
A reprint from

American Scientist
the magazine of Sigma Xi, The Scientific Research Society

This reprint is provided for personal and noncommercial use. For any other use, please send a request Brian Hayes by
electronic mail to bhayes@amsci.org.

362 American Scientist, Volume 96

Computing Science

© 2008 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

Calculemus!

Brian Hayes

This column marks an anniver-
sary: It has been 25 years since I

began writing these essays on the plea-
sures and possibilities of computation.
My first columns appeared in Scientific
American; later I wrote for Computer
Language and then The Sciences; since
1993 the column has been happily at
home here in American Scientist. (Some
of my earlier essays are newly avail-
able online at bit-player.org/pubs.)

For my very first column, in October
of 1983, I chose as an epigraph some
words of Gottfried Wilhelm von Leib-
niz: “Let us calculate!” In Leibniz’s
Latin this exhortation was actually
just one word: “Calculemus!” Leibniz
was an optimist—he was the model of
Voltaire’s Dr. Pangloss—and he saw
a bright future for what we would
now call algorithmic thinking. Calcu-
lation would be the key to settling all
human conflicts and disagreements,
he believed. I can’t quite match Leib-
niz’s faith in attaining world peace
through computation, but in my own
way I’m an algorithmic optimist too.
I see computing as an important tool
for helping us understand the world
we live in and enriching our experi-
ence of life.

When I wrote that first column, the
idea of a personal computer was still a
novelty, and there was some question
what it might be good for. Now the
computer is a fixture of daily life. We
rely on it to read the news, to keep in
touch with friends, to listen to music
and watch movies, to pay bills, to play
games, and occasionally to get a bit of
work done. Oddly enough, though,

one thing we seldom do with the com-
puter is compute. Only a minority of
computer users ever sit down to write
a program as a step in solving a prob-
lem or answering a question. In this
column I want to celebrate the rewards
of programming and computing, and
cheer on those who get their kicks out
of this peculiar sport. I also have a few
words to say about the evolution of
tools for programming.

Inquisitive Computing
Let me be clear about what kind of
programming I have in mind. I’m not
talking about software development. In
software development, the end prod-
uct is the program itself. The developer
builds a web browser, say, or a word
processor—a program that others can
then put to use. In my kind of program-
ming, the product is not the program
but the result of running the program.
That result might be a number or a
graph or an image; in general, it’s an an-
swer to a question. Let’s call the whole
process inquisitive computing.

The earliest computers were all used
in an inquisitive mode. One of those
innovative machines was the EDSAC,
built at Cambridge University under
the direction of Maurice V. Wilkes. On
May 6, 1949, a punched paper tape was
threaded into the EDSAC’s input de-
vice, and a few seconds later a nearby
teleprinter began typing out the num-
bers 0, 1, 4, 9, 16, 25, 36, continuing
on to 9,801. Clearly, this was comput-
ing for answers, although I suppose

the Cambridge dons assembled for the
demonstration weren’t really there to
learn the squares of the integers from
0 through 99. A few days later another
program generated a table of prime
numbers up to 1,021.

If these accomplishments seem
trifling, keep in mind that the first
EDSAC programs had to take control
of the machine at the level of bare met-
al.There were no operating systems or
programming languages. Every step
in an algorithm had to be specified in
excruciating detail. Merely getting the
teletype to print out a number took a
dozen instructions.

Over the next decade, the EDSAC
had a distinguished career in inquisi-
tive computing. The statistician Ron-
ald A. Fisher used the machine to solve
a problem in genetics, quantifying the
effect of selective advantage on gene
frequency. The Danish astronomer
 Peter Naur came to Cambridge to cal-
culate orbits of planetoids and comets.
Naur was knocked out of his own orbit
by this encounter with EDSAC; he left
astronomy and became a distinguished
theorist of computing. The biologist
John Kendrew relied on the EDSAC
to analyze x-ray diffraction patterns of
the myoglobin molecule, thereby eluci-
dating the three-dimensional structure
of the protein.

In the 1970s, the hobbyists who built
or bought the first microcomputers
faced a predicament much like that
of the EDSAC pioneers. The machines
came with little or no software. If you
wanted to do anything interesting with
your new toy, your only option was to
write a program. Thus another genera-
tion entertained themselves by print-
ing out lists of squares and primes; the
ambitious and persistent ones went on
to plot the dizzy contours of the Man-
delbrot set or to search for patterns in
John Horton Conway’s game of life.

