
THEORY & PRACTICE | ' I
/,! A a JULifL _ .̂, ■ I I \ Mlir f - 'JUII - lT^ ifl l lfl IWhj l Qi■< - . . - .■ :■■■■ .■■■ £ , * # f , ■ a - W i - ■ ■ I " i J T 7 -

^■O B ^ H B I B w H l H E ^ f t f e t J t E J S S S

Of course, unless one has a theory, one
cannot expect much help from a computer
(unless it has a theory). . . .

—Marvin Minsky

insky wrote
these words in
connection with

a famous little stinker of a problem, one
that has resisted both theorizing and com
putation for some 65 years.

The problem goes like this. Take any
string of Os and Is at least three digits
long. Examine the first digit. If it is a 0,
delete the first three digits and append 00
to the end ofthe string; if it is a 1, delete
the first three digits and add 1101 to the
end. Now repeat the procedure with the
resulting string, and then with the result
of that transformation, and so on. The
question is: what is the ultimate fate ofthe
string? Does it grow infinitely long or
dwindle away to nothing, or does it just
meander forever between these extremes?

Consider the starting pattern 1000100.
Since the first digit is a 1, we delete the
three leftmost digits and add 1101, yielding
01001101. Now the leading digit is a 0, and
so we delete three digits and append 00;
the result is 0110100. In this case it is easy
to see what the outcome will be: in just a
few more steps the string shrinks to 000,
and then it falls below the minimum
length of three digits and disappears
entirely.

The starting string 1001 provides an
example that comes to a different end. In
six applications ofthe rules it yields the
following sequence of strings:

11101
011101

10100
001101

10100
001101

The last two patterns will now be
repeated in an unending cycle and so the
string never grows any longer than six
digits or any shorter than five. A third
example, which runs for 16 steps before it

Tag—you're it
By Brian Hayes
enters a repetitive cycle, is worked out in
Figure 1.

Still more patterns could be traced in
the same way. No amount of such case-by-
case analysis, however, can settle the gen
eral question of what happens to all possi
ble strings. Indeed, the case-by-case
method cannot even be guaranteed to
determine the fate of a single string. If the
string eventually dwindles away or enters
a repeating cycle, then of course the
answer will be found. If the string grows
without limit, however, we will never
know it because the calculation will never
end. What we need to solve the problem is
a decision algorithm: a procedure that will
decide the fate of any string and that is
certain to terminate after a finite number
of steps when given any valid input.

This little problem in string manipu
lation was first explored by Emil L. Post
in 1921, when he was a doctoral candidate
in mathematics at Princeton University. A
colleague suggested naming the problem
"tag" because the two ends ofthe string
seemed to chase each other in a way that
reminded him ofthe children's game. A
number of other investigators (including
Minsky) have worked on the problem
since then, and in recent years they have
brought the power ofthe computer to bear
on it.

Nevertheless, we live in a state of
almost perfect ignorance about the nature
of Post's tag system. No one has solved
the problem by devising a decision algo
rithm, but no one has proved that it cannot
be solved. No one has found a string that
does not either dwindle away or enter a
cycle, but no one has shown that such
strings do not exist.

I do not have a theory about tag sys
tems, and neither does my computer. All
the same, some interesting empirical
observations can be made about the evo
lution ofthe systems. Maybe those obser
vations will lead keener minds and
machines toward the development of a
theory.

The fates of strings
A tag system can have just three possible
fates. First, the string can shrink to fewer
than three digits and vanish. This will
happen if at any point in the calculation all
the digits becomes 0s. Actually, it is not
even necessary for all the digits to be 0s; it

is sufficient for 0s to appear at positions 1,
4, 7,10, and so on. It is only these posi
tions (which I shall call the key positions)
that are examined in applying the tag
rules, and so they alone determine the fate
of a string.

The second possibility is that the sys
tem will enter a repetitive cycle. This fate
is inevitable if any one string appears
more than once in the evolution ofthe sys
tem. It is easy to see why. Each string
uniquely determines its own successor;
there can be no branching in the develop
ment of a tag system. Suppose string A
gives rise to string B, which in turn pro
duces C, D, and a series of further
descendants; if any one of these succes-

ring
10010
101101
1011101
11011101
111011101
0111011101
101110100
1101001101
10011011101
110111011101
1110111011101
01110111011101 I
1011101110100
11011101001101
111010011011101
0100110111011101
011011101110100 1.
01110111010000 1.
1 0 111 0 1 0 0 0 0 0 0 l ;
11010000001101 1.
100000011011101 1.
0000110111011101 li
011011101110100
01110111010000
1 0 111 0 1 0 0 0 0 0 0 i
11010000001101 1.
100000011011101 1.
0000110111011101 1<

Application of the tag rules to the sta
string 10010 leads ultimately to a cycle Vr,
a period of six. The 15-digit string produced
at step 16 appears again at step 22, and
hence the entire cycle of six strings will be

■*-
-Si "*:

sors generates string A again, then B, C,
and all the rest must follow in an endless
cycle.

