
Part III: A homemade compiler

! !!!h e g a p b e t w e e n

theory and prac
tice is one of
life's recurrent

disappointments. In predicting the
weather, navigating by the stars, writing a
fugue or fixing a carburetor, a grasp of
theory is valuable, perhaps even essential,
but never quite sufficient. It is the same in

designing a compiler for a programming
language. Grammatical principles guide
the construction, but craft is needed too.

Parts I and II of this series focused on
the theoretical view of language. It was
shown that a language can be defined as a
set of strings made up of symbols drawn
from a specified alphabet. Rules of gram
mar determine which strings are sen
tences of the language. The grammar can
be embodied in an abstract machine called
a recognizer, which reads an input string
and either accepts it as a sentence or

rejects it as being ill-formed.
The recognition machines of linguistic

theory are idealized devices, built out of
pure thought stuff. Nevertheless, an ideal
recognizer can be closely approximated in
a program written for a real computer.
The structure of the program follows

directly from that of the underlying gram
mar. In some cases the transformation of a

grammar into a recognizer can even be
automated, a sure sign the process is well
understood.

But a recognizer is not a compiler. A

programmer wants more in the way of
output than a pass-or-fail indication of
whether a program has any syntax errors;
what is wanted is object code, ready to
execute on some machine. In the gener

ation of that code a formal grammar offers

only limited help. It contributes even less
to the many housekeeping tasks of the

compiler: recording the names of vari
ables and procedures, allocating and

reclaiming storage space in the target
machine, calculating addresses, and so
on.

In this third and final article I shall
examine how theory is reduced to practice
in the art of compiler writing. The dis
cussion centers on a compiler for a toy

language I call Dada. The full program
listing for the compiler is available from
the COMPUTER LANGUAGE Bulletin
Board Service, CompuServe account, and
Users Group (see page 4).

Dada grammar
In developing Dada my one aim was clar
ity. Speed, efficiency, and utility were all
sacrificed to keep the compiler simple.
The vocabulary of the language and many

syntactic structures are borrowed from
Pascal, another language whose design
was guided by a concern for ease of com

pilation. To simplify further I left out
many of Pascal's useful features, and I
have consistently done things the easy

way, not the best way. The result is a
good-for-nothing language but one with a
compiler whose functioning can be traced
in detail.

Dada has only two data types: Boolean
values (true or false) and integers. There
are no characters, strings, arrays,
records, sets or pointers, and there is no
facility for defining new types. The if. . .
then . . . else statement is available to con
trol conditional execution, and a while
statement is provided for loops: the case,

for, repeat and goto statements arc not
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included. The most serious deficiency of
Dada is the absence of local variables and
parameters passed to procedures. All
variables are global.

When so much is omitted, what
remains? The most conspicuous feature of
a Dada program is its organization into
blocks of statements delimited by the key
words begin and end. The program starts
with a header, which is followed by decla
rations of variables and procedures and
concludes with a statement block. A pro
cedure has the same structure on a smaller
scale, except that it cannot declare vari
ables: a header is followed by further pro
cedure declarations and a block. Pro
cedures can be nested to any depth.

The grammar for Dada given in Table 1
defines the syntax of the language in 21

production rules. A rule such as Type :: =
integer \ boolean states that wherever the
symbol Type is encountered, it can be
replaced by either integer or boolean.
Type and all the other symbols that appear
on the left side of the rules are non
terminals, which represent categories of

symbols; only the terminals, such as
integer and boolean, appear in the actual
program text. Any string of terminals that
can be generated by applying the produc
tion rules is a valid Dada program.

A program is written as a linear

sequence of symbols, but under the sur
face it has a more elaborate structure. It is
a tree: a hierarchy of nodes linked in

parent-child relationships. The arrange
ment of the nodes and the pattern of links



between them encode all the syntactic
relations among the elements of the

program.
A grammar is a compact way of repre

senting an infinite family of trees. Non
terminal symbols label the interior nodes
of each tree, with the special symbol Pro

gram at the root, and terminal symbols are
hung on the leaf nodes. If the grammar is
unambiguous, every program corre
sponds to exactly one tree. Parsing the
program, or analyzing its syntax, is a

Dada grammar

matter of converting the one-dimensional
string of symbols into a two-dimensional
tree.

Grammars and parsers

The most useful grammars for program

ming languages are the ones called
context-free grammars. They are power
ful enough to describe most programming

concepts and yet are simple enough to
allow efficient compilation. The defini
tive property of a context-free grammar

Syntactic rules

P r o g r a m : : •!
D e c l a r a t i o n s : :!

V a r L i s t : : :

V a r i a b l e : :!!
T.

l o c k : : :

P r o c e d u r e s : : •

P r o c e d u r e : :!

S t a t e m e n t s : :
S t m t L i s t : :

Statement

A s s i g n S t m t : :
I f S t m t : :

E l s e C l a u s e : : •!

W h i l e S t m t : :

ProcStmt

E x p r e s s i o n : :
S i m p l e E x p r : : :
T e r m : :!

SignedFactor : - . :
F a c t o r : :!

Lexical rules

I d e n t i f i e r : : •
L e t t e r : : :

D i g i t : :!
N u m b e r : : :

S i g n : : :
R e l O p : :
A d d O p : :
M u l t O p : : <
Boolean Value ::

program Identifier; Declarations Block .
var VarList | e

Variable | Variable VarList

Identifier :Type;

integer \ boolean
Procedures Statements

Procedure Procedures | e

procedure Identifier; Block ;

begin StmtList end
Statement | Statement; StmtList | e

AssignStmt | IfStmt | WhileStmt | ProcStmt | Statements
Identifier := Expression
if Expression then Statement ElseClause

else Statement | e

while Expression do Statement

Identifier

SimpleExpr | SimpleExpr RelOp SimpleExpr
Term | Term AddOp SimpleExpr

SignedFactor | SignedFactor MultOp Term
Factor | Sign Factor

Number | BooleanValue | Identifier | (Expression)

Letter (Letter | Digit)*

A . . Z | a . . z

0 . . 9

Digit Digit*
+ | - | not
= I > I < I <> I > =

* | / | mod | and
True | False

Grammar for the language Dada is defined in 21 syntactic production rules and nine

additional rules that establish lexical categories. In each rule the strings of symbols to the

right of the ":: = " sign represent all the possible expansions of the symbol to the left. The

symbol " | " is pronounced "or" and separates alternative productions. In the lexical
rules an asterisk signifies repetition zero or more times.

