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Calculemus!

Brian Hayes

This column marks an anniver-
sary: It has been 25 years since I 

began writing these essays on the plea-
sures and possibilities of computation. 
My first columns appeared in Scientific 
American; later I wrote for Computer 
Language and then The Sciences; since 
1993 the column has been happily at 
home here in American Scientist. (Some 
of my earlier essays are newly avail-
able online at bit-player.org/pubs.)

For my very first column, in October 
of 1983, I chose as an epigraph some 
words of Gottfried Wilhelm von Leib-
niz: “Let us calculate!” In Leibniz’s 
Latin this exhortation was actually 
just one word: “Calculemus!” Leibniz 
was an optimist—he was the model of 
Voltaire’s Dr. Pangloss—and he saw 
a bright future for what we would 
now call algorithmic thinking. Calcu-
lation would be the key to settling all 
human conflicts and disagreements, 
he believed. I can’t quite match Leib-
niz’s faith in attaining world peace 
through computation, but in my own 
way I’m an algorithmic optimist too. 
I see computing as an important tool 
for helping us understand the world 
we live in and enriching our experi-
ence of life.

When I wrote that first column, the 
idea of a personal computer was still a 
novelty, and there was some question 
what it might be good for. Now the 
computer is a fixture of daily life. We 
rely on it to read the news, to keep in 
touch with friends, to listen to music 
and watch movies, to pay bills, to play 
games, and occasionally to get a bit of 
work done. Oddly enough, though, 

one thing we seldom do with the com-
puter is compute. Only a minority of 
computer users ever sit down to write 
a program as a step in solving a prob-
lem or answering a question. In this 
column I want to celebrate the rewards 
of programming and computing, and 
cheer on those who get their kicks out 
of this peculiar sport. I also have a few 
words to say about the evolution of 
tools for programming.

Inquisitive Computing
Let me be clear about what kind of 
programming I have in mind. I’m not 
talking about software development. In 
software development, the end prod-
uct is the program itself. The developer 
builds a web browser, say, or a word 
processor—a program that others can 
then put to use. In my kind of program-
ming, the product is not the program 
but the result of running the program. 
That result might be a number or a 
graph or an image; in general, it’s an an-
swer to a question. Let’s call the whole 
process inquisitive computing.

The earliest computers were all used 
in an inquisitive mode. One of those 
innovative machines was the EDSAC, 
built at Cambridge University under 
the direction of Maurice V. Wilkes. On 
May 6, 1949, a punched paper tape was 
threaded into the EDSAC’s input de-
vice, and a few seconds later a nearby 
teleprinter began typing out the num-
bers 0, 1, 4, 9, 16, 25, 36, continuing 
on to 9,801. Clearly, this was comput-
ing for answers, although I suppose 

the Cambridge dons assembled for the 
demonstration weren’t really there to 
learn the squares of the integers from 
0 through 99. A few days later another 
program generated a table of prime 
numbers up to 1,021.

If these accomplishments seem 
trifling, keep in mind that the first 
EDSAC programs had to take control 
of the machine at the level of bare met-
al.There were no operating systems or 
programming languages. Every step 
in an algorithm had to be specified in 
excruciating detail. Merely getting the 
teletype to print out a number took a 
dozen instructions.

Over the next decade, the EDSAC 
had a distinguished career in inquisi-
tive computing. The statistician Ron-
ald A. Fisher used the machine to solve 
a problem in genetics, quantifying the 
effect of selective advantage on gene 
frequency. The Danish astronomer 
 Peter Naur came to Cambridge to cal-
culate orbits of planetoids and comets. 
Naur was knocked out of his own orbit 
by this encounter with EDSAC; he left 
astronomy and became a distinguished 
theorist of computing. The biologist 
John Kendrew relied on the EDSAC 
to analyze x-ray diffraction patterns of 
the myoglobin molecule, thereby eluci-
dating the three-dimensional structure 
of the protein.

