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Fat Tails

Brian Hayes

You’ve probably heard of Lake 
Wobegon, the little town in 

Minnesota where all the children are 
above average. There’s been much 
head-scratching about this statistical 
miracle. What happens to the kids 
who fail to surpass themselves? Are 
they shipped across the lake to another 
little town, where all the children are 
below average? That practice wouldn’t 
necessarily work to the detriment of 
either community. It might be like the 
migration from Oklahoma to Califor-
nia during the Dust Bowl years, which 
Will Rogers said raised the average 
intelligence of both states.

One small town that beats the law 
of averages is strange enough, but 
even more mystifying is the finding 
that Lake Wobegon is not unique—
that in fact everyone is above average. 
In 1987 John J. Cannell, a West Vir-
ginia physician and activist, discov-
ered that all 50 states report that their 
children do better than the national 
average on standardized tests. (And 
this was years before the No Child 
Left Behind Act!)

I can’t promise to resolve these para-
doxes. On the contrary, I’m going to 
make matters worse by describing still 
more funny business in the world of av-
erages. The story that follows is about a 
data distribution that simply has no av-
erage. Given any finite sample drawn 
from the distribution, you are welcome 
to apply the usual algorithm for the 
arithmetic mean—add up the values 
and divide by the size of the sample—
but the result won’t mean much. What-
ever average you calculate in this way, 
you can improve it just by taking a big-
ger sample. Perhaps this is the secret of 
the Lake Wobegon school board.

The existence of such better-than-
average averages is not a new discov-
ery; the phenomenon was already well 
known a century ago, and distribu-
tions with this property have become 
a hot topic in the past decade. Recently 
I stumbled upon a particularly simple 
illustration of the concept, and that’s 
the story I tell here. 

Facts About Factorials
It all begins with the factorial function, 
a familiar item of furniture in several 
areas of mathematics, including com-
binatorics and probability theory. The 
factorial of a positive whole number n 
is the product of all the integers from 1 
through n inclusive. For example, the 
factorial of 6 is 1×2×3×4×5×6 = 720.

The standard notation for the facto-
rial of n is “n!”. This use of the excla-
mation point was introduced in 1808 
by Christian Kramp, a mathematician 
from Strasbourg. Not everyone is en-
thusiastic about it. Augustus De Mor-
gan, an eminent British mathematician 
and logician, complained in 1842 that 
the exclamation points give “the ap-
pearance of expressing surprise and 
admiration that 2, 3, 4, &c. should be 
found in mathematical results.” 

One common application of the fac-
torial function is in counting permuta-
tions, or rearrangements of things. If 
six people are sitting down to dinner, 
the number of ways they can arrange 
themselves at the table is 6!. It’s easy 
to see why: The first person can choose 
any of the six chairs, the next person 

has five places available, and so on 
until the sixth diner is forced to take 
whatever seat remains.

The factorial function is notorious 
for its rapid rate of growth: 10! is al-
ready in the millions, and 100! is a 
number with 158 decimal digits. As 
n increases, n! grows faster than any 
polynomial function of n, such as n2 or 
n3, or any simple exponential function, 
such as 2n or en. Indeed you can choose 
any constant k, and make it as large as 
you please, and there will still be some 
value of n beyond which n! exceeds 
both nk and kn. (On the other hand, n! 
grows slower than nn.)

The steep increase in the magnitude 
of n! becomes an awkward annoyance 
when you want to explore factorials 
computationally. A programming lan-
guage that packs integers into 32 bi-
nary digits cannot reach beyond 12!, 
and even 64-bit arithmetic runs out of 
room at 20!. To go further requires a 
language or a program library capable 
of handling arbitrarily large integers.

In spite of this inconvenience, the 
factorial function is an old favorite in 
computer science as well as in math-
ematics. Often it is the first example 
mentioned when introducing the con-
cept of recursion, as in this procedure 
definition:

define f!(n)
  if n=1
    then return 1
    else return n*f!(n-1)

One way to understand this definition 
is to put yourself in the place of the 
procedure: You are the factorial oracle, 
and when someone gives you an n, 
you must respond with n!. Your task 
is easy if n happens to be 1, since cal-
culating 1! doesn’t take much effort. If 
n is greater than 1, you may not know 
the answer directly, but you do know 
how to find it: just get the factorial of 
n – 1 and then multiply the result by 
n. Where do you find the factorial of 
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n – 1? Simple: Ask yourself—you’re 
the oracle!