Table!.

is that every production rule has just one

symbol on the left side of the ":: = " sign.
The grammar for Dada satisfies this con
dition, and so it is context-free. (The lan
guage itself is not entirely context-free,
but for the time being I shall discuss it as
if it were.)

The recognizing machine for a context-
free language is a pushdown automaton, a

computer in which the only available stor
age is a stack and the only accessible item
on the stack is the one at the top. Linguis
tic theory offers the assurance that every
context-free language can be recognized
and parsed by some pushdown automaton.
On the other hand, the theory does not

promise that the task can be done effi
ciently enough to be completed in a rea
sonable period (say a human lifetime).

Efficiency is in question because a
parser working by the most general
method has a vast array of choices. It can

attempt to match any production rule to
any string of symbols anywhere in the
source text; if the match fails, it can go on
to any other combination of rules and
strings. In the worst case the process does
not end until all possible combinations
have been tried.

The way to avoid this combinatorial

explosion is to limit the parser's freedom
of choice. One must guarantee that if the

input can be parsed at all, the correct
parse will be found by reading the sym
bols and applying the rules in a fixed

sequence. In order to make that guaran
tee, further constraints must be put on the
grammar. It must not only be context-free
but must also satisfy additional
conditions.

Left and right, top and bottom

All practical parsers scan their input from
left to right. A limited amount of back

tracking or looking ahead may be
allowed, but no symbol is added to the
parse tree until all the preceding symbols
have been parsed. Thus when the end of
the input is reached, the tree must repre
sent a complete and valid program.

The subclasses of context-free parsers
arc distinguished by the sequence in
which nodes are added to the tree. The
main division is between top-down and

bottom-up parsing methods. (The terms
employ the usual inverted frame of refer
ence for tree structures,-putting the root at
the top and the leaves at the bottom.) A
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top-down parser begins with the root node
and applies production rules to expand
each interior node until the leaves arc
reached; if the terminal symbols hung on
the leaves match the complete input

string, the program has been parsed.
Bottom-up parsing begins with the leaves
and tries to build a superstructure of
higher level nodes; the parse is successful
if the root node is reached.

There are still more choices to make.
At any node having more than one child,
the parser must decide which branch of
the tree to explore first. In applying the

production Term :: = Factor MultOp Term
a leftmost-first parser would expand Fac
tor and then MultOp and finally Term,
whereas a rightmost-first parser would
deal with the symbols in the opposite
order. Current fashion favors bottom-up,

rightmost-first parsers. They accept a
large class of grammars and tend to be
highly efficient. Furthermore, widely
available programs automatically gener
ate a parser of this type from a grammar

specification. The best known of the pro
grams is Yacc (Yet Another Compiler
Compiler), written by Stephen C. John
son of AT&T Bell Laboratories.

Although creating a bottom-up,
rightmost-first parser is easy with power
tools such as Yacc, it is difficult to do by
hand. In writing a compiler for Dada I
have therefore taken the opposite path of

top-down, leftmost-first parsing. The
technique I chose is the one known as
recursive-descent. It is by no means the
most efficient method, but it offers a
remarkable transparency. You can see

straight through the structure of the parser
to the underlying grammar.

If a grammar is to be suitable for
recursive-descent parsing, the production
rules must be free of left-recursion.
Because the parser follows a leftmost-first
convention, a rule of the form 5 :. = Sx
leads into an infinite loop. The parser
creates a node labeled S and then, expand

ing the leftmost symbol of the production,
appends a child node also labeled S. It
then expands the leftmost symbol and con
tinues adding S nodes indefinitely.

Eliminating left-recursion often entails
introducing new nonterminal symbols and
epsilon productions, which yield the
empty string. The grammar for Dada

given in Table 1 is written without left-
recursion. The symbol on the left side of a
rule is never the first symbol on the right
side.

Structure of a compiler
Translation, which is the basic task of a

compiler, cannot be done by merely look
ing up synonyms in a bilingual dictionary.
The translator must take in the source
text, build an internal model of its struc
ture and meaning, then create a new text
in the target language based on the model.

Most compilers break the process into
at least four phases. The first phase is lex
ical analysis, which assembles the source
text into the fundamental units called
tokens. In Dada tokens include numbers,
the names of variables and procedures,

keywords such as begin and end, and vari
ous signs and marks of punctuation. The
lexical analyzer, or scanner, reads a
stream of characters and emits a stream of
tokens.

Parsing is the next phase. The parser's
input is a stream of tokens and its output is
a tree encoding the syntactic structure of
the program. The tree organizes the
tokens into higher level groups,such as

expressions, statements, and procedures.
For example, the sequence of tokens
X + 1 would yield a node labeled + with
two children labeled X and 1.

Semantic analysis, the third phase,

assigns meaning to the nodes of the tree.
But what does "meaning" mean in a com

puter that lacks consciousness and the
capacity for understanding? A pragmatic
answer will do for present purposes: the

meaning of a program is the series of
actions elicited when the program is exe
cuted. The task of the semantic analyzer is
to interpret the abstract symbols manipu
lated by the parser as a prescription for
action.

In many cases the semantic analysis is

nothing more than a change in point of
view. When the parser reads the expres
sion X + 1, it installs three tokens in
nodes of the parse tree without attaching

any significance to them. They are mere
markers, empty of content. The semantic

analyzer views the same tokens as instruc
tions to add 1 to the value of the variable
X. No change is made to the structure of
the tree since the programming language
itself can express this meaning as well as

any other notation would.

One job often given to the semantic ana

lyzer is type checking. If Xis a floating
point variable and the literal value 1 rep
resents an integer, the semantic analyzer
would be expected to detect the type mis
match. In many languages it would auto

matically insert an additional node in the
tree calling for a type conversion.

