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The Higher Arithmetic

Brian Hayes

Last year the National Debt 
Clock in New York City ran 

out of digits. The billboard-size elec-
tronic counter, mounted on a wall near 
Times Square, overflowed when the 
public debt reached $10 trillion, or 
1013 dollars. The crisis was resolved by 
squeezing another digit into the space 
occupied by the dollar sign. Now a 
new clock is on order, with room for 
growth; it won’t fill up until the debt 
reaches a quadrillion (1015) dollars.

The incident of the Debt Clock brings 
to mind a comment made by Richard 
Feynman in the 1980s—back when mere 
billions still had the power to impress:

There are 1011 stars in the galaxy. 
That used to be a huge number. 
But it’s only a hundred billion. 
It’s less than the national deficit! 
We used to call them astronomi-
cal numbers. Now we should call 
them economical numbers.

The important point here is not that 
high finance is catching up with the 
sciences; it’s that the numbers we en-
counter everywhere in daily life are 
growing steadily larger. Computer 
technology is another area of rapid nu-
meric inflation. Data storage capacity 
has gone from kilobytes to megabytes 
to gigabytes, and the latest disk drives 
hold a terabyte (1012 bytes). In the 
world of supercomputers, the current 
state of the art is called petascale com-
puting (1015 operations per second), 
and there is talk of a coming transi-
tion to exascale (1018). After that, we 
can await the arrival of zettascale (1021) 
and yottascale (1024) machines—and 
then we run out of prefixes!

Even these numbers are puny com-
pared with the prodigious creations of 

pure mathematics. In the 18th century 
the largest known prime number had 
10 digits; the present record-holder 
runs to almost 13 million digits. The 
value of π has been calculated to a 
trillion digits—a feat at once magnifi-
cent and mind-numbing. Elsewhere 
in mathematics there are numbers so 
big that even trying to describe their 
size requires numbers that are too big 
to describe. Of course none of these 
numbers are likely to turn up in ev-
eryday chores such as balancing a 
checkbook. On the other hand, log-
ging into a bank’s web site involves 
doing arithmetic with numbers in the 
vicinity of 2128, or 1038. (The calcula-
tions take place behind the scenes, in 
the cryptographic protocols meant to 
ensure privacy and security.)

Which brings me to the main theme 
of this column: Those streams of digits 
that make us so dizzy also present chal-
lenges for the design of computer hard-
ware and software. Like the National 
Debt Clock, computers often set rigid 
limits on the size of numbers. When 
routine calculations begin to bump up 
against those limits, it’s time for a re-
thinking of numeric formats and algo-
rithms. Such a transition may be upon 
us soon, with the approval last year of 
a revised standard for one common 
type of computer arithmetic, called 
floating point. Before the new standard 
becomes too deeply entrenched, per-
haps it’s worth pausing to examine a 

few alternative schemes for computing 
with astronomical and economical and 
mathematical numbers.

Numerical Eden
In their native habitat—which is not the 
digital computer—numbers are bound-
less and free-ranging. Along the real 
number line are infinitely many inte-
gers, or whole numbers. Between any 
two integers are infinitely many ratio-
nal numbers, such as 3⁄2 and 5⁄4. Between 
any two rationals are infinitely many 
irrationals—numbers like √2

–
 or π. 

The reals are a Garden of Eden for 
doing arithmetic. Just follow a few 
simple rules—such as not dividing by 
zero—and these numbers will never 
lead you astray. They form a safe, 
closed universe. If you start with any 
set of real numbers, you can add and 
subtract and multiply all day long—
and divide, too, except by zero—and at 
the end you’ll still have real numbers. 
There’s no risk of slipping through the 
cracks or going out of bounds.

Unfortunately, digital computers ex-
ist only outside the gates of Eden. Out 
here, arithmetic is a treacherous pro-
cess. Even simple counting can get you 
in trouble. With computational num-
bers, adding 1 over and over eventu-
ally brings you to a largest number—
something unknown in mathematics. 
If you try to press on beyond this limit, 
there’s no telling what will happen. 
The next number after the largest num-
ber might be the smallest number; or it 
might be something labeled ∞; or the 
machine might sound an alarm, or die 
in a puff of smoke.