The third possibility, of course, is that
the system will go merrily on for an
infinite number of steps. It is important to
recognize that for this to happen, the
string must grow longer without limit.
The proof is straightforward. Suppose
there were some initial string that evolved
endlessly without dwindling away or
cycling but also without ever growing
longer than 100 digits. There are only 2I(X)
binary strings of 100 or fewer digits, so
after no more than 2100 steps at least one
string would have to be repeated. The sys
tem then inevitably enters a cycle, which
contradicts the original assumption; thus
no such initial pattern exists.

In analyzing a tag system it is tempting
to try a probabilistic approach. Each time
a 1 comes to the head ofthe string, the
length increases by one digit, and each
time a 0 appears the length decreases by
one. Thus if the digits at the key positions
have a uniform, random distribution, one
might expect the length to remain constant
on the average.

This argument could be taken a step
further. The variations in the length ofthe
string should describe a one-dimensional
random walk centered on the average
length. Any one-dimensional random
walk, if it is continued long enough, can
be expected to visit all the sites available
to it; in this case the string should at some
point becomes arbitrarily short, drop
below the three-digit threshold, and dwin

dle away. (The blind man, stumbling
about at random on top ofthe cliff, even
tually falls over the precipice.) Even
before that happens, the system may light
upon a pattern that leads into a cycle.

The trouble with this analysis is that the
pattern of 0s and Is is not random; on the
contrary, it is generated by a fully deter
ministic process. Moreover, even if most
ofthe strings have the statistical proper
ties of random patterns, there may well be
exceptional strings that behave very dif
ferently. At best a probabilistic argument
can predict the typical outcome, but what
is of greatest interest is the singular case.

The tag problem can be expressed as a
Turing machine program. It is most con
veniently formulated for a two-headed
Turing machine, as shown in Figure 2.
One head reads digits at the front ofthe
string and instructs the other head to write
new digits at the rear. The question is then
whether the two heads ever come together
or whether they grow infinitely far apart.
This formulation gives a clue to why the
problem is so hard. Predicting the out
come of all possible tag systems may be
equivalent to the Turing machine halting
problem, the granddaddy of all intractable
problems in computer science.

Another way to view tag systems is in
terms of formal languages. A language
can be defined as a set of strings, where
each string is made up of symbols drawn
from a finite alphabet. Here the alphabet
consists ofthe two symbols 0 and 1, and
the tag transformation rules form a gram
mar defining which strings (out of all pos
sible binary strings) are members ofthe
language. The two grammar rules can be
expressed as:

0XX$ -* $00
1XX$ -> $1101

^^^^^^^^^^^^^^^^^^^^^^^^^H
■*— Tape motion

IDDI1DDQDDH!
/ R e a d h e a d W r i t e h e a d ^ / \

O n r e a d i n g 0 w r i t e 0 0 j
On reading 1 write 1101

S3

Finite-state control

Although Emil Post investigated the tag problem 15 years before Alan Turing invent
universal computer, a tag system can be regarded as a Turing machine program. A re
head examines the first digit written on an infinite tape and instructs a write head to ac
either 00 or 1101 after the last digit. The read head then advances by three digits. Thus
tag problem would be solved if one could solve the Turing machine halting problem (th
general question of whether a Turing machine halts when given an arbitrary input strin
The halting problem is known to be insoluble, but it has not been proved that the speci

3d his

the

i

In these rules X stands for any single sym
bol (that is, either 0 or I), and $ represents
any string of symbols of arbitrary length,
including the empty string. Hence the first
rule states that if a string consists of aO
followed by any two symbols and the arbi
trary substring $, then it can be trans
formed into $ followed by 00.

These rules differ in an important way
from the rules commonly used to specify
programming languages. The grammars
of virtually all programming languages
are said to be context-free, which means
(among other things) that each grammar
rule has only one symbol on its left side.
In the tag-system grammar an arbitrarily
long string of symbols appears on the left
side of each rule. The grammar is a mem
ber ofthe most powerful and most com
plex class of grammars, the unrestricted
recursive grammars.