The fourth phase of compiler operation
is code generation. It is here that the bi

lingual dictionary—a simple table of
substitutions—becomes useful. The code
generator traverses the parse tree, issuing
target-language instructions at each node.
The order in which the nodes are visited
ensures that the instructions are generated
in the correct sequence. The traversal of
the tree proceeds left-to-right and depth-
first, visiting all the children of a given
node, then the node itself, then its sib
lings, then its parent, and so on.

In traversing a tree for the expression
X + 1 the leaf node for X would be reached
first, and the code generator would issue
instructions to load the current value of X
into a register. Next 1 would be trans
lated, perhaps by loading the value into
another register. Finally the code gener
ator would proceed to the parent node,
find the plus sign, and produce instruc
tions to add the two registers. The effect is
to convert infix notation (where the oper
ator appears between the operands) to

postfix notation (where the operator fol
lows the operands).

Although the translations made at some
nodes arc straightforward, there is more
for the code generator to do. It must
choose the registers to be used in each

operation, and it must allocate space in
memory for variables. With structured
variables (arrays, records, and the like)
the allocation algorithms can become

fairly elaborate, and local variables com
plicate the process still further. Control-
of-flow statements bring another burden:
at any branch point in the program logic,
the code generator must calculate the tar

get address for a jump instruction.
One way to cope with the complexity of

code generation is to subdivide the task.
Many compilers generate a form of inter
mediate code, made up of instructions for
a fictitious machine with a regular archi-
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hases in the operation of a compiler transform source text into object code. Lexical

nalysis breaks the stream of text into the fundamental units called tokens. Parsing assem-
les the tokens into a tree structure. Semantic analysis attributes meaning to the symbols

f the nodes of the tree. Finally code generation creates a program of equivalent mean-

the target language (in this case Forth).Jill
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tecture. A subsequent phase translates the
intermediate code into machine-language
instructions, or a small interpreter exe
cutes the intermediate code on a real pro
cessor. An example of this strategy is the
P-system developed at the University of
California at San Diego.

The final phase of compiling is opti
mization. The output of a typical code

generator is very inefficient, and there is
no limit to the effort that can be put into

improving it. When the job is taken seri
ously, the optimizer may well be the larg
est component of the compiler. The Dada
compiler goes to the opposite extreme: the
optimizer is omitted entirely.

Passes and modules

Perhaps the most obvious way of
organizing a compiler is to make each
phase an independent module or even a
separate program. The scanner reads the
source text (a file of characters) and
writes a file of tokens. The parser reads
the file of tokens and produces a third file
of linked records that encode the structure
of the parse tree. The subsequent phases
also communicate by means of temporary
files. Each trip through the program is
called a pass.

For the Dada compiler I have taken a
different approach, in which all the

phases arc condensed into a single pass.
The modules are organized as a bucket

brigade; they process small units of pro
gram text and pass them on to the next
module in line. The scanner, for example,
reads just enough characters to assemble a

single token, and then hands it on to the
parser.

A major advantage of the one-pass

compiler is that no explicit representation
of the parse tree is needed. The operation
of the parser itself can be interpreted as a
traversal of the tree. Each time a pro
cedure is called, the parser effectively
moves down one level in the tree, to a
child node; when the procedure returns,
the parser climbs back up the tree to the

parent node. Semantic analysis and code
generation can be done during this
traversal rather than in separate passes
over the tree.

The scanner, parser, semantic analyzer,
code generator, and optimizer are the
"mainstream" modules of a compiler.
Their sequential actions transform the
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program text into object code. There are
other modules as well. They do not act

directly on the stream of text, but they are
no less essential.

The importance of an error-handling
routine should be readily apparent. Most
of the time, for most programmers, what
a compiler produces is not object code but
error messages. The error handler in the
Dada compiler is the simplest one I could
devise. When it detects an error, it prints a

message and halts the program.
A run-time library is needed to com

plement the facilities of most program
ming languages. Input and output state
ments, for example, require dozens or
even hundreds of machine-language
instructions; rather than generate all this
code for each statement, the compiler
calls a preassembled routine. The library

procedures can be appended to the object
code by the compiler itself or by a sepa
rate linker.

I have left to the end of this catalogue
the data structure at the heart of many

compiler operations: the symbol table. It
is the deus ex machina that enables the
compiler to enforce rules the grammar
cannot describe.

A context-free grammar can balance
pairs of symbols, such as nested parenthe
ses, but it cannot match arbitrarily long
strings of symbols arbitrarily far apart in
the source text. In particular, it cannot
match a reference to a variable with the
corresponding declaration. Verifying dec
larations requires a context-sensitive
grammar, with multiple symbols on the
left side of production rules. Because
Dada requires variables to be declared, it
is not a fully context-free language.

Rather than complicate the grammar
with context-sensitive productions, the
almost universal practice in compiler

writing is to collect context-sensitive
information in a symbol table. The table
records information about all the identi
fiers, or named elements, of a program:
variables, procedures, and so on. The
parser consults the table to make certain
all identifiers have been properly
declared. The semantic analyzer relies on
it for type checking, and the code gener
ator finds addresses there.

LeftParen

RiqhtParen

Lexical analyzer, or scanner, is constructed as a finite-state automaton. Each character
that can begin a token leads to a distinct state. States enclosed by a double line are

accepting states, which the scanner enters when it has recognizedgQEu21£Q
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Useful as the symbol table is, from a
theoretical and aesthetic point of view it
rather mars the elegance of a compiler's
design. Without the symbol table the com
piler is a purely sequential machine,
climbing up and down the parse tree one
node at a time and carrying nothing with it
as it moves. All the information needed is
encoded in the tree itself. The symbol
table introduces new linkages between

arbitrarily distant nodes. Connecting dec
larations to later invocations obscures the
spare, planar form of the parse tree
behind a topological knot of extraneous
links.

procedure)

Statement

Identifier

Expression

I Statement

Identifier

The Dada compiler

Writing a compiler is a trilingual project.
It involves a source language, a target lan

guage, and an implementation language
(the one in which the compiler itself is
written). In this case the source language
is Dada and the implementation language
is Borland International's Turbo Pascal.
The selection of a target language raises
difficult questions. If assembly or
machine language were chosen, the code

generator would overwhelm the rest of the
program. Furthermore, the output of the
compiler would be intelligible only to
those who happen to know the instruction
set of the processor chosen.

