
Mechanic's
effl!

Part II: Climbing the Tower of Babel

to Grammar

l fter the fiasco
at Babel,

according to
tradition, the

primordial speech of Adam was shattered
into 72 fragments. By the time anyone got
around to counting, the situation had
become a good deal worse: there were
thousands of languages. The philologists
of the 19th century set about cataloguing
and classifying them and reconstructed
the genealogy of several hundred. For

example, they showed that English and
Sanskrit are distant leaves of the same
tree, whereas Finnish and Hungarian are
members of a much smaller family, and

Basque stands quite alone.
In recent years the situation has become

still more complicated. Languages are no

longer merely discovered; they are being
invented at a frantic pace. Moreover, the
notion of what constitutes a language has
been expanded to take in notational sys
tems (including programming languages)
that 19th-century linguists would not even
have recognized as proper to their field of

study.
The greater scope given to the concept

of language has brought with it new prin
ciples of analysis and classification,
which owe more to mathematics than to
traditional linguistics. The invented, for
mal languages are classified not according
to their parentage but according to their
structure or complexity. Etymology is
irrelevant; what matters is the format of

By Brian Hayes

grammatical rules and the nature of the
machine one would need to recognize the
sentences of a language. From this formal

analysis has come a new Tower of Babel:
a hierarchy of language classes. It is
called the Chomsky hierarchy, after Noam

Chomsky of the Massachusetts Institute of
Technology.

In some respects the Chomsky hier

archy conforms to common intuitive rank
ings. As one might expect, a language
higher in the scale has a more complex
grammar and requires a more elaborate
recognizing machine. But a paradox lurks
here. In saying one language is more pow
erful than another, we generally have in
mind that it can be used for saying more,
that it has a broader expressive range.
Some such judgment surely lies behind
the universal acknowledgement that

English is more powerful and versatile
than Pascal. In the Chomsky hierarchy,
however, the languages at the top of the
scale are not those that include the most.
On the contrary, they are those from
which the most is excluded.

Minimal languages
Last month, in Part I of this series, I dis
cussed some of the relations between a
language, its grammar, and the machines
that can embody the grammar. This month
I shall focus on what distinguishes one
class of languages from another and on
how the properties of a grammar deter
mine the capabilities of the corresponding

language.
Formal linguistics defines a language

as a set, in the mathematical sense: a col
lection of unduplicated elements that sat
isfy some stated rules of membership. The
elements of the set are strings of symbols,

where the symbols in turn are drawn from
a finite alphabet (another set). The selec
tion rules are the grammar of the lan

guage. They determine whether or not
any given string of symbols is a member
of the set.

This definition clearly embraces all the
natural languages of the world and all pro

gramming languages, but it includes a
great deal else besides. Indeed, virtually
anything that can be viewed as a sequence
of symbols qualifies as a language. It need
not have any evident meaning or use in
communication. The numbers on a license

plate form a sentence in some language;
so do the sequence of stitches in a knitted
sweater or the sequence of moves in a
game of chess.

In exploring the realm of abstract lan

guages the place to begin is at the bottom
of the ladder. What is the simplest possi
ble language? Since a language is defined
as a set, there is a straightforward answer:
it is the empty set, represented by the

symbol 0. And the next-simplest lan
guage consists of exactly one string,
which happens to be made up of zero sym
bols. This empty string is denoted e (the
Greek letter epsilon). Note that 0 and e
are distinct; one is a set without members,
whereas the other is a set whose one mem
ber is empty.

After these two variations on languages
that contain nothing, the next language is
one that contains everything. It is a lan

guage with a trivial grammar, namely, a
set of rules that admit any possible string
made up of symbols from the defined

alphabet.

ffffWH

r ? r f f \]

gags*
122S£J

[iTir rr r / il

[w i il if I

Suppose the alphabet consists of the
single symbol a. Then the all-
encompassing language is the set of all
strings composed of any number of a's,
including zero a's. The strings are
e, a, aa, aaa, and so on. For the alphabet
made up of a and b the corresponding lan

guage includes e, a, b, aa, ab, ba, bb,
aaa, etc. If the alphabet is the ASCII char
acter set, the language includes essen

tially all of English and most program
ming languages. The trouble is, it
includes vast tracts of gibberish as well. It
is the language of Sir Arthur Eddington's
army of monkeys drumming on the
keyboard.