This self-referential style of think-
ing is something of an acquired taste. 
For those who prefer looping to recur-
sions, here is another definition of the 
factorial:

define f!(n)
  product:=1
  for x in n downto 1
    product:= product*x
  return product

In this case it’s made explicit that we 
are counting down from n to 1, mul-
tiplying as we go. Of course we could 
just as easily count up from 1 to n; the 
commutative law guarantees that the 
result will be the same. Indeed, we 
could arrange the n numbers in any 
of n! permutations. All the arrange-
ments are mathematically equivalent, 
although some ways of organizing the 
computation are more efficient than 
others.

 Factoids
Playing at the keyboard one day, I 
came up with the following factorial-
like procedure:

define f?(n)
  r:= random(1,n)
    if r=1
      then return 1
      else return r*f?(n)

This might be a buggy version of a pro-
gram intended to calculate factorials, 
but it actually does something a good 
deal stranger. The auxiliary procedure 
random(1,n), invoked in the second 
line, is assumed to return an integer 
selected at random from the range 1 
through n. Thus the program chooses 
a series of random integers, multiplies 
them, and stops when random(1,n) 
happens to yield a 1. It’s like rolling 
an n-sided die and keeping a running 
product of all the numbers seen until a 
1 appears.

Here are the results of a few sample 
runs of the program, for n=7:

4×3×2×4×7×2×1 = 1,344
2×5×4×5×4×3×6×2×2×5×1 = 288,000
7×5×5×1 = 175
4×7×6×2×6×5×6×3×5×3×3×3×7×
    4×3×3×7×2×5×1 = 432,081,216,000

Note that 7! is equal to 5,040, a value 
that doesn’t turn up in this sample. 
The results that do appear are scat-
tered over quite a wide range.

This randomized analogue of the 
factorial function needs a name: I shall 
call it the factoidal function. Also, risk-
ing the ire and ridicule of some latter-
day De Morgan, I’m going to adopt the 
notation “n?” to suggest the nondeter-
ministic nature of the computation.

Strictly speaking, the factoidal func-
tion isn’t a function—not in the mathe-
matical sense of that word. An essential 
property of a function is that applying 
it to the same argument always yields 
the same value. The function call f!(7) 
will produce the value 5,040 time after 
time. But, as we have just seen, f?(7) 
is likely to return a different value ev-
ery time it is invoked, depending on 
the vagaries of the random-number 
generator. For that matter, the proce-
dure might not return any value at all; 
the program could run forever. The f! 
procedure is guaranteed to terminate, 
because on each recursive call (or each 
passage through the loop) the value of 
n is decremented, and eventually it has 
to reach 1. But f? halts only when the 
roll of a die comes up 1, which might 
never happen.

In practice, of course, the program 
always terminates, one way or an-
other. A back-of-the-envelope calcula-
tion shows there’s about a two-thirds 
chance that random(1,n) will produce 
a 1 in n trials. And a 1 is almost certain 
to turn up within 5n trials. Thus if n is 
small (less than 1,000, say), f?(n) will 
almost surely succeed in calculating 
a value. If n is very large, the product 
being computed is likely to fill up all 
available memory, and the program 
will terminate with an error message.

Because of the element of random-
ness in the factoidal definition, it makes 
no sense to ask about the value of n?. 
The best we can hope for is to under-
stand the statistical distribution of val-
ues. As a rule, this would mean estimat-
ing quantities such as the average value 
and the variance or standard deviation. 
But those familiar statistical tools are 
problematic in this case, so let’s start 
by asking an easier question: How do  
factoidals compare with factorials? Is 
n? usually larger than n!, or smaller? 
(They can also be equal, of course, but 
as n increases, the probability of such 
an exact match goes to zero.)

When I first began puzzling over 
this question, I convinced myself that 
n? would usually exceed n!. Merciful-
ly, I have forgotten the details of the 
“reasoning” that led me to this conclu-
sion; it had something to do with the 

idea that only finitely many possible 
values of n? are less than n!, whereas 
infinitely many are greater. There’s no 
point in reconstructing my argument, 
because it was totally wrong. When I 
wrote a program to answer the ques-
tion experimentally, it became clear 
that nearly two-thirds of the n? values 
are less than n!. (The results appear in 
the illustration below.)