This is a lawless territory. On the 
real number line, you can always rely 
on principles like the associative law: 
(a+b)+c = a+(b+c). In some versions 
of computer arithmetic, that law breaks 
down. (Try it with a = 1030, b = –1030, 
c = 1.) And when calculations include ir-
rational numbers—well, irrationals just 
don’t exist in the digital world. They 
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have to be approximated by rationals—
the very thing they are defined not to 
be. As a result, mathematical identities 
such as (√2

–
)2 = 2 are not to be trusted.

Bignums
The kind of computer arithmetic that 
comes closest to the mathematical 
ideal is calculation with integers and 
rationals of arbitrary size, limited only 
by the machine’s memory capacity. In 
this “bignum” arithmetic, an integer 
is stored as a long sequence of bits, 
filling up as much space as needed. A 
rational number is a pair of such inte-
gers, interpreted as a numerator and a 
denominator.

A few primitive computers from the 
vacuum-tube era had built-in hard-
ware for doing arithmetic on integers 
of arbitrary size, but our sophisticated 
modern machines have lost that ca-
pability, and so the process has to be 
orchestrated by software. Adding two 
integers proceeds piece by piece, start-
ing with the least-significant bits and 
working right to left, much as a paper-
and-pencil algorithm sums pairs of 
digits one at a time, propagating any 
carries to the next column. The usual 
practice is to break up the sequence of 
bits into blocks the size of a machine 
register—typically 32 or 64 bits. Algo-
rithms for multiplication and division 
follow similar principles; operations 
on rationals require the further step of 
reducing a fraction to lowest terms.

Looking beyond integers and ra-
tionals, there have even been efforts 
to include irrational numbers in exact 
computations. Of course there’s no 
hope of expressing the complete val-
ue of π or √2

–
 in a finite machine, but a 

program can calculate the values in-
crementally, supplying digits as they 
are needed—a strategy known as lazy 
computing. For example, the asser-
tion π < 3.1414 could be tested—and 
shown to be false—by generating the 
first five decimal digits of π. Another 
approach is to treat irrational num-
bers as unevaluated units, which are 
carried through the computation from 
start to finish as symbols; thus the cir-
cumference of a circle of unit radius 
would be given simply as 2π.

The great virtue of bignum arith-
metic is exactness. If the machine ever 
gives an answer, it will be the right 
answer (barring bugs and hardware 
failures). But there’s a price to pay: You 
may get no answer at all. The program 
could run out of memory, or it could 

take so long that it exhausts human 
patience or the human lifespan. 

For some computations, exactness 
is crucial, and bignum arithmetic is 
the only suitable choice. If you want 
to search for million-digit primes, you 
have to look at every last digit. Sim-
ilarly, the security module in a web 
browser must work with the exact val-
ue of a cryptographic key.

For many other kinds of computa-
tions, however, exactness is neither 
needed nor helpful. Using exact ratio-
nal arithmetic to calculate the interest 
on a mortgage loan yields an unwieldy 
fraction accurate to hundreds of deci-
mal places, but knowing the answer 
to the nearest penny would suffice. In 
many cases the inputs to a computa-
tion come from physical measurements 
accurate to no more than a few signifi-
cant digits; lavishing exact calculations 
on these measurements cannot make 
them any more accurate.

What’s the Point?
Most computer arithmetic is done not 
with bignums or exact rationals but 
with numbers confined to a fixed al-
lotment of space, such as 32 or 64 bits. 
The hardware operates on all the bits 
at once, so arithmetic can be very fast. 
But an implacable law governs all such 
fixed-size formats: If a number is rep-
resented by 32 bits, then it can take on 

at most 232 possible values. You may be 
able to choose which 232 values are in-
cluded, but there’s no way to increase 
the size of the set.

For 32-bit numbers, one obvi-
ous mapping assigns the 232 bit pat-
terns to the integers from 0 through 
4,294,967,295 (which is 232– 1). The 
same range of integers could be shifted 
along the number line, or the values 
could be scaled to cover a smaller nu-
meric range in finer increments (per-
haps 0.00 up to 42,949,672.95) or spread 
out over a wider range more sparsely. 
Arithmetic done in this style is known 
as “fixed point,” since the position of 
the decimal point is the same in all 
numbers of a given class. 