Regular sets and expressions
All of these languages are members of the
class called regular languages or regular
sets. The work that led to their definition
was begun in the 1940s by Warren S.
McCulloch and Walter Pitts, who were

studying simple models of nerve cells.
The connections with set theory and for
mal linguistics were established a decade
later by Stephen C. Kleene of the Univer

sity of Wisconsin at Madison.
Which languages are regular? Kleene

defined the class by means of a notational

system called regular expressions. Any
language that can be described by a regu
lar expression is a regular language.

In building a regular expression, three

operations are allowed: concatenation,
alternation, and repetition. Two symbols
are concatenated by writing them one
after the other: the concatenation of a and
b is ab. Moreover, if Zand X represent

strings of symbols, the concatenation XY
denotes the set formed by writing any sub

string from X followed by any substring
from X The symbol " | " signifies alter
nation. The expression a \ b allows a
choice of either a or b, andX | Y repre
sents either a substring from X or one
from X The repetition operator (known

technically as the Kleene closure) is the
asterisk. The expression a* describes all

strings made up of any number of a's,
including zero. X* is the set formed by
concatenating any number of substrings
chosen from X.

Given these three operations, a regular

expression can be defined recursively.
First, 0 and e are admitted as regular
expressions, and so is any individual sym
bol from a specified alphabet. The recur
sive part of the definition states that if X
and Xare any regular expressions, then

XY, X | X, and X* are also regular expres
sions. Nothing else is a regular

expression.
A few examples serve to illustrate how

a regular expression can describe a lan

guage. The set of all strings of zero or
more a's is represented by the regular

expression a*, and all strings of a's and
b 's are given by (a \ b)*. A different set is
obtained from a*b*: it is the subset of
(a | b)* in which any number of a's can be
followed by any number of b 's, but once
the first b has appeared there can be no
more a's. Thus e, a, b, aab, and abbbbb
are all sentences of the language
described by a*b*-, but aba is not.

Can languages constructed on this
model be of any practical use? Suppose D
is the alphabet of digits from 0 through 9;
then D* is the language whose strings can
be interpreted as integers. Actually, D*
includes the empty string e, which is not a
well-formed integer, and so it is better to

specify the language as DD*, ensuring
that every number has at least one digit.
The more elaborate expression
(+ | — | e)DD* allows an integer to be
preceded by an arithmetic sign, and
(+ | — | e)DD*.D* makes provision for
floating point numbers. Further exten
sions for exponential notation, hexa
decimal numbers, and so on are

straightforward.
The identifiers that serve in many pro

gramming languages as names of vari
ables, procedures, and functions derive
their form from regular expressions. In
ALGOL an identifier is a letter followed

by any sequence of letters and digits. If L
is the alphabet of letters, an ALGOL iden
tifier is a member of the set specified by
L(L | D)*. Editors and other text-
processing systems also make extensive
use of regular expressions. The UNIX

utility grep (an abbreviation of "globally
look for regular expressions and print")
searches a file for strings that match a

description given as a regular expression.

The "wildcard" notation for file names
in several operating systems has a similar
format. The meaning of an asterisk is

slightly different—it signifies closure
over the entire alphabet rather than repeti
tion of the preceding symbol—but the

principle is the same. It is because of the
properties of regular expressions that A*
finds all file names beginning with A, but
*Z does not select names ending with Z.

Grammars and machines

The regular languages are at the bottom of
the Chomsky hierarchy, but that does not
mean they are the least important class.
On the contrary, they are the foundation
on which all else is built. The languages

higher in the ranking are progressively
more refined subsets of the regular

languages.
Chomsky described the hierarchy in a

series of papers written in the late 1950s.
He identified four levels of complexity.

Moreover, he showed that each class of
languages is associated with a class of
grammars and a class of machines. The
regular languages are labeled type 3.
Going up the ladder, through types 2, 1,
and 0, the grammars become more com

plex and the machines more powerful
while the languages are bound by ever

tighter constraints.
The grammar of a formal language is a

series of production rules, which state
how one string of symbols can be
rewritten to generate another string. The
rule XY:: = abc says that the string XXcan
be replaced wherever it appears by the

string abc. A string may have more than
one possible expansion; the alternatives
are indicated by separating them with the

symbol " | ". I shall adopt the convention
that capital letters are nonterminal sym
bols, which never appear in the sentences
of the language, and terminal symbols are
lowercase. There is one special symbol,
S, which starts the derivation of every
sentence.