Intermediate code is easier to produce
and understand, but it can be executed
only with an interpreter. Thus it would be
awkward to demonstrate that the compiler

actually works. The compromise I have
reached is to generate a form of inter
mediate code recognized by a familiar and
widely available interpreter. The output of
the Dada compiler consists of "words" in
the programming language Forth. This
intermediate code should be accepted
(perhaps with a little fiddling) by any
Forth interpreter. Since there are now
processors for which Forth is the assem
bly language, the Dada compiler might
also be considered a native-code compiler
for one of those machines.

The place to begin in describing the
compiler is the scanner, or lexical ana
lyzer. Figure 2 is a diagram of its struc
ture. It is a finite-state automaton, a logic
network without auxiliary memory, with
an accepting state for each token or class

54 Figure 3. (Continued on following page)
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of tokens. The automaton is implemented
in software by means of a case statement
with a clause for each character that can

begin a token.
For one-character tokens such as " + "

and ";" the clause is simple: the token is

recognized immediately. A few other
tokens require two steps, for instance to

distinguish a colon from the assignment
operator ": = ". Numbers and identifiers
in Dada can be of unlimited length

(although they are truncated in the symbol
table). A number is any sequence of dig
its; an identifier is any sequence of letters
and digits that begins with a letter. These

patterns are identified by while loops.
The definition of a Dada identifier also

encompasses all the keywords of the lan
guage, such as //, begin, and end. The
scanner must recognize these words as
individual tokens and not confuse them
with named variables or procedures. One

way of identifying them is by creating a
tree of states for each keyword. In recog

nizing begin the scanner would pass
through states for/;, e, g, and so on.
There is an easier way. The scanner ini

tially classifies any string of letters as an
identifier and then checks it against a list
of keywords; only if a match is not found
is the code for an identifier returned.

Although lexical analysis is the sim
plest phase of compilation, the design of
the scanner raises questions that are not
answered in the grammar. Is the language
to be case-sensitive, or do FOO, Foo, and

foo all refer to the same object? How are
whitespace characters, such as blanks,
tabs, and carriage returns, to be treated?
What about comments in the source text?

It is possible to be vague about these
issues in designing a language but not in

writing a compiler. I have generally fol
lowed the example of Pascal. The scanner
converts all alphabetic characters to upper
ra<u* nnrt «n paqp is ionnrrH Whitrvsmrf"

is allowed between any tokens but is

required only to separate identifiers, key
words, and numbers. A comment is
allowed anywhere a whitespace character
could appear. A left brace signals the start

t _ • if... !» .

iimpleExpr.
^ !!! ^ ^ !! H

iimpleExpr
I' S*

e t x p r

edFactor

Factor

''jl*irJ[A

Number

Boolean

Identifier

Expression

wm
tax diagrams derived from the grammar define the flow of control through a Dada

gram must begin with the keyword program followed by an identifier and a semicolon.
Control then passes to the Declarations diagram and the Block diagram. Any sequence of
tokens corresponding to a path through the diagrams is a valid Dada program.

Figure 3. (Continued from preceding page)



edure ParseProgr
oedure ParseVari

begin
if TK.Code = VarSym then
begin

GetTK;
repeat
if TK.Code <> Ident then Error(Xldent); GetTK;
if TK.Code <> Colon then Error(XColon); GetTK;
if not (TK.Code in TypeSet) then Error(XType); GetTK;
if TK.Code <> Semi then Error(XSemi); GetTK;

until (TK.Code in [ProcSym,BeginSym]);
end;

end;
procedure ParseBlock;
procedure ParseStatement;
var IdentPtr : SymPtr;

procedure ParseExpression;
procedure ParseSimpleExpr;
procedure ParseTerm;
procedure ParseSignedFactor;
procedure ParseFactor;
b e g i n { P a r s e F a c t o r }

S c a s e T K . C o d e o f
TrueSym, FalseSym, Number, Ident : GetTK;
LeftParen : begin

GetTk; ParseExpression;
if TK.Code <> RightParen
then Error(XParen); GetTK;

end;
else Error(XFactor);

end;
end;

b e g i n { P a r s e S i g n e d F a c t o r }
if (TK.Ccde in [Plus, Minus, NotSym]) then GetTK;
ParseFactor;

end;

begin
ParseSigned Factor;
if (TK.Code in MultOpSet) then
begin GetTK; ParseTerm; end;

end;

begin
ParseTerm;
if (TK.Code in AddOpSet) then
begin GetTK; ParseSimpleExpr; end;

end;

Listing 1. (Continued on following page)

{ ParseTerm

{ ParseSimpleExpr ]

of a comment, and all subsequent charac
ters arc ignored until a right brace is
found.

The parser

Building a parser is the best way to appre
ciate the worth of a formal grammar.

Comparing the routines of the parser with
the production rules of the grammar
reveals an obvious one-to-one

correspondence.
The transformation of a grammar into a

parser can be done directly; that is what
Yacc does. When working by hand, how
ever, it is easier to create a series of syntax
diagrams based on the grammar and then
to build the parser from the diagrams.
Where a production rule calls for gener
ating a series of symbols, they are written
down in sequence and connected by
arrows. Alternative productions corre

spond to branches in the diagram, and a
recursive rule—one that invokes itself—

implies a diagram with a loop. A set of
syntax diagrams for Dada is shown in Fig
ure 3.

Each of the diagrams is represented by
a procedure in the parser. At the top level
the procedure ParseProgram expects to
see the key word program followed by an
identifier and a semicolon. It then calls
ParseVariables to handle any declarations
of variables; when that procedure returns,
a semicolon is expected. Next there is a
call to ParseBlock, which analyzes the rest
of the program. When ParseBlock returns,
all that remains is to check for the con

cluding period.
Some of the other diagrams are more

elaborate; ParseBlock serves as a good
example. It first checks for the keyword
procedure; if it is present, ParseBlock
reads an identifier and a semicolon and
then calls itself recursively. The new
invocation of ParseBlock immediately
looks for procedure again, so that nested
declarations can be accommodated. Even

tually, however, each invocation of Parse
Block must find not another procedure but
the keyword begin. ParseStatement is then
called repeatedly until the token end'xs
encountered.