Inquisitive computing has a less
prominent role today, if only because

Brian Hayes is senior writer for American Scien-
tist. A collection of his essays, Group Theory in
the Bedroom, and Other Mathematical Diver-
sions, was published in April by Hill and Wang.
Additional material related to the “Computing Sci-
ence” column appears in Hayes’s Weblog at http://
bit-player.org. Address: 211 Dacian Avenue, Dur-
ham, NC 27701. Internet: brian@bit-player.org

Celebrating
25 years

of celebrating
computation

2008 September–October 363www.americanscientist.org © 2008 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

so many other applications of com-
puters have upstaged it. These days,
if I suggest that you answer a ques-
tion by consulting a computer, you
would think I meant to go ask Google.
Nevertheless, programming for an-
swers is still a living art. In large-scale
scientific computing, clusters with
hundreds or thousands of processors
are put to work modeling the planet’s
climate and simulating collisions of
protons or collisions of galaxies. Stud-
ies of proteins have gone far beyond
Kendrew’s crystallography; comput-
ers now try to predict from first prin-
ciples how the long strand of a protein
molecule will fold up into a three-di-
mensional tangle.

Climate models are a bit too ambi-
tious for most of us. I want to focus on
smaller and more casual programming
challenges—computational problems
or puzzles you might play with for a
few minutes or a few days. Here are
three examples that involve nothing
more than simple arithmetic applied
to integers.

Perfect Medians
A puzzle attributed to the late David
Gale observes that the sequence 1, 2,
3, 4, 5, 6, 7, 8 has a “perfect median,”
namely 6, because the sum of the terms
preceding 6 is equal to the sum of the
terms following it. Are there other sub-
sequences of the counting numbers
that have perfect medians? For what
values of n does the sequence 1, 2, 3, ...,
n have a perfect median?

You might be able to solve this prob-
lem without the aid of a computer, but
I made no progress with pencil and pa-
per. On the other hand, a program to
search for perfect medians takes only
a few lines of code. Instead of check-
ing each sequence 1, 2, 3, ..., n to see if
it contains a perfect median, it’s easier
to turn the problem inside out and
check each integer m to see if it is the
perfect median of some sequence. The
first step is to add up all the numbers
less than m; call the result T. (A bright
10-year-old might figure out a way to
calculate T without actually doing all
the additions.) Then loop through suc-

cessive numbers starting with m+1,
summing as you go. If this sum is ever
equal to T, then m is a perfect median.

This approach immediately reveals
that 35 is the perfect median of the se-
quence 1, 2, 3, ..., 49. In a few seconds
you discover three more perfect me-
dians: 204, then 1,189 and 6,930. Of
course Gale wasn’t really asking for
a list of numbers; he wanted to know
what pattern underlies the numbers.
Getting a computer to answer ques-
tions of this kind is not so straightfor-
ward—unless you do the mathemati-
cal equivalent of consulting Google,
that is, you look up the numbers in
the Online Encyclopedia of Integer
Sequences, maintained by Neil J. A.
Sloane of AT&T Research. The search
retrieves sequence number A001109,
along with a wealth of related lore. It
turns out that each perfect median m
is the square root of a triangular num-
ber. In other words, m2 dots can be ar-
ranged to form either a square or an
equilateral triangle. This is a geometric
connection I never would have discov-

Open racks of vacuum tubes were a stylistic statement in the first electronic computers. This machine is the EDSAC (Electronic Delay Stor-
age Automatic Calculator) at Cambridge University. The paper-tape reader for input and teleprinter for output are at the far right. The first
programs run on the EDSAC were simple demonstrations that calculated square numbers and primes. Later the machine was put to work in a
problem-solving mode. Photograph courtesy of the Computer Laboratory, Cambridge University.

364 American Scientist, Volume 96 © 2008 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

ered on my own. (For an explanation
of the connection between squares,
triangles and medians, see the illustra-
tion above.)

Sums and Differences
Take a set of integers, say {0, 2, 3, 4},
and calculate the sums of all possible
pairs of numbers drawn from the set. A

set of four numbers yields 16 pairs, but
not all the sums are necessarily distinct.
In this case there are just eight different
sums: {0, 2, 3, 4, 5, 6, 7, 8}. Now build
the analogous set of pairwise differenc-
es; it turns out there are nine of them:
{–4, –3, –2, –1, 0, 1, 2, 3, 4}.