If a language is regular, its grammar
can be expressed entirely in rules that sat

isfy stringent formal specifications. The
left side of each rule must be a single sym-

COMPUTER LANGUAGE ! NOVEMBER 1985
! H I I E k E

bol, which is necessarily a nonterminal.
The right side can consist either of a sin
gle terminal or of a terminal followed by a
single nonterminal.

It can be proved that regular expres
sions and regular grammars describe the
same class of languages, but here I shall
merely suggest the nature of the corre
spondence by giving examples. The lan
guage specified by the expression a* is
generated by the grammar S:: = e \ aS.
Each time the second production is cho
sen, an a is added to the string; since the
rule can be invoked repeatedly, any num

ber of a's can be generated. The first
alternative allows for the empty string.

The grammar can be made to generate
all strings of a's and b's, like the regular

expression (a \ b)*, by adding one more
production: 5::= e | aS \ bS. The gram
mar for a*b* calls for at least two rules:

S ::= e | aS | bX

X : : = e | b X

Once the production S:: = bX is chosen,
the grammar is committed to generating

only b's.
The correspondence between languages

and machines is perhaps the most intrigu

ing outcome of Chomsky's inquiry into

formal linguistics. It links the abstract
realm of symbol systems to the concrete
world of mechanisms. We can "see" how
a language works by tracing the operation
of the machine that recognizes its
sentences.

For a regular language the recognizing
machine is a finite-state automaton, or
FSA. As the name suggests, the machine
has a finite number of states, which must
be discrete, or discontinuous. In each
state the machine responds to some set of

HHHBHBBS8JH9B

1111111

Description

Unrestricted

grammars;

recursively
enumerable

languages

Context-

sensitive

grammars
and

languages

Form of rules

Left- and right-

hand sides may

consist of any

strings of

symbols

Left-hand side may

include multiple

symbols, but no
more than one

symbol is expanded
on right-hand side

Recognizing
machine

Turing machine

Linear-

bounded

automaton

Example

g r a m m a r

: = UXaV

: = aaX

: = YV I Z

: = Ya

: = UX

: = Za

: = e

: = aXY I aSXY

: = XY

: = ab

: = bb

: = be

Example

language

aa, aaaa,

aaaaaaaa,
aaaaaaaaaaaaa

abc, aabbec,

aaabbbece,
aaaabbbbcccc

Comments

Can calculate

any computable
function

Can count

three or more

things but
cannot calculate

Context-

free

grammars
and

languages

Left-hand side

consists of a

single symbol

Pushdown

automaton

S : : = ab I aSb

ab, aabb,
aaabbb,
aaaabbbb
aaaaabbbbb

Can count two

things but
not three

Regular

grammars
and

languages

Right-hand side
has either one

terminal symbol

or a terminal

followed by

one nonterminal

Finite-state

automaton

S : : = ! I aS I bX

X : : = 6 IbX

e, a, b,aa, ab.bb,

aaa, aab, abb,

bbb, aaaa,

aaab, aabb . . .

Cannot count

Chomsky hierarchy of languages consists of four classes. As one proceeds from the bottom of the scale to the top, the grammars are subj
fewer constraints and the machines needed to recognize a language become more powerful. The languages themselves, on the other ha

are defined by ever tighter strictures on the allowable form of a sentence.

Figure 1.

!

i v:(v.n.-

inputs, such as symbols from a finite
alphabet. In many cases an input causes a
transition to another state. There may also
be outputs associated with some states. In
the machines described here an output is
issued only when the machine enters a
final, or accepting, state, having recog
nized a sequence of inputs as a sentence in
a language.

A simple FSA is shown in Figure 2. It
has two states, labeled Even and Odd, and

accepts as inputs the symbols 0 and 1. The
machine begins operation in the Even
state. On a 0 input it remains in the same
state, but on a 1 it makes a transition to the
Odd state. In this new condition a 0 again
has no effect, but a 1 causes a transition
back to the Even state. The machine
detects the parity of a stream of binary
digits; if Odd is designated an accepting
state, the automaton will recognize all
strings of 1 's and O's that have an odd
number of l's.