How to play tag
Although tracing individual tag systems
cannot answer the deepest questions about
the nature ofthe systems, it is a useful
way to gather information about them. A
computer, even one without theories, can
be of much assistance in this information-
gathering. Many initial patterns go on for
thousands of steps before settling into a
cycle or dwindling away, and it is not hard
to find patterns that continue for millions
of steps. Following their progress by hand
would be tedious at best.

The first step in writing a tag program
is to choose a data structure for the string
of 0s and Is. The data structure must allow
digits to be deleted at the front ofthe
string and added at the rear. The structure
I chose is a circular queue, or ring. One of
its advantages is that when digits are
added or deleted, the remaining digits
never have to be moved. Some Turbo Pas
cal procedures for manipulating the queue
are shown in Listing 1.

The usual way of implementing a queue
is to declare an array of memory cells and
then maintain pointers to the two cells that
represent the head and the tail ofthe
queue. This works well enough, but my
personal preference is for a slight vari
ation: instead of a tail pointer, I prefer to
record the current length ofthe queue.
When using head and tail pointers, special
care must be taken to distinguish a full
queue from an empty one, since both con
ditions might be signaled by having the
head and tail pointers point to the same
cell. With a head pointer and a length
variable, the ambiguity cannot arise.

The routines EnQ and DeQ add and
remove digits from the queue. One small
peculiarity in their code is worth men
tioning. Because a circular queue is being
implemented by a linear array of memory
cells, all calculations of position within
the queue must be made modulo the queue
size. In other words, if the head pointer is
at the last cell in the array and it is

Figure 2.

22 COMPUTER LANGUAGE ■ AUGUST 1986
/' _

advanced by one cell, it should point to
the first cell. An expression such as (Head
+ I) mod Qsize would accomplish this,
but the mod operator is comparatively
slow in most languages. (It entails a
division, which is almost invariably the
slowest arithmetic operation.) By making
Qsize a power of 2, the modulo calcula
tion can be avoided. (Head + 1) and
Qmask, where Qmask is a constant equal
to Qsize - 7, has the same effect and runs
much faster.

I decided to implement the queue as an
array of characters, which is an extrava
gant waste of space. Each digit takes up a
full byte, when it could be represented by
a single bit. The underlying reason for
this decision was laziness—I didn't want
to complicate the routines with code for
extracting individual bits—but I ratio
nalized that I was trading space for time. I
thought that on a byte-oriented machine
routines for manipulating a character
array would be faster than those for a bit
array. On thinking about it further I'm not
so sure. It's true that extracting bits would
require masking operations and eventual
conversion to character form; on the other
hand, the more compact bitmap would
drastically reduce the number of memory
accesses. Perhaps some reader will settle
the issue by trying both methods.

The function TagStep is at the heart of
the program; it is called once for each step
in the evolution ofthe tag system. It
examines the first digit ofthe string,
deletes three characters, and then adds
either 00 or 1101 to the end. An initial ver
sion, based on calls to EnQ and DeQ, is
shown in Listing 2. A more efficient ver
sion that eliminates the overhead of these
procedure calls is given in Listing 3.

Detecting repetition
Much else is needed in a complete pro
gram for exploring tag systems: routines
for input and output, for stepping through
a sequence of initial patterns, for deter
mining the fate of a pattern, for collecting
statistics, and so on. Most of this code is
straightforward, but one other area has an
element of subtlety to it. How can a pro
gram detect when a tag system has entered
a cycle? A brute-force solution is guaran
teed to work: store each string as it is gen
erated and then compare every new string
with all the preceding ones. As soon as a
match is found, the tag system is forever
committed to a cycle.

The trouble with the brute-force
method is that it requires entirely too
much brute force. For a pattern that runs
through a million iterations before enter
ing a cycle, with an average string length
of 1,000 digits, the storage requirement
would be at least a gigabyte. Further
more, roughly 500 million string com

parisons would be needed. There are bet
ter ways, based on sampling rather than
exhaustive record-keeping.

Consider a program that stores every
hundredth string and compares each new
string with these selected stored ones.
Suppose a particular tag system enters a
cycle at step 917 and that the period ofthe
cycle—the number of steps between
repeated values—is six. Thus for every
value of/V equal to or greater than 917, the
string at step N will be identical to the
string at step N + 6.