You can get an inkling of what’s 
going on here by looking at a small 
example, say n=3, and counting the 
cases in which the final product is less 
than 3!, or 6. For n=3 the only possible 
outputs of the random number gen-
erator are 1, 2 and 3, each of which ap-
pears with probability 1⁄3. The simplest 
event is that a 1 comes up on the first 
try, in which case the product is obvi-
ously less than 6; this happens with 
probability 1⁄3. There are two possible 
sequences of just two factors, namely a 
2 followed by a 1 and a 3 followed by a 
1; each of these outcomes has a proba-
bility of (1⁄3)2, or 1⁄9, and again the prod-
ucts are less than 6. A pencil-and-paper 
enumeration shows that there is only 
one other sequence of factors whose 
product is less than 6, namely 2, 2, 1; 
here the probability is 1⁄27. The sum of 
these probabilities is 1⁄3+ 2⁄9+ 1⁄27 = 16⁄27, 
or 0.5926. This is in agreement with the 
experimental results.

As n increases, the proportion of 
n? values less than n! converges on 
the value 0.6322, and the proportion 
that are greater tends toward 0.3678. 
Is there anything special about these 

Values produced by the random factoidal 
function n? are compared with the corre-
sponding factorial n!. For each value of n, the 
bars show the proportion of n? values that 
are smaller than n! (blue), equal to n! (yel-
low) and greater than n! (green). For large n, 
the proportion of n? values greater than n! is 
0.3678, which is equal to 1/e.
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numbers, and can we explain why 
this particular proportion should 
crop up? I think so. Note that on each 
iteration, the probability of getting a 1 
and thereby ending the factoidal pro-
cess is 1⁄n. That means the probability 
of getting anything other than a 1, 
and continuing the sequence of fac-
tors, is (n–1)⁄n. Then the probability of 
avoiding 1 twice in a row is ((n–1)⁄n)2, 
the probability of going on to three 

factors is ((n–1)⁄n)3, and so on. To have 
a high likelihood that n? will exceed 
n!, the chain of factors has to be ex-
tended to a length of at least n. The 
probability of reaching this point is 
((n–1)⁄n)n; as n increases, this expression 
converges to 1⁄e, with a numerical val-
ue of 0.3678—just what is observed.

If most values of n? are less than n!, 
then the average of all n? values should 
also be less than n!, shouldn’t it? We’ll 

see. But first another digression, to look 
at a closely related function that shows 
how averaging is supposed to work.

A Well-Mannered Function
If you delve into the code for the facto-
rial function and replace the multipli-
cation sign with a plus sign, you wind 
up with a procedure for calculating 
triangular numbers—1, 3, 6, 10, 15, 
21.... To see why they’re called trian-
gular, think of 10 bowling pins or 15 
billiard balls. Whereas the factorial of 
4 is 1×2×3×4= 24, the corresponding 
triangular number is 1+2+3+4 =10. 
(There is a well-known shortcut for 
computing the nth triangular number: 
n(n+1)/2. It’s interesting that no com-
parable shortcut exists for factorials, 
although there are approximations.)

Having converted the n! code into 
a program for generating triangular 
numbers, we can clearly make the 
same change in the program for n?. 
The result will be a procedure that 
rolls an n-sided die and keeps a run-
ning sum (rather than a product) until 
a 1 turns up.

Sums of random variables are much 
better-behaved than products. With 
randomized triangular sums, the al-
gorithm for calculating the arithmetic 
mean works flawlessly. Generate a 
sample of values (all for the same n), 
add them up, divide by the size of the 
sample, and you get an estimate of 
the mean. With a small sample, the 
estimate is somewhat unreliable, so 
that repeating the procedure is likely 
to produce a substantially different re-
sult. But as the sample size increases, 
the estimates grow more consistent. 
The illustration at the top of this page 
shows the convergence of sample 
means toward the true mean for 2,000 
samples of various sizes.

By No Means
How different are the statistics of the 
factoidal process! When I first began 
playing with the n? function, I was cu-
rious about its average value, and so I 
did a quick computation with a small 
sample—100 repetitions of 10?. The 
result that came back was much larger 
than I had expected, in the neighbor-
hood of 1025. When I repeated the com-
putation several times, I continued to 
get enormous numbers, and further-
more they were scattered over a vast 
range, from less than 1020 to well over 
1030. The obvious strategy was to try a 
larger sample in order to smooth out 

The arithmetic mean is well-defined for an additive analogue of the factoidal function—a ran-
domized computation of triangular numbers. The algorithm selects integers randomly in the 
range 1 through 10, summing the numbers seen until the first 1 is drawn. The process is repeated, 
and the mean value is calculated. For each of the 2,000 dots shown here, vertical position indi-
cates the calculated mean, and horizontal position gives the sample size. With increasing sample 
size, the sample means converge to an overall mean of 55, which is the 10th triangular number.