A crucial property of an FSA is that it
has no auxiliary memory. It can keep track
of the history of its inputs only by moving
from one state to another. The machine's
action at any moment is determined

entirely by the present state and the
present input. Earlier inputs have an influ
ence only by helping to determine the cur
rent state.

The finite-state model can be applied to
a great many systems, including some that

appear to be remote from language theory.
Electronic-logic networks made up of
gates and flip-flops act as FSAs, and the
equivalence is sometimes exploited in
designing the networks. The language of
nucleotide bases in RNA is recognized by
an FSA called the ribosome, whose out

puts are the amino acids of a protein.
Other examples include light switches,

vending machines, combination locks,
and the quantum-mechanical model of the
atom. The push-button mechanism of a

ballpoint pen is an FSA that records the
parity of its inputs. Figure 3 shows an
FSA that recognizes the language of tele

phone numbers.
The connection between regular lan

guages and FSAs implies that any finite
language must be regular. After all, if the
language has only a finite number of sen
tences, one could build an FSA with a
state for each sentence. As it happens,

many regular languages of practical
importance are indeed finite. Identifiers
and file names almost always have some
limit on their length, whether or not it is
stated explicitly. Nevertheless, the usual

practice is to treat such languages as if
they were infinite. (MS-DOS allows more
than 1018 possible file names, and so the

strategy of providing a state for each name
is not attractive.)

Simple finite-state automaton recognizes the regular language made up of all strings of 1 's
and O's with an odd number of l's.AO input leaves the state of the machine unchanged,

whereas each 1 causes it to toggle between states. The double circle for the Odd state
ies an accepting, or final, state.

What is more important, an FSA can

recognize a language that is genuinely
infinite. Even though the machine has

only a finite number of parts, it can dis
tinguish between grammatical and
ungrammatical strings of unlimited
length. The parity-testing machine is an
apt example. It "knows" whether the
number of 1 's is even or odd no matter
how long the input string becomes.

The key to this infinite capacity is that
an FSA can have a loop in its structure, so
that the machine passes through some

group of states repeatedly. This obser
vation is the basis of a fundamental result
in language theory called the pumping
lemma. It states that any potentially
infinite string in a regular language must
have a substring that can be "pumped," or

repeated indefinitely. (The repeatable
substring is just the sequence of symbols
that causes the machine to pass through
the loop.) A corollary is that a regular

expression describing an infinite language
must include at least one asterisk, and a

grammar for the language must have at
least one recursive rule, in which a non
terminal from the left side of a production
also appears on the right side.

Context-free languages
If a regular language can encompass an

infinity of sentences, why is there any
need for more elaborate languages? The
answer, in its simplest form, is that an
FSA cannot count. Regular languages and
their associated machines deal handily
with zero, one, and infinity, but they can
not cope with the numbers in between.

The regular expression a*b* describes
strings with any number of a's followed
by any number of b 's. Suppose there is
some need for a language formed on the
same model but with the additional con
straint that the number of a's must equal
the number of b 's. The language can be
described by the (nonregular) expression
a"b", where the superscript n signifies not
exponentiation but concatenation n times.

If there is some limit on the value of n,
this language can be recognized by an
FSA with 2n states. (The states are

arranged like railroad tracks with cross-
ties; each a moves the machine one step
out along one rail and each b moves it one

step back along the other rail.) The situ-

Figure 2.
54 COMPUTER LANGUAGE ! NOVEMBER 1985

I !

t i r * ^ ? . ^

h
wVfv~-,

ation becomes more interesting when all
limits on n are eliminated. No machine
with a finite number of states can recog
nize this language.

A language made up of matched strings
of a's and b 's may seem artificial and

unlikely to come up in practice. If a and b
stand for "(" and ")," however, or for

"begin" and "end," the utility of such
constructions becomes apparent. They are

commonplace in programming languages,

and they appear in natural languages as
well.

All balanced strings of parentheses (and

only balanced strings) can be generated by
the grammar:

S:: = ()|(S)|()S

Note that this rule yields not only strings
of the form "((()))" but also more com

plex nesting patterns such as "()()" and

"(()())•" On the other hand, it does not
merely accept any string with equal num
bers of left and right parentheses; "))(("
and the like are excluded.