The program will not detect this cycle

at the earliest possible moment (step 923),
but soon after the next checkpoint (step
1,000), the repetition will become appar
ent. The string at step 1,006 will be identi
cal to the one stored at step 1,000. Fur
thermore, the interval between the
checkpoint and the step number where the
cycle is detected gives the period ofthe
cycle. The point at which the cycle actu
ally begins can be found by returning to
the previous checkpoint (step 900) and

lobal declarations }
s t
i z e = 8 1 9 2 ; { m u s t b e p o w e r o f 2 }

Q m a s k = 8 1 9 1 ; { m u s t b e Q s i z e - 1 }
type
StepCode = (OK, Over, Under); {result returned by TagStep}" YP& ~ record

i : a r r a y [0 . . Q s i z e] o f c h a r ;
ead : i n t ege r ;
e n : i n t e g e r ;
tepNo : real;
»d;

{ Add 'Digit' to the tail of 'Q'. }
procedure EnQ(var Q : Qtype; Digit : char);

g in
.D[(Q.Head + Q.Len) and Qmask] := Digit;
.Len := Succ(Q.Len);
d;
eturn a character removed from the head of 'Q'. }
ction DeQ(var Q : Qtype) : char;
g in
'.Len := Pred(Q.Len);

Q.Head := Succ(Q.Head) and Qmask;

Listing 1

function TagStep (var Q : Qtype) : StepCoda; { prototype versi

Digit, Dump : char;
v^egin

if Q.Len < 3 then TagStep := Under
=lse if Q.Len = Qsize then TagStep := Over
2lse
begin
TagStep := OK;
Digit := DeQ; Dump := DeQ; Dump := DeQ;
if Digit = '1' then
begin
EnQ(' l ') ; EnQ(' l ') ; EnQ('0 ') ; EnQ(' l ') ;

end
else
begin
EnQ('0'); EnQ('0');

end;
Q.StepNo := Q.StepNo + 1.0;

end;

{ queue empty }
{ queue full }

{ read first and
{ dump next two

{ append 1101

{ append 00

j f i Listing 2.

comparing successive pairs of strings sep
arated by an interval of six steps.

A number of refinements can be added
to this cycle-detection method, and the
storage requirement can be reduced to as
few as two strings. (In my implementation
I kept track of five.) The optimum algo
rithm was worked out by R. William Gos
per of Symbolics Inc. It is described
briefly by Donald E. Knuth of Stanford
University in volume 2 of The Art of Com
puter Programming. (The context there,

incidentally, is the problem of detecting
cycles in the output of a pseudorandom-
number generator.)

Whatever method is used for detecting
cycles, the program is sure to spend a sub
stantial amount of its time comparing
strings of digits. It is worthwhile making
the comparison as efficient as possible.
The function EqQ in Listing 4 is one solu
tion. It exploits the fact that if two strings
are identical, their lengths must be identi
cal. A comparison ofthe lengths can settle

r
tion TagStep(var Q : Qtype) : StepCoda; { optimized versi
i n

f Q.Len < 3 then TagStep := Under { underflow }
lse if Q.Len = Qsize then TagStep := Over { overflow }
lse

TagStep := OK;
if Q.D[Q.Head] = '1' then
begin
Q.Head := (Q.Head + 3) and Qmask;
Q.Len := Q.Len - 3;
Q.D[(Q.Head + Q.Len) and Qmask] := '1';

13.Len := Succ(Q.Len);

}.D[(Q.Head + Q.Len) and Qmask] := '1';
2.Len := Succ(Q.Len);
}.D[(Q.Head + Q.Len) and Qmask] := '0';
2.Len := Succ(Q.Len);
2.D[(Q.Head + Q.Len) and Qmask] := '1';
3.Len := Succ(Q.Len);

begin
Q.Head := (Q.Head + 3) and Qmask;
Q.Len := Q.Len - 3;

.D[(Q.Head + Q.Len) and Qmask] := '0';

.Len := Succ(Q.Len);
Q.D[(Q.Head + Q.Len) and Qmask] := '0';
Q.Len := Succ(Q.Len);
nd;
StepNo := Q.StepNo +1.0;

turn TRUE if two tag strings are identical. }
tion EqQ(var Ql, Q2 : Qtype) : boolean;

i : integer;
in
Q := False;

f Ql.Len = Q2.Len then { check for equal lengths first }
begin

ft N := 0 to (Ql.Len-1) dof Ql.D[(Ql.Head+N) and Qmask] <> Q2.D[(Q2.Head+N) and Qm;
then exit;

EqQ := True;

Listing 4.

the question for many pairs of strings
without a digit-by-digit comparison ofthe
string contents.

Observations and questions
Figure 3 shows the fates of 50 consecutive
starting patterns beginning with an arbi
trarily chosen value 24 digits long. Note
that I have not traced all possible binary
strings in this range but only those that
differ at key positions. The reason is that
the digits between the key positions are
deleted by the tag transformations without
ever being examined. For example, the
initial patterns 100,101,110, and 111 all
yield the same tag system because only
the first digit in each pattern is acted on by
the tag rules.