If you try the same experiment with
a few more small sets of numbers, you
may be ready to guess that the sums
never outnumber the differences. And
there’s a plausible rationale to back up
this conjecture: Addition is commuta-
tive but subtraction isn’t. The sums
5+8 and 8+5 both yield 13, whereas
5–8 and 8–5 produce two distinct dif-
ferences, –3 and +3. Nevertheless, the
conjecture is false. A counterexample
is the eight-member set {0, 2, 3, 4, 7,
11, 12, 14}, which has 26 distinct pair-
wise sums but only 25 differences. It
is called an MSTD set (for “more sums
than differences”).

I first learned about MSTD sets in
publications by Melvyn B. Nathanson
of Lehman College in the Bronx, Kevin
O’Bryant of the College of Staten Island
and Imre J. Ruzsa of the Mathematical
Institute of the Hungarian Academy
of Sciences. (I have written about their
work earlier at bit-player.org.)

A program to search for MSTD sets
can take a direct approach to the prob-
lem. For each set of numbers, the pro-
gram forms all pairwise sums and then
eliminates duplicates; it does the same
for the differences, and then compares.
The trickiest part of the program turns
out to be the routine for generating the
sets of integers to be tested. The sets
are characterized by two parameters:
the number of elements n and the size
of the largest element m (which cannot
be less than n–1). For any given val-
ues of n and m, the sets can be ordered
from smallest to largest and enumer-
ated in a way that’s something like or-
dinary counting, but you have to be
careful that a set never has duplicate
elements.

This process of enumerating sets
and checking all sums and differences
sounds arduous, but it goes faster than
you might expect. For example, in less
than a second of running time you can
establish that the example mentioned
above, {0, 2, 3, 4, 7, 11, 12, 14}, is the
smallest MSTD set with eight elements.
(Peter V. Hegarty of Chalmers Univer-
sity of Technology has since shown
that there are no MSTD sets with few-
er than eight elements, so this is the
smallest example overall.) Checking

all sets with n = 11 and m ≤ 20 takes
less than a minute; there are 184,756 of
these sets, and 160 of them are MSTDs,
including a dozen where the sums ex-
ceed the differences by 2.

The search for MSTD sets is a pecu-
liar kind of quest that seems to be pos-
sible only in mathematics. The sets are
very rare, and yet there are infinitely
many of them.

ABCs
My third example is another pursuit
of shy, elusive mathematical objects. It
concerns the simple equation a+b = c,
where a, b and c are positive integers
that have no divisors in common (oth-
er than 1); for example, the equation
4+5 = 9 qualifies under this condition.

Now for some number theory. Mul-
tiply the three numbers a, b and c,
then find all the prime factors of the
product. From the list of factors, cast
out any duplicates, so that each prime
appears just once. The product of the
unique primes is called the radical of
abc, or rad(abc). For the triple {4, 5, 9},
the product is 4×5×9 = 180, and the
factor list is 2, 2, 3, 3, 5. Removing the
duplicated 2s and 3s leaves the unique
factor list 2, 3, 5, so that rad(180) = 30.

In this example, c is less than rad(abc).
Can it ever happen than c is greater
than rad(abc)? Yes: The triple {5, 27, 32}
has the product 5×27×32 = 4,320, for
which the unique primes are again
2, 3 and 5. Thus c = 32 is greater than
rad(4,320) = 30. Triples where c exceeds
rad(abc) are called abc-hits. As with
MSTD sets, there are infinitely many
of them, and yet they are rare. Among
all abc triples with c ≤ 10,000, there are
just 120 abc-hits.

 If c can be greater than rad(abc), how
much greater? It’s been shown that c
can exceed rad(abc) plus any constant
or rad(abc) multiplied by any constant.
How about rad(abc) raised to some
power greater than 1? A conjecture for-
mulated by Joseph Oesterlé of the Uni-
versity of Paris and David W. Masser of
the University of Basel claims there are
only finitely many exceptional cases
where c > rad(abc)1+ε, for any ε no mat-
ter how small. The conjecture has made
the search for abc-hits more than an idle
recreation. If the conjecture could be
proved, there would consequences in
number theory, such as a much simpler
proof of Fermat’s Last Theorem.