This result is achieved only at the cost
of breaking the rules laid down for a regu
lar grammar. In these productions the

right-hand side does not consist of a single
terminal or of a terminal followed by a
nonterminal. Any string of symbols can

appear on the right-hand side of a produc-

Operator assistance

1 *!

1 *!

-1

'' /.NT lU

International

[0..9L

^[2. .91/

Area code

v[2 3 5 7 8]

2..9]

J vi V

C O N N

Local exchange
[0 . . 9] [0 . . 9] [0 . . 9]

Individual line

EMR 2 r—-{EMERGENCY

Special exchanges

rough different sets of states for long-distance calls (beginning 1), operator-assisted calls (beginning 0), calls for directory assistance, repair
ru1'° or emergencies (411,611 and 91 1), and local calls. All area codes must have a middle digit of 0 or 1 and local exchanges cannot

0 or a 1 in their first two digits. Finite-state machines have had an important role in the development of switching theory for the

! MfTlit']it-l-Vi-1t-liiK'liI't«)li[-l*'l»]'llt7«llt«]iKil

- .1'rl -

f !

tion. There is one constraint still being

observed, however: the left-hand side
consists of a single symbol.

A grammar constructed according to
these relaxed strictures is called a context-
free grammar. The name reflects the iso
lation of the symbol on the left-hand side
of each production. Because a symbol
must appear alone there, the strings it

generates cannot depend on the context in
which it is found; a given nonterminal
must always yield the same productions
no matter what symbols surround it.

The machine that recognizes a context-
free language is a pushdown automaton,
or stack machine. It consists of an FSA
with the addition of a potentially infinite

pushdown stack, where items may be
stored one on top of the other. The FSA
has access only to the symbol at the top of
the stack. It is easy to see how the stack

can be used in recognizing a balanced

expression. Each time a left parenthesis is
encountered, it is pushed onto the stack.
For each right parenthesis, one symbol is
popped off the stack. A string is accepted
if the stack is emptied just as the last input

symbol is read.
Context-free languages form the sec

ond level in the Chomsky hierarchy, and

they are by far the most important class
for the construction of programming lan

guages. The phrase-structure part of a
natural language grammar is also gener

ally stated in context-free format. There
are a number of interesting subdivisions
of the class, which I shall discuss in Part
III of this series. For now, we must con
tinue our climb up the tower.

The top of the heap
A context-free language can count two

Linear-bounded

automaton

Pushdown

automaton
Turing
machine

....es for recognizing languages in the three higher classes consist of a finite-state auto-

aton augmented by auxiliary storage. The pushdown automaton, which recognizes a

mtext-free language, has a stack that allows access only to the top item. The linear-

funded automaton recognizes a context-sensitive language by exploiting a storage tape

things, such as left and right parentheses,
but what if it is necessary to keep track of
three? Suppose the language to be recog
nized is a"b"c", where n can be any posi
tive integer? No context-free language can
accomplish this task. It is hard to see why
in terms of the constraints imposed on a
context-free grammar, but the reason
becomes clear when the operation of a
pushdown automaton is considered. If the
a's are pushed onto the stack and then

popped off as the b's are read, no record
of the number of a's and b 's remains
when the c's are counted.

The machine needed to count three
items is a linear-bounded automaton. It is
an FSA augmented by a tape on which
symbols can be written and then reviewed
in any sequence. The machine has access
to the entire tape at all times. The automa
ton is said to be linear-bounded because
the maximum length of tape needed is a
linear function of the length of the input.
In other words the length of the tape is

proportional to the length of the input.
A linear-bounded automaton might rec

ognize a"b"c" by writing down all the a's
and b 's as they are received and then eras

ing one a and one b for each c found in the
input. The sentence is accepted if the tape
becomes blank just as the last symbol is
read. This procedure can obviously be
extended to the counting of more than
three items.

There are other constructions recog
nized by a linear-bounded automaton but
not by any lesser machine. For example, a

pushdown automaton can check for sym
metry in strings of the form abcXcba, but
a linear-bounded automaton is needed to
ensure matching in a pattern such as
abcXabc. In the former case, where the
second part of the string is reversed, the
symbol needed in each stage of the match
ing process is available at the top of the
stack. In the latter case a stack machine
would bury the first a under the b and the
c, and so it would be inaccessible when
the second a was encountered. A linear-
bounded automaton, on the other hand,
can travel back over its tape to check off
the symbols in any order.