The organization of the parsing pro
cedures follows directly from the struc
ture of the language. A Dada program
consists of variable declarations and a
block; a block consists of procedure dec-
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larations and a list of statements; a pro
cedure declaration consists of subsidiary

procedures and another block. Accord
ingly, ParseProgram is the outermost rou
tine, and both ParseVariables and Parse
Block are nested within it. ParseBlock in
turn encloses ParseStatement, and there is
a further hierarchy of nested routines
from ParseExpression down to
ParseFactor.

All the routines work by a common
mechanism. At any moment the parser
can take only two possible actions. If a
terminal symbol is expected, the current
token is examined. If it is one allowed by
the grammar at this point in the program,
the scanner is called to get the next token
and the parser moves on; otherwise an
error message is issued. If the symbol
expected is a nonterminal, the parser
merely calls the appropriate routine.

If a parser for a context-free language is
a pushdown automaton, where in this
scheme of operations is the pushdown
stack? It is present but well hidden. It is
the return-address stack maintained by

any executing Pascal program, in this
case the Dada compiler itself. One of the

advantages of the recursive-descent tech
nique is that it relieves the programmer of
responsibility for managing the stack.

Table 2 shows the parser in action, ana
lyzing the expression 3*(4+5). Accord
ing to the syntax diagrams, an expression
consists either of a simple expression or
of two simple expressions separated by a
relational operator. Thus to identify the

input as an expression, the first step is to
look for a simple expression. A simple

expression in turn begins with a term
which begins with a signed factor, which
consists of an optional sign followed by a
factor. Finally a factor, at the bottom of
the hierarchy of program structures, can
be a number, a Boolean value, an identi
fier, or a parenthesized expression.

Routines to recognize each of these ele
ments are activated in a cascade of pro
cedure calls. ParseExpression calls Parse

SimpleExpr which calls ParseTerms which
calls ParseSignedFactor which calls Parse
Factor. At last, after five nested calls, the
first token of the input (the number 3) is
identified as a factor.

begin
ParseSimpleExpr;
if (TK.Code in RelOpSet) then
begin GetTK; ParseSimpleExpr; end;

end;

segin
case TK.Code of

BeginSym : begin

ParseExpression }

{ ParseStatement }

GetTK; while TK.Code <> EndSym do
begin

ParseStatement;
if not (TK.Code in [Semi,EndSym]) then
Error(XSemEnd);

if TK.Code = Semi then GetTK;
end;

GetTK;
end;

I f S y m : b e g i n
GetTK; ParseExpression;
if TK.Code <> ThenSym then Error (XThen); GetTK;
ParseStatement;
if TK.Code = ELseSym then

begin GetTK; ParseStatement; end;
end;

WhileSym : begin
GetTK; ParseExpression;
if TK.Code <> DoSym then Error(XEo); GetTK;
ParseStatement;

end;
I d e n t : b e g i n

IdentPtr := Find(TK.Name);
if IdentPtr".Class = Variable then
begin

GetTK; if TK.Code <> AssignOp then
Error(XAssgn);

GetTK; ParseExpression;
end

else GetTK;
end;

r f . s e E r r o r ( X S t m t ) ;

_ , 1 { P a r s e B l o c k }
while TK.Code = ProcSym do
begin

! GetTK; if TK.Code <> Ident then Error(Xldent);

GetTK; if TK.Code <> Semi then Error (XSemi);
GetTK; ParseBlock;
if TK.Code <> Semi then Error (XSemi); GetTK;

end;
if TK.Code <> BeginSym then Error(XBegin); GetTK;
while TK.Code <> EndSym do

egin

Listing 1. (Continued on following page)
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As each of these calls is made, a record
of the calling routine is pushed onto the
return-address stack. When ParseFactor

completes it work, therefore, it returns to
the point from which the call was made in

ParseSignedFactor. That routine is also
finished, and it returns to ParseTerm.
There is now a choice between two paths
of execution. If the next token is anything
other than a multiplying operator, Parse
Term simply exits. In fact the next token
is "*", and so the other path is taken. The
token is consumed and ParseTerm is called

again, recursively, to initiate another cas
cade back down to ParseFactor.

The gyrations of the parsing routines
eventually trace out the tree structure for
the expression. At the root of the tree is
the "*" sign, and under it are nodes for
"3" and for "(4 + 5)." The latter node
has another subtree under it, with leaf
nodes for the factors "4" and "5." The

parser has no need to keep a diagram of
these relations because they are effec

tively recorded in the sequence of return
addresses on the stack. Each call to a rou
tine creates a new child node on the tree,
whose parent is indicated by the address at
the top of the stack. No matter how deeply
nested the routines become, the parser can

always find its way back to the correct
parent node by following the trail of
stacked addresses.

A m b i g u i t i e s
The Dada compiler employs a form of the
recursive-descent technique known as

predictive parsing, which forbids looking
ahead at the next input symbol or back

tracking to earlier symbols. In all circum
stances the parser must be able to predict,
based on the current token alone, which of
the paths available to it should be
followed.

If a language is to be suitable for pre
dictive parsing, the grammar and the syn
tax diagrams must have a particular form.
At any point where a diagram branches,
the first token expected along each branch
must be unique. Consider the syntax dia

gram for a Dada statement. There are five
branches, corresponding to an assignment
statement, an //statement, a while state
ment, a procedure call, and a compound
statement bracketed by begin and end.
Three of the branches cause no difficulty.
If the first token in a statement is //, while,
or begin, the parser knows which path to
follow. The assignment statement and the

procedure call, however, both start with

if TK.Code = Semi then GetTK;
end;

GetTK;
end;

begin { ParseProgram }
if TIC.Code <> PgmSym then Error(XPgm); GetTK;
if TK.Code <> Ident then Error (Xldent); GetTK;
if TK.Code <> Semi then Error (XSemi); GetTK;
ParseVariables; ParseBlock;
if TK.Code <> Dot then Error(XDot);

end;

Dada parser has a procedure for each of the syntax diagrams in

Figure 3. The nesting of the procedures reflects the structure
of the grammar in that a statement is subsidiary to a block, an
expression is subsidiary to a statement, and so on. In the form
shown here the parser acts as a recognizer, a machine that
accepts any valid stream of tokens but ignores their semantic
content. In the complete compiler statements for type checking

" for code generation are interleaved with the parsing routine

Listing 1. (Continued from preceding page)

an identifier. Thus it seems Dada does not

quality for predictive parsing.
Three solutions to this problem present

themselves. One could change the lan

guage, perhaps requiring a procedure to
be invoked by the keyword call, as in
PL/I. One could change the grammar,

introducing distinct tokens for procedure
names and variable names. Or one could
change the parser, allowing it to look
ahead to see if the next token is an assign
ment operator.