Fixed-point arithmetic was once the 
mainstay of numerical computing, and 
it still has a place in certain applica-
tions, such as high-speed signal pro-
cessing. But the dominant format now 
is floating point, where the decimal 
point (or binary point) can be moved 
around to represent a wide range of 
magnitudes. The floating-point format 
is based on the same idea as scientific 
notation. Just as we can write a large 
number succinctly as 6.02×1023, float-
ing-point arithmetic stores a number 
in two parts: the significand (6.02 in 
this example) and the exponent (23).

Designing a floating-point format 
entails a compromise between range 

Numerical overflow led to some quick re-engineering of the National Debt Clock, an electron-
ic billboard in Midtown Manhattan. The clock was designed to display 13 digits, with a dollar 
sign in the leftmost position. In the fall of 2008, when the public debt crossed the $10 trillion 
threshold, the dollar-sign position was commandeered for a 14th digit. According to news re-
ports, the clock will be replaced with a new model that won’t overflow until the debt reaches 
$1 quadrillion. The photograph was made by Rafael Chamorro on November 29, 2008.
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and precision. Every bit allocated to 
the significand doubles its precision; 
but the bit has to be taken from the 
exponent, and it therefore reduces the 
range by half. For 32-bit numbers the 
prevailing standard dictates a 24-bit 
significand and an 8-bit exponent; a 
few stray bits are lost to storing signs 
and marking special cases, leaving an 
effective range of 2–126 up to 2127. In 
decimal notation the largest represent-
able number is about 3×1038. Standard 
64-bit numbers allocate 53 bits to the 
significand and 11 to the exponent, al-
lowing a range up to about 10308. 

The idea of floating-point arithmetic 
goes back to the beginning of the com-
puter age, but it was widely adopted 
only in the 1980s. The key event was the 
drafting of a standard, approved by the 
Institute of Electrical and Electronic En-
gineers (IEEE) in 1985. This effort was 
led by William Kahan of the University 
of California, Berkeley, who remains a 
strong advocate of the technology.

Early critics of the floating-point ap-
proach worried about efficiency and 
complexity. In fixed-point arithmetic, 
many operations can be reduced to a 
single machine instruction, but float-
ing-point calculations are more in-
volved. First you have to extract the 
significands and exponents, then op-
erate on these pieces separately, then 
do some rounding and adjusting, and 
finally reassemble the parts.

The answer to these concerns was to 
implement floating-point algorithms 
in hardware. Even before the IEEE 

standard was approved, Intel designed 
a floating-point coprocessor for early 
personal computers. Later generations 
incorporated a floating-point unit on 
the main processor chip. From the 
programmer’s point of view, floating-
point arithmetic became part of the 
infrastructure. 

Safety in Numbers
It’s tempting to pretend that floating-
point arithmetic is simply real-number 
arithmetic in silicon. This attitude is 
encouraged by programming languag-
es that use the label real for floating-
point variables. But of course floating-
point numbers are not real numbers; at 
best they provide a finite model of the 
infinite real number line.

Unlike the real numbers, the float-
ing-point universe is not a closed sys-
tem. When you multiply two floating-
point numbers, there’s a good chance 
that the product—the real product, as 
calculated in real arithmetic—will not 
be a floating-point number. This leads 
to three kinds of problems.

The first problem is rounding error. 
A number that falls between two float-
ing-point values has to be rounded by 
shifting it to one or the other of the 
nearest representable numbers. The re-
sulting loss of accuracy is usually small 
and inconsequential, but circumstanc-
es can conspire to produce numerical 
disasters. A notably risky operation is 
subtracting one large quantity from 
another, which can wipe out all the 
significant digits in the small differ-

ence. Textbooks on numerical analysis 
are heavy with advice on how to guard 
against such events; mostly it comes 
down to “Don’t do that.”

The second problem is overflow, 
when a number goes off the scale. The 
IEEE standard allows two responses to 
this situation. The computer can halt 
the computation and report an error, 
or it can substitute a special marker, 
“∞,” for the oversize number. The lat-
ter option is designed to mimic the 
properties of mathematical infinities; 
for example, ∞+1 = ∞. Because of this 
behavior, floating-point infinity is a 
black hole: Once you get into it, there is 
no way out, and all information about 
where you came from is annihilated.