The language recognized by a linear-
bounded automaton is called a context-
sensitive language. It is distinguished

Figure 4.

58 COMPUTER LANGUAGE ! NOVEMBER 1985

from a context-free language by the aban
donment of the requirement that the left-
hand side of a production have only one
symbol. As a result the expansion of a
nonterminal can depend on the symbols
that surround it. A grammar might
include rules like the following:

aXb ::= auvb

cXd ::= cwzd

Here X yields one string of symbols in the
context aXb and a different string in the
context cXd.

Just one important restriction remains
on the form of the productions in a
context-sensitive language. In any rule of
the grammar no more than one symbol on
the left-hand side can be expanded on the

right-hand side.
Context-sensitive constructions are rare

in practical languages, but they do turn

up. They are mainly of the form abcXabc.
An example in English is the sentence
"The butcher, the baker, and the candle
stick maker spoke Finnish, Hungarian,
and Basque, respectively." The same

problem arises in programming languages
that require all variables to be declared
before they are used or that require a pro
cedure's actual parameters to match its
formal parameters.

What happens if all constraints on the
form of a production rule are cast aside?
The result is a grammar of type 0, the
class at the top of Chomsky's pyramid.

Any string of symbols can appear on
either the left-hand or the right-hand side
of a production.

The major limitation of the context-
sensitive languages is that although they
can count, they cannot calculate. The tape
of a linear-bounded automaton can grow

only in proportion to the input string, but
many calculations require an amount of
space that increases according to some
nonlinear function; for example, the tape

might grow exponentially. A type 0 gram
mar can accommodate such growth
because the associated recognizing
machine is a Turing machine—an FSA

that can write on and read from a tape of
unlimited length.

A language defined by a type 0 gram
mar is said to be recursively enumerable.
The sentences of the language can be
listed, or enumerated, by a Turing
machine. Many of the languages are

intriguing novelties, although so far they
have proved to be of no practical use
whatever. A typical example is the lan
guage of all strings of a's whose length is
a power of 2; in other cases the length

might be a perfect square or a prime num
ber. The patterns are deeply rooted in
mathematics but remote from linguistic
issues.

In these languages the grammar itself
has a mathematical flavor: it reads like a

computer program. The derivation of a
sentence in the language a2" is shown in

Figure 6. Markers bounce from end to
end in a growing string of a's, then collide
and annihilate one another. The working
of the grammar can hardly be dis

tinguished from the operation of the
underlying Turing machine, scanning
back and forth over its tape.

There arc languages beyond the recur

sively enumerable ones, but there are no
grammars beyond type 0 and no recog
nizing machines beyond the Turing
machine. The ethereal languages that can
not be reached from the top of Chomsky's

skyscraper correspond to the non-
computable functions, those whose
demands for space or time grow so fast
that even a Turing machine cannot keep up
with them. The existence of such func
tions and languages is one of the more

unsettling discoveries of 20th century
mathematics. They are of no conceivable
use. Even if the need for such a language

arose, no machine could recognize it.

The view from the top

Looking back over the four classes of lan
guages, a pattern of ascending and
descending currents can be perceived.
Climbing up from type 3 to type 0, gram
mars become progressively more elabo
rate as the constraints on rule forms are
relaxed. Every rule in a regular grammar
could also appear in a type 0 grammar, but
the latter class can include many other

rules in addition. Each grammar class is a

proper subset of the one above it.
For languages the trend is in the

opposite direction. The constraints on
form become tighter as one proceeds from
type 3 to type 0, and each class is a subset
of the one below it. AH the sentences of
the recursively enumerable language a2"
are also members of the simple regular

language a*, but a* includes many strings
that are not sentences of a2". If a type 0

language.is powerful, that is not because it
can say aaaa; a language in any of the
classes can do that. The type 0 language is

singled out because it cannot say aaa or

Derivation of a string with equal numbers
consecutive a's, b's and c's is controlled b)
a context-sensitive grammar. The first two
rules are the crucial ones. Rule 1 generate
all strings with equal numbers of a's, X's
and Y's, then Rule 2 rearranges the X's an
Y's. The remaining rules merely sub
b's for X's and c's for Y's.

