murray Wins

Boris 7 6 7 9 29

Fr.d 8 9 0 11 28

Jim 9 6 0 11 26

Korrt 8 15 15 13 51

Murray 6 4 4 2 16

Losses 31 32 34 9 44

Ioril and the four leaders of the tournament played 15 game, of 150 pain', against each
opponent. The longer games evidently favored the correlation onoly", done by Kurt.

Table 2.

c++

from GUIDELINES for the IBM PC: $195

C++, the successor to C, was developed over the past six years aI. AT&T Bell Labs.

As an object-oriented language, C++ includes: classes, inheritance, member functions,

constructors and destructors, data hiding, and data abstraction. 'Object-oriented' means

thai. C++ code is more readable, more reliable and more reusable. And that means faster

development, easier maintenance, and the ability to handle more complex projects.

C++'s enhancements to C include inline functions, default function arguments, symbolic

constants, overloaded function names, argument type checking, and much more.

Requires IBM PC/XTIAT or compatible with 640K and a hard disk.

Note: C++ is a Trans/alor, and requires the use of Microsoft C 3.0 or later.

Here Is "bat you get ror $195: To order:

• 	The complete C++ language translator, send check or money order to:

including libraries for stream 110 and GUIDELINES SOFTWARIi:
complex math. P.O. Box 749

• 'The CH Programming Language" Or.l.nda. CA 94563

by Bjame Stroustrup, designer of CH. To order with Visa or Me,
Sample programs writteD in C++. phooe (415) 254-9393.

InstaUation guide and documentation. (CA resideDts add 6% ,ales laX.)

'The C++ Programming Language" book is also available separately for $22.95.

C++ is ported to the PC by GUlDEUNES UDder license from AT&T.

CIRCLE 17 ON READER SERVtCE CARD

27

Nevertheless, I have at least tried my
hand agalnst all the players, and the fol
lowing observations seem worth report
ing. As might be expected, Boris remains
impertUrbable, no maner who or what it
plays: it cannOt be beaten, but it never
wins decisively either.

A few of the players, notably Claude
and George, are absurdly easy to defeat;
their strategies are too transparent. For
some other players there is a counter
strategy that always works , but it is not
quite as easy to discover (unless you hap
pen to be the creator of the program).
Edgar and Ivan . for example, are vu)ner

;;;Auxi liary fUACti0n4
(syntax (buq;>1 var)

l""t 1 va< (~~ var»)

able to a player who makes the same move
on every throw, but they perform reason
ably well against a person trying to play
randomly. Fred and Herman can also be
beaten if you know the trick .

There is not much glory, however, in
defeating robot players that have already
been thoroughly trounced by their own
kind. Sportsmanship demanded that I take
on the best of the programs. Feeling that
the honor and pride of my species were al

stake , I issued a challenge to Kurt: 10
games of 100 points each . Kurt bowed
from the waist and accepted the challenge .
We met at dawn. There is no need to dwell

(let «roll (r~cbD (+ """...,t pap-wt s)) lro11 • I~ 1 2 3 4 5JrHoIt»
(oond 	« <7 <oU scs-wt) 'scissors) l lf roll· (e 1 2)

« <1 roll It scs-wt pap-wt» 'paper) l if roll· (J 4)
(else ' stone ~))) l it toll· ISJ

(cI!!lne (e~t scs-prob Pl'Irprob stn-prob)
(let «IIC5-ex (max (- pop-prob "t.....probl ~»

(pop-ex (max 1- stn-prob scs-prob) ell
(stn-e. (max 1- IICS- prob pap-pr<>b) 9»)

(If 	(and (zero? "";'-ex) (zero? pap-exl (zaro? StlHlx»
(welght,,_ 1 1 1)
(....ilttte ck:hoose scs -ex pop-ex stn.....»»

Listing 1.

(define (U..t-blllOl> PI' ['1 12)
(COnel 	 «(!lUll? 1.1) 12)

(null7 12) L1)
(elae 	teens (op (car t.l) (car 12»

«lIst-blnop op (cdr [,1) (cdr 12» »»

(syntax (a<»-lIst5 [,1 12)
(l ist-binop + ['1 12»

(dafi!ll! (wei ghtlld-chooee """.....t pap-wt strH<t:) lif args

on the score. Jt is a silly game anyway,
and it has nothing to do with real
intelligence. "

The listings that accompany this column
include the core procedures of a scissors
paper-stone program: (he ref eree, some of
the players, and afew essential auxiliary
junctions. A more complete listing is avail
able on the COMPUTER LANGUAGE
Bulletin Board Service and CompuServe
forum. /, includes two shell procedures
(hat make i/ more convenienllQ play indi
vidual games and run a mulfipJayer
toumamenl.

ar.. 3 Z 1, then•••

if ; A st!'lt!t:tlon (;){ players
(doflne (Boris)

(lanbdo (my-move opponent_ outocme my-score opponent-soote)
(WIri.pte<k:hooee l 1 II I)

1&f1ne (Clal de)
(llllllbdo (\ny-\IIove O(lpOnomt_ outcano my-score opponent- score)

(If' (not opponent-move)
(welghtec:k:hooee 1 1 1)
qpponent-mo~»1

(defi ne (Ed;lar)
(let Uses 1) (pap 1) Istn 1»

n"""da (my_ opponent-move ootCOllW! my-score opponent-score)
(case opp:>nent-move