In a program to search for abc-hits
the one sticky point is factoring the
product abc. Factoring integers is a no-

1, 2, 3, 4, 5, 6, 7, 8

sum =15

m n

sum =15

(m–1)m/2 (m–1)m/2+ m + = n(n+1)/2

(m–1)mm + = n(n+1)/2

m2 =

=

n(n+1)/2

A sequence of counting numbers 1, ..., n has
a perfect median m if the numbers less than
m have the same sum as the numbers greater
than m. For example, 6 is the perfect median
of 1, ..., 8, since the sums on both sides are 15.
Any sequence 1, ..., k has the sum k(k+1)/2,
which is also the formula for a triangular
number. In a sequence with perfect median m,
the numbers to the left of m sum to (m–1)m/2,
and so do those to the right of m. The sum of
the entire series is therefore (m–1)m/2 + m +
(m–1)m/2, which simplifies to m2. The sum
of 1, ..., n is also n(n+1)/2. Hence m is a perfect
median if m2 is a triangular number. For the
example shown m2 = n(n+1)/2 = 36, forming a
square of side 6 and a triangle of side 8.

Sets of integers generally have more pairwise
differences than sums. Because addition is
commutative, the upper and lower triangles
of the sum matrix are mirror images, eliminat-
ing almost half the entries as duplicates. In
subtraction, entries across the diagonal differ
in sign. (The diagonal itself is all zeros.) Only
a few anomalous sets have more sums than
differences (MSTD).

+ 0 2 3 4

0 0 2 3 4

2 2 4 5 6

3 3 5 6 7

4 4 6 7 8

– 0 2 3 4

0 0 2 3 4

2 –2 0 1 2

3 –3 –1 0 1

4 –4 –2 –1 0

sums differences

{0, 2, 3, 4, 5, 6, 7, 8} {–4, –3, –2, –1,
 0, 1, 2, 3, 4}

MSTD set: {0, 2, 3, 4, 7, 11, 12, 14}

sums: {0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 28}

diffs: {–14, –12, –11, –10, –9, –8, –7, –5, –4, –3,
–2, –1, 0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14}

2008 September–October 365www.americanscientist.org © 2008 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

torious unclassified problem in com-
puter science, with no efficient algo-
rithm known but also no proof that
the task is hard. If you want to get se-
rious about the search, you need to
give some thought to factoring algo-
rithms—or else latch on to code writ-
ten by someone else who has done
that thinking. On the other hand, for
merely getting a sense of what abc-hits
look like and where they’re found, the
simplest factoring method—trial divi-
sion—works quite well.

Searchers for abc-hits can also join
ABC@home (www.abcathome.com), a
distributed computing project.

The BASIC Story
The programs I’ve been describing
are simple, small and straightforward;
writing them requires no arcane wiz-
ardry. On the other hand, writing them
is not quite as easy as it ought to be,
because the tools available for this kind
of programming have not kept up with
progress in software technology.

For inquisitive programming, the
great age of innovation came and went
in the 1960s. The best-known artifact
of the era was the BASIC program-
ming language, created in 1964 by
John Kemeny and Thomas Kurtz of
Dartmouth University. Kemeny and
Kurtz set out to broaden the spectrum
of computing enthusiasts; they were
especially eager to draw in students in
the liberal arts and the social sciences.
(Calculemus!) Their new programming
language was meant to lower the bar-
riers to entry.

But the language was just the start.
BASIC was designed in conjunction
with the Dartmouth Time Sharing
System, an early experiment in inter-
active computing. Elsewhere, batch
processing was still the rule: Deliver
your shoebox of punchcards in the af-
ternoon, pick up a ream of printouts in
the morning. DTSS and BASIC offered
a direct connection to the computer
via a teletypewriter or, later, a video
terminal. Programming became more
like a conversation with the computer.
Compared with most other computing
environments of the time, it was well
suited to an exploratory style of prob-
lem solving.

BASIC spread from Dartmouth to
other universities in the 1960s, then
it gained a mass audience a decade
later when Bill Gates and Paul Allen
wrote a BASIC interpreter for micro-
computers. This was the first product

of the company that became Microsoft.
The initial model of the IBM PC had
a BASIC interpreter permanently in-
scribed in read-only memory; indeed,
this was the only software supplied
with the machine (even the operating
system was an extra-cost option).

Whatever happened to BASIC? Its
main attraction was also its undoing.
As a language for beginners, it had the
taint of training wheels. And it attracted
the scorn of those who wanted to make
programming a professional engineer-
ing discipline. Edsger Dijkstra, the cur-
mudgeon-in-chief of computer science,
groused: “It is practically impossible
to teach good programming to stu-
dents that have had a prior exposure to
 BASIC: as potential programmers they
are mentally mutilated beyond hope of
regeneration.”