Along with the outcome of each pat
tern, Figure 3 gives the run length: the
number of steps taken before the string
either vanishes or enters a cycle. For
those patterns that do cycle two additional
items of information are listed: the period
ofthe cycle and the number of digits in the
first repeated string. About two-thirds of
the 50 systems become cyclic, and the rest
dwindle away after no more than about
400 steps. Most of those that enter a cycle
do so after fewer than 100 steps, but there
are exceptions. One system goes on for
2,125 steps before it gets stuck in a cycle;
another lasts for 1,543 steps. More than
half of the cycles have a period of six, and
another 30% have a period of 10.

Looking at a larger sample suggests
that these observations are fairly repre
sentative. A statistical summary of results
for the first 10,000 consecutive tag sys
tems is given in Figure 4. Three-fourths
ofthe systems cycle and the rest dwindle.
Periods of 6 and 10 continue to dominate;
indeed, together they account for
more than 90 percent of all the cycles.
The longest run before a cycle begins is
24,563 steps, and the longest run before a
system dwindles to extinction is 1,398
steps.

Based on these findings, there are a few
observations I would make and a few
questions I would ask.

The period of every cycle is an even
number. The reason is not hard to find.
(Hint: Consider why there can be no cycle
with a period of one, that is, a single pat
tern that repeats continuously.)

The distribution of periods in any large
sample of tag systems is more difficult to
understand. In the first 10,000 systems the
only periods that occur are 2,4, 6, 8,10,
12,16, 28, and 40. Do the intervening
even numbers ever turn up? Why are there
no long periods of, say, 1,000 or 10,000
steps? What can explain the curious
predominance of 6 and 10? Is there some
thing about the tag transformation itself
that favors cycles with these periods?

One clue to the distribution of periods

r t ing str ing
"100100000100000000

100100000100000100
-100100000100100000
1100100000100100100
'100100100000000000
100100100000000100
100100100000100000
100100100000100100
100100100100000000
100100100100000100
100100100100100000
100100100100100100

/00000000000000000000
00000000000000000000001
'00000000000000000001000
iOOOOOOOOOOOOOOOOOOO1001
•00000000000000001000000
00000000000000001000001
00000000000000001001000
00000000000000001001001
00000000000001000000000
00000000000001000000001
00000000000001000001000
00000000000001000001001
00000000000001001000000
00000000000001001000001
00000000000001001001000
00000000000001001001001
00000000001000000000000
00000000001000000000001
'00000000001000000001000
iOOOOOOOOOO1000000001001

0000000000001000001000000
0000000000001000001000001
0000000000001000001001000
0000000000001000001001001
IOOOOOOOOOO1001000000000
00000000001001000000001
00000000001001000001000
00000000001001000001001
00000000001001001000000

JOOOOOOOOOO1001001000001
0000000000001001001001000
0000000000001001001001001
0000000001000000000000000
0000000001000000000000001
0000000001000000000001000
0000000001000000000001001

100000001000000001000000
00000001000000001000001

a l s y s t e m s t e s t e d : 5 0
s t e m s t h a t c y c l e : 3 1
t e r n s t h a t d w i n d l e : 1 9

Fa te Run P e r i o d D i g i t s
cycle 59 \ ■■
dwindle 396
cycle 143 6 3 3
cycle 53 6 3 7
cycle 45 1 0 3 1
cycle 47 6 3 3
cycle 917 WZfm
cycle 21 6 3 3
cycle 927 K Z fl
cycle 2125 K M
cycle 1543 WM
cycle 853
dwindle 23
dwindle 27
cycle 18 6 1 3
dwindle 33
dwindle
dwindle
cycle 4 1 3
cycle 18
cycle 20
dwindle 31
cycle 46 ' i f /

cycle 26 jv-
cycle 16 jE-
cycle 88 D ® :
cycle 24 j i
cycle 80 | ® - i l l
dwindle 31
dwindle 37
dwindle 43
dwindle 415
dwindle 421
cycle 56 1 0 3 1
cycle 86 1 0 3 1
cycle 118 1 0 3 1
dwindle 37
dwindle 419
cycledwindle

- w
cycle l j @ ;■ ' ;
cycle 1 0 3 1
cycle 8 2 3
cycle
dwindle

1 0 3 1

dwindle
cycle 4 1 3
cycle 18 ^ ndwindle 33
dwindle 423

62.00%
38.00%

t r i b u t i o n o f p e r i o d s a m o n g s y s t e m s t h a t e n t e r a c y c l e
r i o d N u m b e r P e r c e n t