In the 1970s, the hobbyists who built 
or bought the first microcomputers 
faced a predicament much like that 
of the EDSAC pioneers. The machines 
came with little or no software. If you 
wanted to do anything interesting with 
your new toy, your only option was to 
write a program. Thus another genera-
tion entertained themselves by print-
ing out lists of squares and primes; the 
ambitious and persistent ones went on 
to plot the dizzy contours of the Man-
delbrot set or to search for patterns in 
John Horton Conway’s game of life.

Inquisitive computing has a less 
prominent role today, if only because 
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so many other applications of com-
puters have upstaged it. These days, 
if I suggest that you answer a ques-
tion by consulting a computer, you 
would think I meant to go ask Google. 
Nevertheless, programming for an-
swers is still a living art. In large-scale 
scientific computing, clusters with 
hundreds or thousands of processors 
are put to work modeling the planet’s 
climate and simulating collisions of 
protons or collisions of galaxies. Stud-
ies of proteins have gone far beyond 
Kendrew’s crystallography; comput-
ers now try to predict from first prin-
ciples how the long strand of a protein 
molecule will fold up into a three-di-
mensional tangle.

Climate models are a bit too ambi-
tious for most of us. I want to focus on 
smaller and more casual programming 
challenges—computational problems 
or puzzles you might play with for a 
few minutes or a few days. Here are 
three examples that involve nothing 
more than simple arithmetic applied 
to integers.

Perfect Medians
A puzzle attributed to the late David 
Gale observes that the sequence 1, 2, 
3, 4, 5, 6, 7, 8 has a “perfect median,” 
namely 6, because the sum of the terms 
preceding 6 is equal to the sum of the 
terms following it. Are there other sub-
sequences of the counting numbers 
that have perfect medians? For what 
values of n does the sequence 1, 2, 3, ..., 
n have a perfect median?

You might be able to solve this prob-
lem without the aid of a computer, but 
I made no progress with pencil and pa-
per. On the other hand, a program to 
search for perfect medians takes only 
a few lines of code. Instead of check-
ing each sequence 1, 2, 3, ..., n to see if 
it contains a perfect median, it’s easier 
to turn the problem inside out and 
check each integer m to see if it is the 
perfect median of some sequence. The 
first step is to add up all the numbers 
less than m; call the result T. (A bright 
10-year-old might figure out a way to 
calculate T without actually doing all 
the additions.) Then loop through suc-

cessive numbers starting with m+1, 
summing as you go. If this sum is ever 
equal to T, then m is a perfect median. 

This approach immediately reveals 
that 35 is the perfect median of the se-
quence 1, 2, 3, ..., 49. In a few seconds 
you discover three more perfect me-
dians: 204, then 1,189 and 6,930. Of 
course Gale wasn’t really asking for 
a list of numbers; he wanted to know 
what pattern underlies the numbers. 
Getting a computer to answer ques-
tions of this kind is not so straightfor-
ward—unless you do the mathemati-
cal equivalent of consulting Google, 
that is, you look up the numbers in 
the Online Encyclopedia of Integer 
Sequences, maintained by Neil J. A. 
Sloane of AT&T Research. The search 
retrieves sequence number A001109, 
along with a wealth of related lore. It 
turns out that each perfect median m 
is the square root of a triangular num-
ber. In other words, m2 dots can be ar-
ranged to form either a square or an 
equilateral triangle. This is a geometric 
connection I never would have discov-

Open racks of vacuum tubes were a stylistic statement in the first electronic computers. This machine is the EDSAC (Electronic Delay Stor-
age Automatic Calculator) at Cambridge University. The paper-tape reader for input and teleprinter for output are at the far right. The first 
programs run on the EDSAC were simple demonstrations that calculated square numbers and primes. Later the machine was put to work in a 
problem-solving mode. Photograph courtesy of the Computer Laboratory, Cambridge University.
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ered on my own. (For an explanation 
of the connection between squares, 
triangles and medians, see the illustra-
tion above.)

Sums and Differences
Take a set of integers, say {0, 2, 3, 4}, 
and calculate the sums of all possible 
pairs of numbers drawn from the set. A 

set of four numbers yields 16 pairs, but 
not all the sums are necessarily distinct. 
In this case there are just eight different 
sums: {0, 2, 3, 4, 5, 6, 7, 8}. Now build 
the analogous set of pairwise differenc-
es; it turns out there are nine of them: 
{–4, –3, –2, –1, 0, 1, 2, 3, 4}.