BASIC didn’t disappear, but in re-
sponse to such acid critcism, it was
transformed beyond recognition. In the
80s we got “structured BASIC.” Later,
when the next fad swept the world
of software, BASIC became an “ob-
ject-oriented” language, with features
for creating windows and menus and
other gadgets that make up a graphic
user interface. The surviving versions
of the language are doubtless superior
in many ways, but they have become
tools for software development rather
than for inquisitive programming.

Several other languages of the 1960s
also offered an environment suited to
inquiry rather than development. Logo

has suffered a fate similar to BASIC’s:
It was designed as a programming lan-
guage for children, and so adults were
reluctant to take it seriously. In fact
Logo is a very expressive language, an
offshoot of Lisp.

Lisp itself (invented in the late
1950s) is my own favorite language for
inquisitive programming. Most Lisp
systems allow an incremental and in-
teractive style of work: You write and
test individual procedures rather than
building monolithic programs.

There’s also APL, a terse mathemati-
cal notation invented by Kenneth Iver-
son in 1962. Again, APL was intended
mainly for problem solving rather than
software development.

All of these languages still exist;
indeed, each of them has its devoted
following. But they are not where the
energy is in computing today. As niche
products, they have a hard time keep-
ing up with changes in technology and
attracting investment. Meanwhile, fa-
cilities for other kinds of programming
grow steadily more luxurious. If you
develop software in Java or C++, you
get leather upholstery, walnut panel-
ing and a dozen cupholders. If your
vocation is inquiry-based program-
ming, you sit in a folding chair.

A Wish List
The dream of Kemeny and Kurtz was
“programming for everyone,” based
on the conviction that getting answers
out of a computer should be seen as

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
0

0.0002

0.0004

0.0006

0.0008

0.0010

m (maximum set element)

fr
eq

ue
nc

y

n = 10

n = 9

n = 8

MSTD sets (with more sums than differences) are rare and unevenly distributed. A set can
be characterized by the number of elements n and the maximum element m. Within a narrow
range of values for these parameters, the abundance of MSTD sets reaches a sharp peak; the
frequency is close to zero elsewhere. In this context the frequency signifies the fraction of all
sets with a given n and m that are MSTD sets.

366 American Scientist, Volume 96 © 2008 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

an essential skill in a technological so-
ciety. But the standard apparatus of
software development is far from ideal
for teaching or learning this kind of
programming. If computing is to be a
broadly practiced art form, we need an
improved infrastructure for inquisitive
programming. Here’s my wish-list for
a programming environment:

It should be self-contained, easily
installed (and uninstalled), well-docu-
mented, internally consistent, bug-free
and foolproof. Perhaps it’s a scandal
that GUI-coddled computer users
have forgotten how to install an ex-
ecutable in usr/local/bin and add it
to their $PATH, but that’s the way the
world is.

I don’t want just to write programs; I
want to have a dialogue with the com-
puter. I need to know the answer to
one question before I can decide what
to ask next. Thus the typical unit of in-
teraction should be a single statement
or expression. This kind of incremental
computing can’t work if a language
requires a lot of scaffolding—header
files, a “main” procedure—just to run
a fragment of code.

I should be able to think in terms of
the problem at hand, not the innards
of the machine. I don’t want to worry
about the encoding of characters or
whether binary numbers come big end
or little end first. I want to be insulated
from annoyances such as allocating
and reclaiming memory. Data-type
declarations should be optional.

I want a system that’s mathematical-
ly well-behaved. I should not have to
live in a world where the integers end
at 4,294,967,295 or where 1⁄3×3 is equal
to something other than 1. Give me
unlimited precision and exact arithme-
tic, at least for rational numbers.

I want a rich selection of ready-
made functions and data structures. I
shouldn’t have to build lists or trees or
queues out of lower-level constructs
such as pointers.

Pamper me. I want the source-code
editor with the leather seats, the wal-
nut and the cupholders.

I want a thriving community of en-
thusiasts, who contribute to the sys-
tem, share code and knowledge, and
keep us all feeling young. For this to
happen, the software needs to be free,
or close to it.

Along with the wish list there’s an
unwish list of things I’m willing to
give up. Computational efficiency is
one of them. I’ll typically spend lon-

ger writing (and testing and debug-
ging) a program than I will running it.
Another variable I’m willing to leave
unspecified is the programming lan-
guage itself. I fervently believe that
some languages are better than others,
but the programming environment is
more important.