3 9 . 6 8 %
1 7 5 4 . 8 4 %

1 3 . 2 3 %
' 2 9 . 0 3 %
l 3 . 2 3 %

Fifty initial patterns are classified according to whether they eventually dwindle av>
mter a cycle; the third possible fate—endless growth—has never been observed. The

labeled "Run" gives the number of steps required before the fate is determined,
or strings that dwindle the run is assumed to end when the number of digits in the string

falls below three; in other words, the starting pattern 000 has a run length of 1. For cyclic
patterns the run ends when a string that will be repeated first appears; for example, the
pattern traced in Figure 1 has a run length of 16. The period of a cycle is the number of

m one appearance of any repeated string to the next appearance. The "Digits"
ords the length of the string at the step where a cycle begins.

is that many systems are in fact entering
the same cycle. For example, a number of
systems converge on the 19-digit string
0000011011101110100, which cycles with a
period of 6. The 37-digit string
0000011011101110100000011011101110100 is
essentially a doubling of this pattern, and
it cycles with the same period. There are
analogous patterns of 55 digits, 73 digits,
and so on. Given that all the cycles invest
igated so far have quite short periods,
there may be only a small number of dis
tinct cycles being observed. Questions of
this kind were addressed in the 1960s by
Shigeru Watanabe ofthe University of
Tokyo.

There is some evidence that as the start
ing patterns get longer, the proportion of
systems that cycle increases (and hence
the proportion that dwindle decreases).
Does this trend continue indefinitely, so
that for very long starting patterns the
probability of entering a cycle approaches
unity?

One might guess that as the number of
Is at key positions increases the average
run length would also increase. (The con
verse is unquestionably true: with Os in all
key positions, the system dwindles away
immediately.) Figure 5 tabulates the fates
ofthe first 50 strings that have Is in all key
positions. In the notation used in the fig
ure, (100)2 means 100100, (100)3 means
100100100, etc. There are certainly some
long runs among these systems, most
notably (100)24, which continues for
4,346,269 steps before degenerating into
a commonplace cycle with a period of 6.
But if the curve is generally headed
upward, there is a great deal of noise in it.
Neither the size of the starting pattern nor
the number of Is in key positions would
appear to be very reliable predictors of
run length.

In both Figure 3 and Figure 5 the col
umn headed "Digits," which gives the
length ofthe string at the step where the
system first enters a cycle, has a mys
terious regularity. All ofthe numbers in
this column are odd. When I first
observed this fact after examining several
hundred tag systems, I made the obvious
conjecture that it is always true and set
about finding out why.

I thought I was on the right track when I
was able to show that if the number in the
"Digits" column is always odd, then the
cycle must always be entered on a 00 step,
rather than a 1101 step. In other words, the
last string before the repetitive sequence
begins must have a 0 as its leading digit,
so that the string length is reduced by one
in the following step. This line of argu
ment was looking very promising when I
discovered that the conjecture itself is not
true: a few starting patterns enter a cycle
on a string with an even number of digits.
In one sample of 1,000 tag systems, I
found six such anomalous patterns. This
is extremely vexing. In much of life, per
haps, the exception proves the rule, but in

mathematics a law valid in 99 and
44/100% ofthe cases is an abomination.

The tag problem has a tantalizing
resemblance to another famous little
stinker, generally known as the 3X +1
problem. In this problem one begins with
any positive integer X. IfXiseven,
replace it with X/2; if it is odd, replace it
with 3X +1. Then apply the same rule to
the new X. The question is: does X invari
ably descend to a value of 1 or are there
some initial values of X for which the
series diverges toward infinity? Like the
tag problem, the 3X +1 problem is
unsolved. Is there any deep connection
between them?

The tag problem as stated here is
merely one example of an infinite class of
related problems. The transformation
rules could call for deleting any number
of digits from the head ofthe string and
appending any sequence of digits to the
end. For example, one might delete two
digits and add either 0 or 101.

A further generalization would be to
use an alphabet with more than two sym
bols and devise transformation rules to be
followed when each of these symbols is
found at the head ofthe string. Post was
able to solve all tag systems based on a
two-symbol alphabet where no more than

gest run before entering a cycle
30010000000010010010010000010
gest cycle period

10010010010010010000010
Longest run before dwindling away

"000010000010010000010010000010

two symbols are deleted at each step.
Minsky proved that when the alphabet has
six symbols and six symbols arc removed
at each step, the tag problem is intrin
sically insoluble. The gray area in
between, including the (00,1101) problem
itself, is the area of active interest.