If you try the same experiment with 
a few more small sets of numbers, you 
may be ready to guess that the sums 
never outnumber the differences. And 
there’s a plausible rationale to back up 
this conjecture: Addition is commuta-
tive but subtraction isn’t. The sums 
5+8 and 8+5 both yield 13, whereas 
5–8 and 8–5 produce two distinct dif-
ferences, –3 and +3. Nevertheless, the 
conjecture is false. A counterexample 
is the eight-member set {0, 2, 3, 4, 7, 
11, 12, 14}, which has 26 distinct pair-
wise sums but only 25 differences. It 
is called an MSTD set (for “more sums 
than differences”).

I first learned about MSTD sets in 
publications by Melvyn B. Nathanson 
of Lehman College in the Bronx, Kevin 
O’Bryant of the College of Staten Island 
and Imre J. Ruzsa of the Mathematical 
Institute of the Hungarian Academy 
of Sciences. (I have written about their 
work earlier at bit-player.org.)

A program to search for MSTD sets 
can take a direct approach to the prob-
lem. For each set of numbers, the pro-
gram forms all pairwise sums and then 
eliminates duplicates; it does the same 
for the differences, and then compares. 
The trickiest part of the program turns 
out to be the routine for generating the 
sets of integers to be tested. The sets 
are characterized by two parameters: 
the number of elements n and the size 
of the largest element m (which cannot 
be less than n–1). For any given val-
ues of n and m, the sets can be ordered 
from smallest to largest and enumer-
ated in a way that’s something like or-
dinary counting, but you have to be 
careful that a set never has duplicate 
elements.

This process of enumerating sets 
and checking all sums and differences 
sounds arduous, but it goes faster than 
you might expect. For example, in less 
than a second of running time you can 
establish that the example mentioned 
above, {0, 2, 3, 4, 7, 11, 12, 14}, is the 
smallest MSTD set with eight elements. 
(Peter V. Hegarty of Chalmers Univer-
sity of Technology has since shown 
that there are no MSTD sets with few-
er than eight elements, so this is the 
smallest example overall.) Checking 

all sets with n = 11 and m ≤ 20 takes 
less than a minute; there are 184,756 of 
these sets, and 160 of them are MSTDs, 
including a dozen where the sums ex-
ceed the differences by 2.

The search for MSTD sets is a pecu-
liar kind of quest that seems to be pos-
sible only in mathematics. The sets are 
very rare, and yet there are infinitely 
many of them.

ABCs
My third example is another pursuit 
of shy, elusive mathematical objects. It 
concerns the simple equation a+b = c, 
where a, b and c are positive integers 
that have no divisors in common (oth-
er than 1); for example, the equation 
4+5 = 9 qualifies under this condition.

Now for some number theory. Mul-
tiply the three numbers a, b and c, 
then find all the prime factors of the 
product. From the list of factors, cast 
out any duplicates, so that each prime 
appears just once. The product of the 
unique primes is called the radical of 
abc, or rad(abc). For the triple {4, 5, 9}, 
the product is 4×5×9 = 180, and the 
factor list is 2, 2, 3, 3, 5. Removing the 
duplicated 2s and 3s leaves the unique 
factor list 2, 3, 5, so that rad(180) = 30.

In this example, c is less than rad(abc). 
Can it ever happen than c is greater 
than rad(abc)? Yes: The triple {5, 27, 32} 
has the product 5×27×32 = 4,320, for 
which the unique primes are again 
2, 3 and 5. Thus c = 32 is greater than 
rad(4,320) = 30. Triples where c exceeds 
rad(abc) are called abc-hits. As with 
MSTD sets, there are infinitely many 
of them, and yet they are rare. Among 
all abc triples with c ≤ 10,000, there are 
just 120 abc-hits.