The third hazard is underflow, 
where a number too small to represent 
collapses to zero. In real arithmetic, a 
sequence like 1⁄2, 1⁄4, 1⁄8,… can go on in-
definitely, but in a finite floating-point 
system there must be a smallest nonze-
ro number. On the surface, underflow 
looks much less serious than overflow. 
After all, if a number is so small that 
the computer can’t distinguish it from 
zero, what’s the harm of making it ex-
actly zero? But this reasoning is mis-
leading. In the exponential space of 
floating-point numbers, the distance 
from, say, 2–127 to zero is exactly the 
same as the distance from 2127 to infin-
ity. As a practical matter, underflow is 
a frequent cause of failure in numerical 
computations.

Problems of rounding, overflow and 
underflow cannot be entirely avoided 
in any finite number system. They can 
be ameliorated, however, by adopting 
a format with higher precision and a 
wider range—by throwing more bits 
at the problem. This is one approach 
taken in a recent revision of the IEEE 
standard, approved in June 2008. It 
includes a new 128-bit floating-point 
format, supporting numbers as large 
as 216,383 (or about 104,932).

Tapering Off, or Rolling Off a Log
By now, IEEE floating-point methods 
are so firmly established that they of-
ten seem like the only way to do arith-
metic with a computer. But many al-
ternatives have been discussed over 
the years. Here I shall describe two 
of them briefly and take a somewhat 
closer look at a third idea.

The first family of proposals might 
be viewed more as an enhancement of 
floating point than as a replacement. 
The idea is to make the trade-off be-

fixed-point numbers

floating-point numbers

logarithmic numbers

level-index numbers

0 8 16 24 32 40 48 56 64

“Spectra” of computer number systems show how numbers are distributed along the real num-
ber line. Fixed-point numbers are placed at uniform intervals; for floating-point numbers the 
density falls by half with each higher power of 2; logarithmic numbers have a smoothly declin-
ing density; so do level-index numbers, but the gradient in density is even more extreme. The 
spectra are based on toy versions of the number systems, with just a few bits of precision.
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tween precision and range an adjust-
able parameter. If a calculation does 
not require very large or very small 
numbers, then it can give more bits to 
the significand. Other programs might 
want to sacrifice precision in order to 
gain wider scope for the exponent. To 
make such flexibility possible, it’s nec-
essary to set aside a few bits to keep 
track of how the other bits are allocated. 
(Of course those bookkeeping bits are 
thereby made unavailable for either the 
exponent or the significand.)

A scheme of this kind, called tapered 
floating point, was proposed as early as 
1971 by Robert Morris, who was then 
at Bell Laboratories. A decade later, 
more elaborate plans were published 
by Shouichi Matsui and Masao Iri of 
the University of Tokyo and by Hozumi 
Hamada of Hitachi, Ltd. More recently, 
Alan Feldstein of Arizona State Uni-
versity and Peter R. Turner of Clarkson 
University have described a tapered 
scheme that works exactly like a con-
ventional floating-point system except 
when overflow or underflow threaten.

The second alternative would re-
place numbers by their logarithms. For 
example, in a decimal version of the 
plan the number 751 would be stored 
as 2.87564, since 102.87564 = 751. This 
plan is not as radical a departure as it 
might seem, because floating-point is 
already a semi-logarithmic notation: 
The exponent of a floating-point num-
ber is the integer part of a logarithm. 
Thus the two formats record essen-
tially the same information.

If the systems are so similar, what’s 
gained by the logarithmic alternative? 
The motive is the same as that for devel-
oping logarithms in the first place: They 
facilitate multiplication and division, 
reducing those operations to addition 
and subtraction. For positive numbers 
a and b, log(ab) = log(a)+log(b). In gen-
eral, multiplying takes more work than 
adding, so this substitution is a net gain. 
But there’s another side to the coin: Al-
though logarithms make multiplying 
easy, they make adding hard. Comput-
ing a+b when you have only log(a) and 
log(b) is not straightforward. For this 
reason logarithmic arithmetic is attrac-
tive mainly in specialized areas such as 
image processing where multiplications 
tend to outnumber additions.