P o s t m o r t e m
When Post began work on the tag problem
in the early 1920s, his motive was not idle
curiosity. He was engaged in an ambitious
attempt to secure the foundations of math
ematics. At the turn ofthe century David
Hilbert had argued that all of mathematics
and logic could be reduced to a formal
system: a set of symbols and a set of rules
for manipulating the symbols without
regard for their meaning. Hilbert envi
sioned a mechanical process—what we
would now call an algorithm—that in
principle could complete mathematics.
Given a set of axioms, or self-evident
truths, the algorithm would generate all
true statements derived from the axioms
and no falsehoods.

Post was trying to prove the existence
of such an algorithm when he stumbled
onto the tag problem. He had already
demonstrated that one very simple set of
symbols and rules is complete and consis
tent; applying the rules to any axiom writ
ten in these symbols would yield all state
ments logically consistent with the axiom
and only those statements. Unfortunately,

(24,563 steps)

(40 steps)

(1,398 steps)

sms that cycle:
ams that dwindle:

7 , 5 6 2 7 5 . 6 2 %
2 , 4 3 8 2 4 . 3 8 %

ribution of periods among systems that enter a cycle
N u m b e r Percent

0.29%
1.44%

54.35%
1.49%

37.52%
0.19%
1.24%
2.99%

0.49%

e distribution of cycle periods is one of the most puzzling aspects of the I
ids of 6 and 10 seem to be strongly favored over all other possibilities.

Figure 4.

1 9 ■ ■ ■
r j i M /

WALTZ
LISP

The un ive rsa l , supere ffic ien t
LISP for MS-DOS and CP/M.

Waltz Lisp is a very powerful and complete
implementation of Lisp. It is substantially
compatible with established mainframe Lisps
such as Franz (the Lisp running under Unix),
Common Lisp, and Maclisp.

- In independent tests, Waltz Lisp
was up to twenty(!) times faster

than competing microcomputer Lisps.

I Built-in WS-compatible fullscreen file editor. Full debug
ging and error handling facilities are available at all
times. No debuggers to link or load.

■ j,"T5|fW|| Random file access, binary file
mMLiaiiSiiB support, and extensive string

operations make Waltz Lisp suitable for general
programming. Several utilities are included in the
package.

CHH1BM Functions of type lambda (expr),■I linn m niambda (lexpr), lexpr, macro.

Splicing and non-splicing character macros. Full
suite of mappers, iterators, etc. Long integers (up
to 611 digits). Fast list sorting using user defined
comparison predicates. Built-in prettyprinting and
formatting facilities. Nearly 300 functions in all.

■ dP-WMHi Transparent (yet programmable)mMoiiMsM handling of undefined function
references allows large programs to reside partially
on disk at run time. Automatic loading of initializa
tion file. Assembly language interface.

Each aspect of
the interpreter is

described in detail. The 300+ page manual
includes an exhaustive index. Hundreds of illustra
tive examples.

Superbly documented.

16-bit versions require DOS 2.x or 3.x and 128K
RAM (more recommended).

~**\ Z-80 version requires CP/M
|\ 2.x or 3.x and 48K RAM'11 minimum. Waltz Lisp runs
|1 on hundreds of different•il computer models and is

, ,.„ 'ill available in all disk formats.w a l t z l i s p I

i !" ' ' i l l "Manual only: S30 (refund
able with order). Foreign
orders: add S5 for surface

mail. S20 for airmail. COD add S3. Apple CP/M, hard
sector, and 3" formats add S15. MC/Visa accepted.

For further information or to order call

1-800-522-LISP
In NJ and outside USA call 1-201-755-LISP

475 Watchung Ave.
Watchung, NJ 07060

CIRCLE 110 ON READER SERVICE CARD

BWWWI'r1-1'' r'

Sequence Fate R u n P e r i o d
(100' cycle 4 2
(100 2 cycle 1 5 6
(100 3 cycle 1 0 6
(100 4 cycle 2 5 6
(1005 dwindle 409
(100 6 cycle 4 7 1 0
(100 7 cycle 2 , 1 2 8 2 8
(100 8 cycle 8 5 3 6
(100 9 cycle 3 7 2 1 0
(100 ,0 cycle 2 , 8 0 5 6
(100 " cycle 3 6 6 6
(100 u cycle 2 , 6 0 3 6
(100 ,3 dwindle 701
(100 M dwindle 37,910
(100 ,5 cycle 6 1 2 6
(100 '6 cycle 1 2 7 2 8
(100 ,7 cycle 9 9 8 1 0
(100 ,8 cycle 2 , 4 0 1 6
100 ,9 cycle 1 , 0 0 1 0
100 20 cycle 6 2 3 6
100 21 cycle 5 , 2 8 0 6
100 22 dwindle 1,776
100 23 cycle 1 , 4 6 2 6
100 24 cycle 4 , 3 4 6 , 2 6 9 6
100 " dwindle 4,127
100 26 cycle 3 , 2 4 1 (
100 27 cycle 7 , 0 1 8 (
100 28 cycle 3 , 8 8 5 (
100 2"
100 30