 If c can be greater than rad(abc), how 
much greater? It’s been shown that c 
can exceed rad(abc) plus any constant 
or rad(abc) multiplied by any constant. 
How about rad(abc) raised to some 
power greater than 1? A conjecture for-
mulated by Joseph Oesterlé of the Uni-
versity of Paris and David W. Masser of 
the University of Basel claims there are 
only finitely many exceptional cases 
where c > rad(abc)1+ε, for any ε no mat-
ter how small. The conjecture has made 
the search for abc-hits more than an idle 
recreation. If the conjecture could be 
proved, there would consequences in 
number theory, such as a much simpler 
proof of Fermat’s Last Theorem.

In a program to search for abc-hits 
the one sticky point is factoring the 
product abc. Factoring integers is a no-

1, 2,  3,  4,  5,         6,        7,  8

sum =15

m n

sum =15

(m–1)m/2 (m–1)m/2+ m + = n(n+1)/2

(m–1)mm + = n(n+1)/2

m2 =

=

n(n+1)/2

A sequence of counting numbers 1, ..., n has 
a perfect median m if the numbers less than 
m have the same sum as the numbers greater 
than m. For example, 6 is the perfect median 
of 1, ..., 8, since the sums on both sides are 15. 
Any sequence 1, ..., k has the sum k(k+1)/2, 
which is also the formula for a triangular 
number. In a sequence with perfect median m, 
the numbers to the left of m sum to (m–1)m/2, 
and so do those to the right of m. The sum of 
the entire series is therefore (m–1)m/2 + m + 
(m–1)m/2, which simplifies to m2. The sum 
of 1, ..., n is also n(n+1)/2. Hence m is a perfect 
median if m2 is a triangular number. For the 
example shown m2 = n(n+1)/2 = 36, forming a 
square of side 6 and a triangle of side 8.

Sets of integers generally have more pairwise 
differences than sums. Because addition is 
commutative, the upper and lower triangles 
of the sum matrix are mirror images, eliminat-
ing almost half the entries as duplicates. In 
subtraction, entries across the diagonal differ 
in sign. (The diagonal itself is all zeros.) Only 
a few anomalous sets have more sums than 
differences (MSTD).

+ 0   2   3   4

0   0   2   3   4

2   2   4   5   6

3   3   5   6   7

4   4   6   7   8

– 0   2   3   4

0 0   2   3   4

2 –2   0   1   2

3 –3 –1   0   1

4 –4 –2 –1   0

sums differences

{0, 2, 3, 4, 5, 6, 7, 8} {–4, –3, –2, –1, 
        0, 1, 2, 3, 4}

MSTD set: {0, 2, 3, 4, 7, 11, 12, 14}

sums: {0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 
15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 28}

diffs: {–14, –12, –11, –10, –9, –8, –7, –5, –4, –3, 
–2, –1, 0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14}
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torious unclassified problem in com-
puter science, with no efficient algo-
rithm known but also no proof that 
the task is hard. If you want to get se-
rious about the search, you need to 
give some thought to factoring algo-
rithms—or else latch on to code writ-
ten by someone else who has done 
that thinking. On the other hand, for 
merely getting a sense of what abc-hits 
look like and where they’re found, the 
simplest factoring method—trial divi-
sion—works quite well.

Searchers for abc-hits can also join 
ABC@home (www.abcathome.com), a 
distributed computing project.

The BASIC Story
The programs I’ve been describing 
are simple, small and straightforward; 
writing them requires no arcane wiz-
ardry. On the other hand, writing them 
is not quite as easy as it ought to be, 
because the tools available for this kind 
of programming have not kept up with 
progress in software technology.

For inquisitive programming, the 
great age of innovation came and went 
in the 1960s. The best-known artifact 
of the era was the BASIC program-
ming language, created in 1964 by 
John Kemeny and Thomas Kurtz of 
Dartmouth University. Kemeny and 
Kurtz set out to broaden the spectrum 
of computing enthusiasts; they were 
especially eager to draw in students in 
the liberal arts and the social sciences. 
(Calculemus!) Their new programming 
language was meant to lower the bar-
riers to entry. 