(scissors (set1 5C!I 1) ~1 p~) {bunpI !Stnll
(p!lpet (set 1 pap 1) (~1 fl<;S) (buq;>! atn»
(stone (set ! stn 1) (buq;> I ses) (/:loIrp 1 paP»)

(expect scs pap stn»»

(define (Fred)
(let « ses 1) (pap 1) (stn 1»

(1anbda (my-move opponent-move outcane my-score ~nen~Dr.e)
(case opponent-move

(sci ll8OtII (~1 scs) (&et! pap 1) (setl stn 11)
(paper (buq;>! pop) (se~! &CS 1) (setJ 8tn 1~)

listing 2. (Continued on following page)
28 COMPUTER LANGUAGE. DECEM8ER lljlS6

(stone (buRp! stn) (set I scs 1) (set! pap 1)))

(eJCPe'C"t """ pap 8tn)) »

(dafine rnermsn)

(let ((&<:5 1) (pap tl (stn 1)
(lenbda (l1I\1"'1l1OVe opponent~ve cute"",, my-score opponent-score)

(if (eq? outcome 'win)
(case lII,}'-IIOYe

(scissors (buRp I scs))

(paper (bump I pap)

(B~Qne (buRp I S1:n))))

(....j ojlted-<:hoose sc:s pop 8tn))))

(do!fi (Kurt)
(let< (history '!null) ;let* for sequence

(max-cEpth 8)
(cortel&tloru; (make-vector (adell. max-dapth))))

(dafine (corr-init di!pth) ;loop to init vector
{cond (<> di!pth max-dapth) • !nuU)

t~lBe (\leCto1:-set 1 correlations
cepth (make-table '(scissors paper stone)

I (scissors paper stone) G»
(corr- init (adell. di!pth)))))

(dafln~ (cot"t-.ef onte post di!pth)
(~able-[ef (vector-ref correlations di!pth) ante post)

(daf ine (cocr- burrpl post dapth)
(table-bump I lVHCtor-re£ correlations di!pth) ante post»

(dafine (correlate di!pth) ;update for latest move
(let «(predictor (list-ref history di!pth))) ;move • di!pth' throws back

(rond «(ox (oot pradi~tor) ;if before the beginning,
(>? dapth ma~-di!pth» I !null) ; or too daep, do nothing

(else (cor:[-b!.m1? ! ;predictor pl:edicts car
ptedlctor (car history) depth) ; 'depth' moves later

listing 2, (Continued on following page)

http:cor:[-b!.m1
http:cot"t-.ef

(correlate (add[depth)ll ll) ;db next deeper lBye~
(define (get-predictions depth) ; (subl depth) j Ogs

(let ((predictor (list-ref history (subl depth)l)) ; table for next move
(cond ((or (not predictor) ;if no entry, use

(>? depth max-depth)) '(90 0») ; "d(lI.t ive identity
(else (add-lists ;BA.In correla

(list (corr-ref predictor ' SCis~r5 ~th) ; tiona for
(corr-ref predictot ' PlIPe< dlpth) ; three mve
(corr-ref predictot 'stone ~tb)) i choices

(get-predictions (add! depth)) II))) ; add next l aysr
(corr-init 0) ;bod(of "Kurt' be<;lins here
(la:nbda (my-move opponent-rove rutcome my-score opfX)nent -scorol

(i f opponent-move (set I history (cons opponent-1ll>V8 hi"tory))

(correlate 1)

(expect-list (get-predictions 1)))))

Listing 2. (Continued from preceding poge)

.. , Make-garre serves as the 	referee in scisso[s- pApet-Gtone
; ; ; match. It calls eadl of the two contestants i n turn , passing
; ; ; than the results of the previous throw tlDd keeping triIdc of

the current score., "
(<t.fi oe (make-gane player! playsr2) ;players ar:e ptocs , not IWDeS of procs

(l et «(left-player (playerl» ;each p1.ayet called h,m, to initialize,
(right-player (player2)) teturm r>g th<t p.:oc called On each throw

(l e ft- move f lf.lse)

(·right-move tlf.lse)

(wlnning-sl de '!false)

(left-score 9)

(r [~t-score 0))

(l...t>da ()
(let ((left-tenp (left-player 	left-move ; call with resulls

right-move ot previOUS mOve
(case winning-side and get '- IIIDV9

(left 'win) Q returned val....
(right 'lose) tmlp V,"" 1ables
(tie 'tie) are needed to
(else f ! falsell ensure that ~nd

l e f t-score ; p15yer c ... hllVe
risht - BtDOre)) no k"""loI~ or

(right-tertp (right- player tight-moVe what 1st pla~r
left-move ls dblng
(case winning-side

(right 'win)
(left '1.-)
(ti e 'tiel
(else II false.))

cight-sCQte
left-lICCnOe) I)

(setl left-move left-temp)

(set! right-move right-temp)

(set! wi nnlng....id! (winner left-move r.i!l>t__11

(case winni ng-Side

(left (bunp! left-score»)
(right (bump I r 'ght-score)))

(list left-move r ight -move winning-side lef~-soore right-scorellll)

\d!fine (winner left-move right-move)
(let ((win-table (vector (vector ' tie ' left , right ,left]

{vector j right 'tIe 'left 'left)
(vector ' l eft '.right 'tie , leftl
(vector 'right 'right ' tight ' tie)) 1I

(deflne (,n de. move)
{case fDOve

(scissors (iI)
(paper l)
(srone 2)
(else 3»)}

(vector -ref (vector-ref win-table (index left-move» (index right-ftDve))

Listing 3.

COMPUTER LANGUAGE. DECEMBER 1986 30