cycle 1 4 , 6 3 2 t
cycle 7 , 0 1 9 (

100 31 cycle 4 , 5 6 4 I
100 32 cycle 4 , 2 7 7 5 ' ,
100 33 cycle 1 4 7 , 6 8 8 (
10034 cycle 1 , 8 5 7 t
100 * cycle 1 1 , 1 2 8 <
100 36
100 37

cycle
cycle

8 1 , 1 4 1 (
2 0 , 2 0 4 (

100 38 cycle 3 , 8 4 7 t
100 39 cycle 1 1 6 , 0 1 4 (
100 40 cycle 7 , 6 3 5 t
100 4' cycle 6 , 4 8 8 I
100 42 cycle 5 , 6 6 5 I
100 43 cycle 6 , 1 4 2 t
100 44 cycle 7 3 , 5 1 5 2 1
100 45 cycle 5 , 8 2 6 6
100 46 dwindle 6,060
100 47 dwindle 3,779
100 48 cycle 7 , 8 6 5 2 8
100 49 cycle 2 8 , 6 3 0 6
100 50 cycle 8 1 5 , 3 2 1 6

Digi ts

Statistics for run of 50 systems
S y s t e m s t h a t c y c l e : 4 3 8 6 %

„ . ; 7 1 4 %

stribution of periods among systems that enter a cycle

I i o d N u m b e r P e r c e n t

1 2 . 3 3 %
3 3 7 6 . 7 4 %

4 9 . 3 0 %
4 9 . 3 0 %
1 2 . 3 3 %

^ reasonable hypothesis is that strings with 1 s at all the key positions might have longer
s than other strings. A tabulation of results for the initial strings 100,100100,100100100.
includes some quite long runs, but there is no clear pattern. Note that only one period

- 4Liat was not seen in the first 10,000 tag systems appears in this sample: the string
jr the concatenation of 100 written 32 times, cycles with a period of 52 steps.

the set of symbols was too limited to
express much of interest about logic or
mathematics.

When Post tried to extend his results to
richer formal systems, he ran into trou
ble. There were too many symbols that
could be manipulated in too many ways,
and so he retreated, in several steps, to the
tag problem, which at first appeared to be
more tractable. As we have seen, he failed
there, too.

The reason became apparent a decade
later, when Kurt Godel, a young Austrian
mathematician, showed that no formal
system could possibly accomplish what
Hilbert dreamed of. As soon as a formal
system becomes powerful enough to
encode its own rules, it also becomes
powerful enough to express
contradictions.

Gbdel's incompleteness theorem came
as a great surprise to mathematicians, and
not a pleasant one. It did not, however,
end work on formal systems. Godel had
shown what cannot be done by pushing
symbols around on paper; Alonzo
Church, Alan Turing, and Post himself
went on to show what can be done. And
the power ofthe formal systems based on
their work is not negligible; today we call
those formal systems languages, and we
give them names such as Pascal, LISP,
and Ada.

References
Post, Emil. "Absolutely Unsolvable Prob

lems and Relatively Undecidable Proposi
tions: Account of an Anticipation," in Tfie
Undecidable: Basic Papers on Undecidable
Propositions, Unsolvable Problems and
Computable Functions, ed. by Martin
Davis. Hewlett, New York: Raven Press,
1965. [Post did not write a full account of
his work on tag systems until 20 years after
the fact, and that account was not published
until another 20 years had passed. This col
lection is the only place it appears. The vol
ume also includes fundamental papers by
Godel, Church, Turing, and others.]

Watanabe, Shigeru. "Periodicity of Post's
Normal Process of Tag," in Mathematical
Theory of Automata. Brooklyn, N.Y.: Poly
technic Press, 1963. [Watanabe analyzes
the kinds of patterns that can become peri
odic in a tag system.]

Minsky, Marvin L. Computation: Finite and
Infinite Machines. Englewood Cliffs, N.J.:
Prentice-Hall, 1967. [Includes a brief but
lucid description ofthe tag problem in the
context of computer science and language
theory.]

Brian Hayes is a writer who works in both
natural and formal languages. Until 1984
he was an editor o/Scientific American,
where he launched the Computer Recre
ations department.

COMPUTER LANGUAGE ■ AUGUST 1986