Grammar for anbnc"

l.S::=aXY I aSXY

2 .YX : :=XY

3. .aX: :=ab

. b X : : = b b

5 . b Y: : = b c

. c Y: : = c c

Derivat ion of aabbec

aaXYXY

aabXYY

aabbYY

l > ,

!

!

I ''a?.•'!$&$.

!

Grammar for generating sentences whose

length is an integral power of 2 functions as
a Turing-machine program. The symbols U

and V mark the end of the string. X marches

through the string from left to right, dou-.

bling the number of a's on each pass. Y and
Z progress from right to left, then either start

another cycle or terminate the process.

a m m a r f o r a 7 "

::= UXaV

a ::= aaY.

V : : = Y V I Z

ivation of aaaa

UaZaaa

UZaaaa

Figure 6.

! ! !

. /.'I *.*!- 'IV '.-T.J ! l-*T£*-?K

Where do "real" languages fall in the

Chomsky hierarchy? For natural lan
guages the best answer seems to be
"nowhere at all." Much of the observed

syntax can be described by a context-free
grammar, but most natural-language
grammars also rely on a transformational
component that is not based on production
rules and so has no place in the hierarchy.

Programming languages are not much
easier to classify. They are scattered in
pieces over three of the four levels. Typi
cally the fundamental lexical units, called
tokens, form a regular language. They are
entities such as numbers and variable
names that can be recognized by a gram
mar that does no counting or calculation.
The lexical scanner, the part of a compiler
that breaks a continuous input stream into
discrete tokens, is generally constructed
as a finite-state automaton.

The bulk of a modern programming

language is defined by a context-free
grammar. All of the rules for handling
arithmetic and logical expressions can be

given in this format. A grammar with only
context-free productions can also ensure
that parentheses are balanced, that there is
an "end" for every "begin," a "then" for

every "if," and so on. A violation of these
rules can therefore be detected early in the

compilation of a program, during the
checking of its syntax, and before any
semantic interpretation begins. The soft
ware component that does the syntactic

analysis is the parser; it can be modeled
on a pushdown automaton.

Few programming languages, however,
are entirely context-free. In Pascal and C

every invocation of a function must
include actual parameters that match (in
number and type) the formal parameters

given in the function declaration. No
context-free grammar can ensure such

matching. Thus it would seem that
context-sensitive productions are needed
in a grammar for Pascal or C.

In practice, that is not how it's done.
The formal grammar of the language is

given in context-free form, and features
that cannot be made to fit the mold are left
unspecified. The rule for a function decla
ration states merely that it can have a

parameter list, which is defined in turn as
any sequence of parameters and types.

Checking for consistency between formal
and actual parameters is done not by the

parser but by an independent module of
the compiler.

It is in the confrontation with "real"

languages that both the strengths and the
.limitations of formal linguistic theory
become most apparent. The guidance of a
formal grammar is all but essential in the
creation of a language, and yet it is not
sufficient. The practicalities of language
and compiler design will be the theme of
Part III in this series.

References

Chomsky, Noam. "Three Models for the
Description of Language." IRE Trans
actions on Information Tlieory. vol. 2, no. 3

(1956): 113-124. "On Certain Formal
Properties of Grammars." Information and
Control, vol. 2, no. 2 (1959): 137-167.

[The two papers in which the hierarchy of
language classes was first proposed.]

Hopcroft, John E., and Jeffrey D. Ullman.
Introduction to Automata Theory, Lan

guages and Computation. Reading, Mass.:

Addison-Wesley Publishing Co. 1979. [A
text that gives proofs for many of the asser
tions I have made but failed to defend.]

Minsky, Marvin L. Computation: Finite and
Infinite Machines. Englewood Cliffs, N.J.:
Prentice-Hall Inc., 1967. [An exceptionally
clear introduction, rigorous but never

tedious.]

Brian Hayes is a writer who works in both
natural and formal languages. Until 1984
he was an editor of Scientific American,
where he launched the Computer Recre
ations department.

Artwork: Anne Dooring

COMPUTER LANGUAGE ! NOVEMBER 1985
. _'~" ::""-..'«