On the Level
The third scheme I want to mention 
here addresses the problem of over-
flow. If you are trying to maximize the 

range of a number system, an idea that 
pops up quite naturally is to replace 
mere exponents with towers of expo-
nents. If 2N can’t produce a number 
large enough for your needs, then try

22N or 222N

 or 2222N

. 

(Whatever the mathematical merits of 
such expressions, they are a typograph-
ical nightmare, and so from here on I 
shall replace them with a more conve-
nient notation, invented by Donald E. 
Knuth of Stanford University: 2↑2↑2↑2↑
N is equivalent to the last of the three 
towers shown above. It is to be evalu-
ated from right to left, just as the tower 
is evaluated from top to bottom.)

Number systems based on iterated 
exponentiation have been proposed 
several times; for example, they are 
mentioned by Matsui and Iri and by 
Hamada. But one particular version of 
the idea, called the level-index system, 
has been worked out with such care 
and thoughtful analysis that it deserves 
closer attention. Level-index arithme-
tic is a lost gem of computer science. It 
may never make it into the CPU of your 
laptop, but it shouldn’t be forgotten.

The scheme was devised by Charles 
W. Clenshaw and Frank W. J. Olver, 
who first worked together (along with 
Alan Turing) in the 1940s at the Na-
tional Physical Laboratory in Britain. 

They proposed the level-index idea in 
the 1980s, writing a series of papers 
on the subject with several other col-
leagues, notably Turner and Daniel W. 
Lozier, now of the National Institute 
of Standards and Technology (NIST). 
Clenshaw died in 2004; Olver is now at 
the University of Maryland and NIST, 
and is co-editing with Lozier a new 
version of the Handbook of Mathematical 
Functions by Abramowitz and Stegun.

Iterated exponentials can be built on 
any numeric base; most proposals have 
focused on base 2 or base 10. Clenshaw 
and Olver argue that the best base is e, 
the irrational number usually described 
as the base of the natural logarithms or 
as the limiting value of the compound-
interest formula (1+1⁄n)n; numerically e 
is about 2.71828. Building numbers on 
an irrational base is an idea that takes 
some getting used to. For one thing, 
it means that almost all numbers that 
have an exact representation are irra-
tional; the only exceptions are 0 and 1. 
But there’s no theoretical difficulty in 
constructing such numbers, and there’s 
a good reason for choosing base e.

In the level-index system a number 
is represented by an expression of the 
form e↑e↑ … ↑e↑m, where the m at the 
end of the chain is a fractional quantity 
analogous to the mantissa of a loga-
rithm. The number of up-arrows—or 
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Another visualization of number-system spectra shows how the magnitude of a number increases 
as a function of the number’s position in the counting sequence. For the uniformly spaced fixed-
point numbers, the function is a straight line, but the other systems produce concave-upward 
curves (or, in the case of floating point, a jointed sequence of straight segments). The level-index 
system has the highest density of small numbers, then the steepest rate of growth for larger ones. 
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in other words the height of the expo-
nential tower—depends on the magni-
tude of the number being represented.

To convert a positive number to level-
index form, we first take the logarithm 
of the number, then the logarithm of the 
logarithm, and so on, continuing until 
the result lies in the interval between 
0 and 1. Counting the successive loga-
rithm operations gives us the level part 
of the representation; the remaining 
fraction becomes the index, the value of 
m in the expression above. The process 
is defined by the function f(x):

if 0 ≤ x < 1 then f(x) = x
else f(x) = 1+ f(ln(x)).

Here’s how the procedure applies to 
the national-debt amount shown in the 
photograph on page 365:

ln(10,659,204,157,341)	=	 29.9974449
ln(29.9974449) 	 =	 3.40111221
ln(3.40111221)	 =	 1.22410249
ln(1.22410249)	 =	 0.20220791

We’ve taken logarithms four times, so 
the level is 4, and the fractional amount 
remaining becomes the index. Thus the 
level-index form of the national debt 
is 4.20220791 (which seems a lot less 
worrisome than $10,659,204,157,341).