I have adopted a fourth solution: cheat

ing. At the time an identifier is declared, a
symbol-table entry is created, recording
(among other things) whether the identi
fier names a variable or a procedure.
When the same identifier appears again, it
is a simple matter to check its
classification.

A parser can construct a unique tree for
a program only if the grammar is

unambiguous. What assurance can be
given that the Dada grammar meets this
condition? As it happens, the grammar
does include an ambiguity, common to

many programming languages, known as
the dang\ing-else problem. In a nested
conditional statement, such as if A then if
B then C else D, the grammar does not
state which then the else is to be associated
with. Is D executed when A is false or
when B is false? The two possibilities cor

respond to different tree structures.
The dangling-e/^e problem is solved by

making an arbitrary choice. By con
vention each else is associated with the
closest preceding then that does not

already have an else. The parser needs no
modification to enforce this rule. The

sequence of procedure calls and returns
always generates the correct tree.

The grammar for Dada fails to settle a
number of other issues that must be
resolved in writing the compiler. The
grammar implies that procedures must be
declared, but it does not say they have to
be declared before they are first called.
The decision to distinguish between

assignment and call statements by consult
ing the symbol table effectively requires
the declaration to come first.

What about a procedure called from
within its own declaration, that is, a
recursive procedure? Nothing in the

grammar forbids recursion, and the Dada
compiler will accept recursive calls with
out complaint. The trouble is, a Forth
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interpreter will not execute the recursive
definition; it causes a run-time error.

Another issue the grammar does not
address is the redefinition of keywords.
What if some programmer wants to
declare a variable named if or a procedure
named begin? Some languages allow such

shenanigans and some do not. Dada is in
the latter category because of the way key
words are detected.

Semantics
The scanner and the parser together make
a recognizer for Dada programs. They
accept only syntactically valid strings of
symbols. Unfortunately, the category of
syntactically valid strings includes many
that are semantically deviant. The expres
sion X + yhas impeccable syntax, but if
X is an integer and Y is a Boolean variable,
it has no clear meaning. What is the value
of8 + True?

The type checking done in the course of
semantic analysis improves the odds that a

program will be accepted only if it makes
some sense. In the Dada compiler there is
no separate module for type checking; it is
done by statements intercalated into the

parser. Most of them refer to the symbol
table, which should therefore be dis
cussed in greater detail.

The symbol table is a linked list of
records with five fields. The name field
stores the first 31 characters of an identi
fier's name (an arbitrary length limit).
The class field indicates whether an iden
tifier is a variable or a procedure, and the

type field further classifies variables as
integer and Boolean values. A scope field
holds a number that represents the nesting

depth of procedures. The final field is a
pointer to the next record.

Symbol-table entries are created by a
procedure named Declare, which is called
with an identifier as one of its arguments.
Declare checks to sec if the identifier is

already present in the table; if not, it is
installed at the head of the list. The com
plementary function, Find, searches the
list for an identifier and returns a pointer
to it.

The one subtlety in the handling of the

symbol table has to do with nested pro
cedures, which are intended to be local to
the block in which they are declared. In
other words, a procedure declared inside
another procedure should "disappear"
when the compiler passes beyond the end

of the enclosing block. This is accom

plished by monitoring the scope field in
each symbol-table record. A procedure
named Blot, called at the end of a block,
removes all entries that can never legally
be accessed again.

Type checking seems simple in prin
ciple, but it can become surprisingly
messy. It is easy enough to verify the
semantics of a statement such as X: = Y:

just look in the symbol table to make sure
Xand Kare of the same type. Where diffi
culties arise is in assigning types to

expressions. In analyzing X + y*Zthe
types of the variables must be checked,

then a result type must be determined

according to combinatorial rules.
Such rules exist, but they do not form a

coherent system. In most cases the oper
ands and the result arc all expected to be
of the same type, but relational operations
arc an exception: they always yield a
Boolean result. Whether logical operators
(and, or, not, and so forth) can be applied
to numerical values is a matter of opinion
and taste. With languages that have a
wider selection of data types the issues get
stickier. Can strings be compared or
added? What about records and pointers?

The type checking done in the Dada

xpression

A c t i v e p r o c e d u r e

Expression

SimpleExpr
Term

SignedFactor
Factor

SignedFactor
Term

Term

SignedFactor
Factor

Expression

SimpleExpr
Term

SignedFactor
Factor

SignedFactor
Term

SimpleExpr

SimpleExpr
Term

SignedFactor
Factor

SignedFactor
Term

SimpleExpr

SimpleExpr

Expression
Factor

SignedFactor
Term

Term

SimpleExpr

Expression

R e m a i n i n g i n p u t
3 * (4 + 5)
3 * (4 + 5)
3 * (4 + 5)
3 * (4 + 5)
3 • (4 + 5)
. (4 + 5)
• (4 + 5)

(4 + 5)
(4 + 5)
(4 + 5)
4 + 5)
4 + 5)
4 + 5)
4 + 5)
4 + 5)
+ 5)
+ 5)
+ 5)
5)
5)
5)
5)

A c t i o n

Gen( '3 ' )

H o l d M u l t O p : = ' • '

Gen( '4 ' )

HoldAddOp:=' + '

Gen('5')

Gen(HoldAddOp)j ' + '

G e n ( H o l d M u l t O p ) { ' . ' |

Expression is parsed by a series of nested procedure calls. The process begins when

ParseExpression calls ParseSimpleExpr, which in turn calles ParseTerm; ultimately when
ParseFactor is called, it recognizes and consumes the first token of the input. Actions taken

by the compiler include calls to Gen, the code generator. The output resulting from the
calls is the sequence of symbols 3 4 5+ •.