The arithmetic mean is undefined for the factoidal function. Here numbers are chosen at ran-
dom from the range 1 through 10 and multiplied until a 1 is drawn. Each of the 2,000 dots is po-
sitioned according to the sample size and the calculated mean for that sample. As the sample 
size increases, the calculated mean does not converge to a stable value; on the contrary, it rises 
exponentially, and so does the dispersion of observed mean values. For samples of about 1,000 
values, the mean is near 1050; for samples of size 100,000, it is 30 orders of magnitude greater.
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the fluctuations. But when I averaged 
factoidals 10,000 at a time, and then a 
million at a time, the numbers got even 
bigger, and the variations wider.

The illustration at the bottom 
of page 202 shows what I was up 
against. Each dot represents a sample 
of runs of the n? program; a dot’s hor-
izontal position indicates the sample 
size, and its vertical position gives the 
arithmetic mean calculated from that 
sample. In all cases the value of n is 
10. It’s important to emphasize that 
this is not a graph of n? as a function 
of n; the value of n is fixed. All that 
changes in moving from left to right 
across the graph is the size of the sam-
ple over which the average is comput-
ed. There is no sign of convergence 
here. The trend is continuously up-
ward: The more trials in the sample, 
the larger the calculated mean. And 
because both scales in the graph are 
logarithmic, the apparent straight-line 
trend in the mean actually represents 
exponential growth. The “average” 
value of 10? is somewhere near 1040 
or 1050 if you average over 1,000 trials, 
but it rises to roughly 1090 if you go on 
to collect a million samples. (For com-
parison, 10! is roughly 106—or more 
precisely 3,628,800.)

The dispersion of the dots around 
the trend line also shows no sign of di-
minishing as the sample size increases. 
Thus the variance or standard devia-
tion of the data is also impossible to 
pin down.

Odd, isn’t it? Generally, if you are 
conducting an experiment, or making 
a measurement, or taking an opinion 
survey, you expect that collecting more 
data will yield greater accuracy and 
consistency. Here, more data just seems 
to make a bad situation worse.

With a closer look at the factoidal 
data, it’s not hard to understand what’s 
going wrong with the computation 
of the mean. Although the majority 
of 10? values are comparatively small 
(less than 3,628,800), every now and 
then the factoidal process generates an 
enormous product—a rogue, a monster. 
The larger the sample, the greater the 
chance that one of these outliers will 
be included. And they totally dominate 
the averaging process. If a sample of 
1,000 values happens to include one 
with a magnitude of 10100, then even if 
all the rest of the data points were zero, 
the average would still be 1097.

The arithmetic mean is not the only 
tool available for characterizing what 

statisticians call the central tendency 
of a data set. There is also the geomet-
ric mean. For two numbers a and b, 
the geometric mean is defined as the 
square root of a×b; more generally, the 
geometric mean of k numbers is the 
kth root of their product. The geomet-
ric mean of samples taken from the 
factoidal process suffers from none of 
the problems encountered with the 
arithmetic mean. It converges, though 
somewhat slowly, to a stable value. 
Moreover, it turns out that the geomet-
ric mean of n? is simply n!, so this is a 
highly informative measure. Perhaps it 
should not be a surprise that factoidals 
are better described by a statistic based 
on multiplication than by one based on 
addition.

The median of n? is also well-
 defined. The median is the midpoint 
value of a data set—the item that is 
greater than half the others and less 
than half. Because it merely counts the 
number of greater and lesser values, 
without considering their actual mag-
nitudes, it is insensitive to the outliers 
that cause havoc with the arithmetic 
mean. For samples of 10? the median 
converges on a value near 27,000 (no-
tably smaller than 10!).

Still another way to tame the fac-
toidal is to take logarithms. If you de-
termine the logarithm of each n? value, 
then calculate the arithmetic mean of 
the logarithms, the result converges 
very nicely. (Note that taking the mean 
of the logarithms is not the same as 
taking the logarithm of the means.) 

The success of this strategy does not 
come as a surprise. Logarithms reduce 
multiplication to addition. Essentially, 
then, taking the logarithm of the n? 
values converts the factoidal process 
into the corresponding triangular-
number calculation. Logarithms are 
also at work behind the scenes in com-
puting the geometric mean.

Even with other statistical methods 
available, it’s disconcerting to face the 
failure of something so familiar and 
elementary and ingrained as the arith-
metic mean. It’s like stumbling into an 
area of mathematics where Euclid’s 
parallel postulate no longer applies, 
or the commutative law has been 
repealed. To be sure, such areas ex-
ist, and exploring them has enriched 
mathematics. Distributions without a 
mean or variance have likewise broad-
ened the horizons of statistics. All the 
same, they take some getting used to.