The level-index system accommo-
dates very large numbers. Level 0 runs 
from 0 to 1, then level 1 includes all 
numbers up to e. Level 2 extends as far 
as e↑e, or about 15.2. Beyond this point, 
the growth rate gets steep. Level 3 goes 
up to e↑e↑e, which is about 3,814,273. 
Continuing the ascent through level 4, 
we soon pass the largest 64-bit floating-
point number, which has a level-index 
value of about 4.63. The upper bound-
ary of level 4 is a number with 1.6 mil-
lion decimal digits. Climbing higher still 
puts us in the realm of numbers where 
even a description of the size is hope-
lessly impractical. Just seven levels are 
enough to represent all distinguishable 
level-index numbers. Thus only three 
bits need to be devoted to the level; the 
rest can be used for the index.

What about the other end of the num-
ber scale—the very small numbers? The 
level-index system is adequate for many 
purposes in this region, but a variation 
called symmetric level-index provides 
additional precision close to zero. In 
this scheme a number x between 0 and 
1 is denoted by the level-index repre-
sentation of 1⁄x. 

Apart from its wide range, the level-
index system has some other distinc-
tive properties. One is smoothness. For 

floating-point numbers, a graph of the 
magnitudes of successive numbers is 
a jointed sequence of straight lines, 
with an abrupt change of slope at each 
power of 2. The corresponding graph 
for the level-index system is a smooth 
curve. For iterated exponentials this is 
true only in base e, which is the reason 
for choosing that base.

Olver also points out that level-index 
arithmetic is a closed system, like arith-
metic with real numbers. How can that 
be? Since level-index numbers are finite, 
there must be a largest member of the 
set, and so repeated additions or multi-
plications should eventually exceed that 
bound. Although this reasoning is unas-
sailable, it turns out that the system does 
not in fact overflow. Here’s what hap-
pens instead. Start with a number x, then 
add or multiply to generate a new larger 
x, which is rounded to the nearest level-
index number. As x grows very large, 
the available level-index values become 
sparse. At some point, the spacing be-
tween successive level-index values is 
greater than the change in x caused by 
addition or multiplication. Thereafter, 
successive iterations of x round to the 
same level-index value. 

This is not a perfect model of un-
bounded arithmetic. In particular, the 
process is not reversible: A long series 
of x+1 operations followed by an equal 
number of x–1s will not bring you back 
to where you started, as it would on the 
real number line. Still, the boundary at 
the end of the number line seems about 
as natural as it can be in a finite system.

Shaping a Number System
Is there any genuine need for an arith-
metic that can reach beyond the limits 
of IEEE floating point? I have to admit 
that I seldom write a program whose 
output is a number greater than 1038. 
But that’s not the end of the story. 

A program with inputs and outputs 
of only modest size may nonetheless 
generate awkwardly large intermedi-
ate values. Suppose you want to know 
the probability of observing exactly 
1,000 heads in 2,000 tosses of a fair coin. 
The standard formula calls for evalu-
ating the factorial of 2,000, which is 
1×2×3×…×2,000 and is sure to over-
flow. You also need to calculate (½)2,000, 
which could underflow. Although the 
computation can be successfully com-
pleted with floating-point numbers—
the answer is about 0.018—it requires 
careful attention to cancellations and re-
orderings of the operations. A number 

system with a wider range would allow 
a simpler and more robust approach.

In 1993 Lozier described a more sub-
stantial example of a program sensi-
tive to numerical range. A simulation 
in fluid dynamics failed because of se-
vere floating-point underflow; redoing 
the computation with the symmetric 
version of level-index arithmetic pro-
duced correct output.

Persuading the world to adopt a 
new kind of arithmetic is a quixotic un-
dertaking, like trying to reform the cal-
endar or replace the qwerty keyboard. 
But even setting aside all the obstacles 
of history and habit, I’m not sure how 
best to evaluate the alternatives in this 
case. The main conceptual question 
is this: Since we don’t have enough 
numbers to cover the entire number 
line, what is the best distribution of 
the numbers we do have? Fixed-point 
systems sprinkle them uniformly. Float-
ing-point numbers are densely packed 
near the origin and grow farther apart 
out in the numerical hinterland. In the 
level-index system, the core density is 
even greater, and it drops off even more 
steeply, allowing the numbers to reach 
the remotest outposts.

Which of these distributions should 
we prefer? Perhaps the answer will de-
pend on what numbers we need to rep-
resent—and thus on how quickly the 
national debt continues to grow.
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