But the language was just the start. 
BASIC was designed in conjunction 
with the Dartmouth Time Sharing 
System, an early experiment in inter-
active computing. Elsewhere, batch 
processing was still the rule: Deliver 
your shoebox of punchcards in the af-
ternoon, pick up a ream of printouts in 
the morning. DTSS and BASIC offered 
a direct connection to the computer 
via a teletypewriter or, later, a video 
terminal. Programming became more 
like a conversation with the computer. 
Compared with most other computing 
environments of the time, it was well 
suited to an exploratory style of prob-
lem solving.

BASIC spread from Dartmouth to 
other universities in the 1960s, then 
it gained a mass audience a decade 
later when Bill Gates and Paul Allen 
wrote a BASIC interpreter for micro-
computers. This was the first product 

of the company that became Microsoft. 
The initial model of the IBM PC had 
a BASIC interpreter permanently in-
scribed in read-only memory; indeed, 
this was the only software supplied 
with the machine (even the operating 
system was an extra-cost option).

Whatever happened to BASIC? Its 
main attraction was also its undoing. 
As a language for beginners, it had the 
taint of training wheels. And it attracted 
the scorn of those who wanted to make 
programming a professional engineer-
ing discipline. Edsger Dijkstra, the cur-
mudgeon-in-chief of computer science, 
groused: “It is practically impossible 
to teach good programming to stu-
dents that have had a prior exposure to 
 BASIC: as potential programmers they 
are mentally mutilated beyond hope of 
regeneration.”

BASIC didn’t disappear, but in re-
sponse to such acid critcism, it was 
transformed beyond recognition. In the 
80s we got “structured BASIC.” Later, 
when the next fad swept the world 
of software, BASIC became an “ob-
ject-oriented” language, with features 
for creating windows and menus and 
other gadgets that make up a graphic 
user interface. The surviving versions 
of the language are doubtless superior 
in many ways, but they have become 
tools for software development rather 
than for inquisitive programming.

Several other languages of the 1960s 
also offered an environment suited to 
inquiry rather than development. Logo 

has suffered a fate similar to BASIC’s: 
It was designed as a programming lan-
guage for children, and so adults were 
reluctant to take it seriously. In fact 
Logo is a very expressive language, an 
offshoot of Lisp.

Lisp itself (invented in the late 
1950s) is my own favorite language for 
inquisitive programming. Most Lisp 
systems allow an incremental and in-
teractive style of work: You write and 
test individual procedures rather than 
building monolithic programs.

There’s also APL, a terse mathemati-
cal notation invented by Kenneth Iver-
son in 1962. Again, APL was intended 
mainly for problem solving rather than 
software development.

All of these languages still exist; 
indeed, each of them has its devoted 
following. But they are not where the 
energy is in computing today. As niche 
products, they have a hard time keep-
ing up with changes in technology and 
attracting investment. Meanwhile, fa-
cilities for other kinds of programming 
grow steadily more luxurious. If you 
develop software in Java or C++, you 
get leather upholstery, walnut panel-
ing and a dozen cupholders. If your 
vocation is inquiry-based program-
ming, you sit in a folding chair. 

A Wish List
The dream of Kemeny and Kurtz was 
“programming for everyone,” based 
on the conviction that getting answers 
out of a computer should be seen as 
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MSTD sets (with more sums than differences) are rare and unevenly distributed. A set can 
be characterized by the number of elements n and the maximum element m. Within a narrow 
range of values for these parameters, the abundance of MSTD sets reaches a sharp peak; the 
frequency is close to zero elsewhere. In this context the frequency signifies the fraction of all 
sets with a given n and m that are MSTD sets. 
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an essential skill in a technological so-
ciety. But the standard apparatus of 
software development is far from ideal 
for teaching or learning this kind of 
programming. If computing is to be a 
broadly practiced art form, we need an 
improved infrastructure for inquisitive 
programming. Here’s my wish-list for 
a programming environment:

It should be self-contained, easily 
installed (and uninstalled), well-docu-
mented, internally consistent, bug-free 
and foolproof. Perhaps it’s a scandal 
that GUI-coddled computer users 
have forgotten how to install an ex-
ecutable in usr/local/bin and add it 
to their $PATH, but that’s the way the 
world is.