Table 2.



compiler is not rigorous or exhaustive.
Each of the routines in the expression-

parsing hierarchy is defined as a function
that returns the type of the structure it has

parsed. Hence types propagate upward in
the tree from the leaf nodes to the main

expression node.

The code generator
The last major subunit of the Dada com

piler, the code generator, is deceptively
simple. It is deceptive because all of the

Hailstone;

N : i n t e g e r ;
Cdd : boolean;

procedure NextTerm;
procedure CheckCdd;
begin

if (N mod 2 = 0) th(
Cdd := False else
Cdd := True

end;
procedure DownStep;
begin

N := N/2
end;

procedure UpStep;
begin

N := 3*N+1
end;

begin { NextTerm }
CheckCdd ;
if Cdd then UpStep e
DownStep

end;
begin { main prograr
ReadLn N;
while N > 1 do

begin
WriteLn N;
NextTerm

end;
end.

Sample Dada program
tests the operation of
the compiler. The algo
rithm has been broken

up into several small
procedures to exercise
the parsing routines.

Listing 2.

difficult tasks—such as calculating
addresses and allocating storage—arc
done by the Forth target system.

In a pinch, a single Write statement
would make a serviceable code generator
for a Dada-to-Forth translator. I have
added a few lines of code to format the

output in standard Forth "screens" of
1,024 characters. A subsidiary routine
adds a small run-time library to each pro

gram. The main components of the library
are Read and Write procedures that pro
vide rudimentary communication with the
console.

The real work of translating Dada into
Forth is done not by the code-generating
routine itself but by the placement of calls
to the routine throughout the parser. The
calls cause the code generator to define a
Forth word for each procedure in the
Dada program and another word for the
main block.

A Forth definition begins with a colon
and the name of the word, followed by the

body of the definition and a terminating
semicolon. Any previously defined Forth
word can be invoked by giving its name.
All operations are carried out on values at
the top of a stack. Statements and expres
sions are described in postfix notation.

The operating principles of the code
generator can be illustrated by tracing the
translation of a small procedure. The
body of the procedure consists of a single
statement whose effect is to halve the
value of a previously declared variable N.
The Dada statements read as follows:

procedure DownStep;
begin

N:= N/2
end;

When any procedure declaration is
reached in a Dada program, the active
routine in the compiler is ParseBlock.
From the initial keyword it deduces that
what follows is a procedure. The identi
fier DownStep is then stored in a local
variable (HoldID), but no code is gener
ated. The parser cannot yet know whether
there are further, nested procedure decla
rations. If there are, object code for them
will have to be created first.

When the keyword begin is parsed,

ParseBlock is called recursively with the
contents of HoldID passed as a parameter.
The body of DownStep has now been
reached, and so code generation can
begin. A colon is written to the output
file, followed by the passed parameter
(namely, the string DownStep). Thus a
new Forth definition is begun.

ParseBlock now calls ParseStatement,
the next routine in the hierarchy. The first
token of the remaining input is found to be
an identifier, and a search of the symbol
table reveals it represents a variable; the
statement must therefore be an assign
ment. The string N is stored in another
instance of the local variable HoldID, and

ParseExpression is called to deal with the
right side of the statement.

ParseExpression sets in motion the cas
cade of expression-handling routines,
which ultimately identify the next token,
N, as a factor. At this point the first
instructions for the body of the procedure
can be issued. Since the factor is a refer
ence to a variable, the appropriate action
is to copy the value of the variable from its
location in memory onto the top of the
stack. The code for doing this consists of
the variable name N followed by the Forth
word "@," pronounced "fetch." Hence
the symbols N@ are appended to the out
put file.

The compiler now makes its way back

upward through the series of expression-
handling functions as far as ParseTerm,
which recognizes the division sign as a
member of the set of multiplying oper
ators. Code for division is not generated,

however, since expressions in Forth must
be given in postfix form. The "/" token is

merely stashed in another local variable,
HoldMuhOp.

ParseTerm now calls itself, so that two
instances of the function are active, and
the compiler thereupon descends again to
the level of ParseFactor. Here the second

operand, "2," is recognized. Because it is
a literal numeric value, which requires no

memory reference, the token alone, with
out accompanying symbols, is output.

On returning to the first invocation of
ParseTerm the compiler retrieves the
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pending operator from the variable Hold-
MultOp and sends it to the code generator.
The expression N/2 has now been fully

parsed, and the corresponding Forth
words have been issued. Execution of
these words will leave the new value of A7
on the top of the Forth stack. It remains
for the parser to return to ParseStatement,
where the first occurrence of A7, from the
left side of the assignment statement, has
been sequestered. The goal now is to store
the value on the top of the stack at the
address represented by N. The necessary
Forth instructions are N! (the exclama
tion point is pronounced "store"), and

they are duly issued.
There is one further addition to the

object code. When ParseBlock reads the
end keyword, signifying that there are no
more statements in the block, it calls for
the generation of a semicolon to mark the
end of the Forth definition. The complete
translation is:

: DownStep N@ 2 / N !;

It defines a new Forth word called Down-

Step. Whenever it is executed, it retrieves
the current value of the variable N, divides
it by 2, and stores the new value at the
address reserved for N.

Pieces of the puzzle

Throughout this series of articles I have
been probing the curious, murky relations
between syntax and semantics, form and

content, recognition and understanding.
A sentence or a program can be grammat
ically flawless and yet signify nothing.
Indeed, it is easy to create entire lan

guages that convey no meaning. When
meaning does emerge, then, where does it
come from?

One approach to this question views

language as a jigsaw puzzle. Grammar
determines the shapes of the pieces and
how they are to be assembled. From the

standpoint of grammar alone, however,
the pieces are empty markers to be shuf
fled about on the table top. Meaning exists

only in the picture printed on the surface
of the puzzle. For the picture to make
sense the pieces must be assembled cor

rectly, and yet there is no necessary corre
spondence between the pattern of the pic
ture and the pattern of the jigsaw cuts.