Making It Happen
Will I ever get my wishes? Nothing
I’ve asked for is unattainable or even
particularly novel. I wouldn’t know
enough to propose these ideas if I
hadn’t seen them at work in the past.
Indeed, over the years I have used a
number of programming systems that
met most of the criteria on my list.
Some of those systems were pure de-
light. What makes me grumpy is that
they are now obsolete and will not run
on modern hardware. And I don’t see
replacements on the horizon.

My sentimental attachment to Lisp
makes me long for a revival of inter-
est in that language, but I don’t see it
happening.

A smarter bet is Python. It has a
large and zealous community of boost-
ers, especially in the world of science.
The language itself is well adapted
to inquisitive programming, and it
serves perfectly well for introductory
programming courses. Python’s weak
point, in my view, is the surrounding
infrastructure of editors, command-
line tools, code libraries and modules.
There are several interactive program-
ming environments for Python, but
none of them give me the feeling of a
place where I am at home and in con-
trol of my own environment.

Going off in another direction, pro-
grams such as Mathematica and MAT-
LAB are truly wonders of the age. But
software that costs more than the com-
puter it runs on is not going to win the
public over to casual programming.

A project called Sage claims as its
mission, “Creating a viable free open
source alternative to Magma, Maple,
Mathematica and Matlab.” Sage was
initiated by William Stein of the Uni-
versity of Washington, and it now
has hundreds of contributors. Sage is
certainly not the self-contained, cohe-
sive package that I argue for; on the
contrary, it’s a loose confederation of
dozens of more specialized programs,
such as GAP for group theory and
R for statistics. All of the pieces are
stitched together with Python code,
which is also supposed to provide a

consistent user interface. It works bet-
ter than I would have guessed, but it’s
hardly seamless. The principal devel-
opers are putting most of their energy
into creating a research tool for ad-
vanced mathematics, which can leave
the skittish beginner without a safe
point of entry.

One aspect of Sage I find particu-
larly intriguing is the “notebook” in-
terface, which runs in a web browser.
Factoring a polynomial feels just like
shopping at Amazon. Moreover, the
interface is exactly the same whether
the browser is connected to a locally
installed copy of Sage or to a remote
server. (There’s a public Sage server
at www.sagenb.org.) This is surely the
way of the future. Perhaps the next big
step in inquistive programming will be
offered as a service, not as a product.
And maybe they’ll call it Calculemus!

Bibliography
Berlekamp, Elwyn, and Joe P. Buhler. 2005.

Puzzles column. (Problem 1, attributed to
David Gale.) Mathematical Sciences Research
Institute Emissary, Fall 2005, p. 3.

Campbell-Kelly, Martin. 1992. The Airy tape:
An early chapter in the history of debug-
ging. IEEE Annals of the History of Computing
14(4):16–25.

Dijkstra, Edsger W. 1975. How do we tell
truths that might hurt? www.cs.utexas.
edu/~EWD/transcriptions/EWD04xx/
EWD498.html

Granville, Andrew, and Thomas J. Tucker.
2002. It’s as easy as abc. Notices of the Ameri-
can Mathematical Society 49(10):1224–1231.

Hayes, Brian. 1983. Computer recreations: In-
troducing a department concerned with the
pleasures of computation. Scientific Ameri-
can, October 1983, pages 22–36.

Hayes, Brian. 2006. Counting sums and differ-
ences. bit-player.org/2006/counting-sums-
and-differences.

Hayes, Brian. 2007. Easy as abc. bit-player.
org/2007/easy-as-abc

Kemeny, John, and Thomas B. Kurtz. 1964.
BASIC. Hanover, N.H.: Dartmouth College
Computation Center. www.bitsavers.org/
pdf/dartmouth/BASIC_Oct64.pdf

Oliphant, Travis E. 2007. Python for scientific
computing. (Special issue on Python.) Com-
puting in Science and Engineering 9(3):10–20.

Renwick, W. 1950. The E.D.S.A.C. demonstra-
tion. In Report of a Conference on High Speed
Automatic Calculating-Machines, Cambridge
University Mathematical Laboratory.

Sloane, Neil J. A. The Online Encyclopedia
of Integer Sequences. Sequence A001109.
www.research.att.com/~njas/sequences/
A001109

Stein, William, and David Joyner. Sage Pro-
gramming Guide. www.sagemath.org/
doc/html/prog/prog.html

Wheeler, Joyce M. 1992. Applications of the
EDSAC. IEEE Annals of the History of Com-
puting 14(4):27–33.