I don’t want just to write programs; I 
want to have a dialogue with the com-
puter. I need to know the answer to 
one question before I can decide what 
to ask next. Thus the typical unit of in-
teraction should be a single statement 
or expression. This kind of incremental 
computing can’t work if a language 
requires a lot of scaffolding—header 
files, a “main” procedure—just to run 
a fragment of code. 

I should be able to think in terms of 
the problem at hand, not the innards 
of the machine. I don’t want to worry 
about the encoding of characters or 
whether binary numbers come big end 
or little end first. I want to be insulated 
from annoyances such as allocating 
and reclaiming memory. Data-type 
declarations should be optional.

I want a system that’s mathematical-
ly well-behaved. I should not have to 
live in a world where the integers end 
at 4,294,967,295 or where 1⁄3×3 is equal 
to something other than 1. Give me 
unlimited precision and exact arithme-
tic, at least for rational numbers.

I want a rich selection of ready-
made functions and data structures. I 
shouldn’t have to build lists or trees or 
queues out of lower-level constructs 
such as pointers.

Pamper me. I want the source-code 
editor with the leather seats, the wal-
nut and the cupholders.

I want a thriving community of en-
thusiasts, who contribute to the sys-
tem, share code and knowledge, and 
keep us all feeling young. For this to 
happen, the software needs to be free, 
or close to it.

Along with the wish list there’s an 
unwish list of things I’m willing to 
give up. Computational efficiency is 
one of them. I’ll typically spend lon-

ger writing (and testing and debug-
ging) a program than I will running it. 
Another variable I’m willing to leave 
unspecified is the programming lan-
guage itself. I fervently believe that 
some languages are better than others, 
but the programming environment is 
more important.

Making It Happen
Will I ever get my wishes? Nothing 
I’ve asked for is unattainable or even 
particularly novel. I wouldn’t know 
enough to propose these ideas if I 
hadn’t seen them at work in the past. 
Indeed, over the years I have used a 
number of programming systems that 
met most of the criteria on my list. 
Some of those systems were pure de-
light. What makes me grumpy is that 
they are now obsolete and will not run 
on modern hardware. And I don’t see 
replacements on the horizon.

My sentimental attachment to Lisp 
makes me long for a revival of inter-
est in that language, but I don’t see it 
happening. 

A smarter bet is Python. It has a 
large and zealous community of boost-
ers, especially in the world of science. 
The language itself is well adapted 
to inquisitive programming, and it 
serves perfectly well for introductory 
programming courses. Python’s weak 
point, in my view, is the surrounding 
infrastructure of editors, command-
line tools, code libraries and modules. 
There are several interactive program-
ming environments for Python, but 
none of them give me the feeling of a 
place where I am at home and in con-
trol of my own environment.

Going off in another direction, pro-
grams such as Mathematica and MAT-
LAB are truly wonders of the age. But 
software that costs more than the com-
puter it runs on is not going to win the 
public over to casual programming.

A project called Sage claims as its 
mission, “Creating a viable free open 
source alternative to Magma, Maple, 
Mathematica and Matlab.” Sage was 
initiated by William Stein of the Uni-
versity of Washington, and it now 
has hundreds of contributors. Sage is 
certainly not the self-contained, cohe-
sive package that I argue for; on the 
contrary, it’s a loose confederation of 
dozens of more specialized programs, 
such as GAP for group theory and 
R for statistics. All of the pieces are 
stitched together with Python code, 
which is also supposed to provide a 

consistent user interface. It works bet-
ter than I would have guessed, but it’s 
hardly seamless. The principal devel-
opers are putting most of their energy 
into creating a research tool for ad-
vanced mathematics, which can leave 
the skittish beginner without a safe 
point of entry.

One aspect of Sage I find particu-
larly intriguing is the “notebook” in-
terface, which runs in a web browser. 
Factoring a polynomial feels just like 
shopping at Amazon. Moreover, the 
interface is exactly the same whether 
the browser is connected to a locally 
installed copy of Sage or to a remote 
server. (There’s a public Sage server 
at www.sagenb.org.) This is surely the 
way of the future. Perhaps the next big 
step in inquistive programming will be 
offered as a service, not as a product. 
And maybe they’ll call it Calculemus!
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