What is troubling about this metaphor
is that it makes the relation between gram
mar and meaning completely arbitrary. A

given picture could be cut up into many
different sets of pieces, and a given cut

ting of the puzzle could have any picture
whatever printed on it. This is the world
of Humpty Dumpty, where words mean
whatever we want them to.

The arbitrary mapping from syntax to
semantics is all too apparent in the Dada

compiler. The scanner and the parser have
sound theoretical underpinnings; one can

give algorithms for their construction.
The semantic tasks of type checking and
code generation, on the other hand, are
done by ad hoc procedure calls hung on
the parse tree like Christmas ornaments.

0 V A R I A B L E N ( C o d e f o r p r o g r a m H a i l s t o n e )
0 VARIABLE ODD
: CHECKCDD N @ 2 MDD 0 = IF FALSE ODD ! ELSE TRUE ODD ! THEN ;
: DOWNSTEP N @ 2 / N 1 ;
: UPSTEP 3 N @ * 1 + N I ;
: NEXTTERM CHECKCDD ODD 0 IF UPSTEP ELSE DOWNSTEP THEN ;
: HAILSTONE N READ BEGIN N @ 1 > WHILE N WRITE NEXTTERM REPEAT ;
;S

output of the compiler consists of "words" to be executed by
rth interpreter.

Listing 3.

Turbo Pascal Science,

Engineering and
Data Acquisition Tools

Save time and money by incorporating these

accurate, pretested Turbo Pascal procedure
libraries into your own custom application

programs. Developed by experts in each
field, these tools can save hundreds of hours
of research and program development time.
All tools are supplied on IBM PC compatible
diskettes and come complete with detailed
documentation and source code listings.
All of the tools are compatible with Turbo and
Turbo-87 Pascal Rev.3.0 and higher. Example

programs on disk make learning how to use the
procedures quick and easy.

General Science and Engineering Tools

(IPC-TP-006)

Include these procedures in yourTurbo Pascal

application programs for general statistics,
multiple regression, curve fitting, integration,
FFT's.file transfers to Lotus 1-2-3,solving
simultaneous equations, matrix math, linear

programming, data smoothing and graphics
(line plots, bar graphs, scatter plots, semi-log

graphs.log graphs and windows). $69.95.

Data Acquisition and Control Tools

(IPCTP-007)
TheTurbo Pascal Data Acquisition and Control
Tools package supports the IBM DACA(Data

Acquisition and Control Adapter), Cyborg Isaac
411 and Cyborg Isaac 911. Analog inputs can
be sampled at up to 18K samples per second.
Procedures are also supplied for analog

output, digital inputand output, thermocouple
linearization,PID control, real-time graphics
(bar graphs and line plots) and FFT's. Menu-
driven example programs for data logging into
Lotus 1-2-3 files, high speed data acquisition,

process control and real-time graphics let the
user start acquiring and analyzing analog
data immediately. The data acquisition and
control package requires the IBM Data

Acquisition and Control Adapter Programming
Support software.$94.95.

To order or for free information call orwrite:

Q u i n n - C u r t i s ( 6 1 7 ) 9 6 9 - 9 3 4 3
Software Division MasterCard and
7 F r e d e t t e R d . V I S A a c c e p t e d
Newton Centre, MA 02159

Add $5.00 lor shipping and handling in US and Canada

and $10.00 for shipping and handling outside US and

Canada. Mass. residents add 5% sales tax.

Quinn-Curtis

PC Software for Scientists and Engineers

Turbo Pascal is a registered trademark ol Borland International. Inc
IBM and OACA are registered trademarks of International Business
Machines lotus 1-2-3 is a registered trademark ol Lotus Oevelopme
Corporation Isaac 411 and 911 are registered trademarks ol Cyborg
Corporation
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Personal REXX
for the IBM PC

* Interpreter for the full REXX language, including all of the standard

REXX instructions, operators, and built-in functions

!k Sophisticated string manipulation capabilities

* Unlimited precision arithmetic

* Direct execution of DOS commands from REXX programs

* Built-in functions for DOS file I/O, directory access, screen and keyboard

communication, and many other PC services

* Compatible with VM/CMS version of REXX

* Uses include:

- Command programming language for DOS

- Macro language for the KEDIT text editor

- Can be interfaced by application developers with other DOS

applications, written in almost any language

Mansfield Software Group

P. O. Box 532

Storrs, CT 06268

(203)429-8402

S98 plus $3 shipping until 1/1/86

$125 plus S3 shipping after 1/1/86

MC, VISA, COD, PO, CHECK

CIRCLE 38 ON READER SERVICE CARD

The Best 68000 & 32000 Compilers

GUARANTEED.

OEMs: You get an unconditional 30 day money back

guarantee that our compilers generate faster and smaller
code than any other corresponding 68000 or 32000 indus

try standard compiler.

All compilers include 1 year of maintenance and updates.

C - FORTRAN 77 - Pascal

Available NOW for:

Motorola 68000, National 32000

UNIX 4.2 BSD, UNIX System V

Green Hills Software

425 E. Colorado Blvd., Suite 710

Glendale, California 91205

(818) 246-5555

Leaders in stamping out vaporware and puffware.

UNDC is a trademark of AT&T Bell Laboratories

CIRCLE 37 ON READER SERVICE CARD
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There is no semantic specification of the

language comparable to the syntactic

specification given in a set of production
rules.

Schemes for semantic specification do

exist. In one such scheme, called an attri

bute grammar, a semantic rule is associ

ated with each syntactic production rule.

Attributes, which can be thought of as

slots for semantic values, are attached to

each node of a parse tree. Whenever a

production is invoked during the parsing
of a program, the associated semantic rule

is executed to fill in the attribute slots of

the current node. The rule calculates the

attribute values based on the values stored

in other nodes. The values can include

data types, fragments of object code, or

any other computable information.
Attribute grammars and other inven

tions of formal semantics promise to

improve the methodology of compiler

design. An open question is whether they
can also improve understanding. A gram
mar is not only a useful tool but also an aid

to comprehension. You can look at a few

dozen production rules and see in them an

infinite variety of program structures. As

yet no semantic rules offer a comparable

grasp of the infinite range of program
meanings. —
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