Fat Tails
The little procedure I have named the 
factoidal function is so simple that I’m 
sure someone must have noticed it 
before. I have not found a mention of 
this specific process, but slightly more 
general models involving products of 
random numbers do appear in the lit-
erature. (Review articles by Mark New-
man of the University of Michigan and 
by Michael Mitzenmacher of Harvard 
University are particularly helpful.)

The context of these discussions is the 
study of heavy-tailed or fat-tailed distri-
butions. The familiar normal distribu-

The median of the factoidal process is more informative than the arithmetic mean. The 
median is the midpoint value of a sample—the value chosen such that half the other values 
are smaller and half are larger. For data generated by 10?, the median converges to a value of 
about 27,000. Note that this is much smaller than 10!, which is equal to 3,628,800.
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tion is not in this class: It is lean-tailed. 
The extremes of the normal probabil-
ity curve, far from the peak, fall away 
exponentially, so that unlikely events 
become really unlikely and are never 
seen. Fat-tailed distributions decay 
more slowly, allowing room for outliers 
and freaks. Human height is a normally 
distributed variable; most people are 
less than two meters tall, and nobody 
reaches three meters. Human wealth 
has a fat-tailed distribution; worldwide, 
median net worth is a little over $2,000, 
but there are also millionaires and bil-
lionaires. (If height had the same distri-
bution as wealth, there would be people 
two million meters tall.)

The distribution of wealth was one 
of the subjects that first aroused inter-
est in fat-tailed distributions, starting 
with the work of the Italian economist 
Vilfredo Pareto in the 1890s. Later it 
emerged that word frequencies in nat-
ural languages are also described by a 
fat-tailed distribution, usually called 
Zipf’s law, after George Kingsley Zipf. 
The sizes of cities offer another ex-
ample: If urban populations were nor-
mally distributed, we wouldn’t have 
Mumbai or São Paulo. In the past de-
cade or so, it seems like fat tails have 
been turning up everywhere: in the 
number of links to Web sites and cita-
tions of scientific papers, in the fluc-
tuations of stock-market prices, in the 
sizes of computer files.

The classic fat-tailed distribution 
is one where the decay of the tails is 

described by a power law. The prob-
ability of observing some quantity x 
goes as x–a, where a is a constant; the 
smaller the value of a, the fatter the 
tails. When a is less than 2, the mean of 
the distribution does not exist. Drawn 
on a graph with logarithmic scales, a 
power-law distribution takes the form 
of a straight line. Another fat-tailed 
distribution, called the lognormal, 
follows a straight line over a certain 
range but at some point takes a sudden 
nosedive. The lognormal, as the name 
suggests, is the distribution formed by 
variables whose logarithms are nor-
mally distributed.

What about the factoidal func-
tion—which distribution describes 
the n? values? My first guess was a 
lognormal, based on a vague intuition 
that the logarithms of the n? products 
should indeed be normal. So much 
for my intuition! A log-log graph of 
the factoidal function shows clear 
evidence of power-law behavior: The 
graph is a straight line, with no hint of 
the “bended knee” to be expected in a 
lognormal. The calculated value of the 
exponent a is about 1.07, well inside 
the range where the mean and vari-
ance cease to exist.

With guidance from Newman and 
Mitzenmacher I eventually came to 
understand why the factoidal fol-
lows a power law. They pointed me 
to a paper by William J. Reed of the 
University of Victoria in Canada and 
Barry D. Hughes of the University 

of Melborne in Australia. Reed and 
Hughes show that when a process of 
exponential growth is stopped at ran-
dom times, the resulting distribution 
of values follows a power law. One of 
their examples is multiplication of ran-
dom numbers with mean m, stopped 
after a random number of terms. The 
factoidal function is merely a special 
case of this process.

The shape of a probability distribu-
tion can have grave consequences in 
many areas of life. If the size and inten-
sity of hurricanes follows a normal dis-
tribution, we can probably cope with 
the worst of them; if there are monster 
storms lurking in the tail of the dis-
tribution, the prospects are quite dif-
ferent. Those who make a profession 
of risk assessment—insurance under-
writers, financial analysts—take a keen 
interest in these questions.

Could the fat-tails phenomenon 
clear up the Lake Wobegon mystery? 
Well, maybe it can teach us a new way 
to understand the phrase, “All the chil-
dren are above average.” It’s not about 
drawing a line through the population 
and having each and every child above 
the line. The sense of “all” is not “each 
and every” but the totality of children.  
If we can believe that human talents 
and abilities have some distribution 
that escapes the bounds of means and 
variances, then “all” children can in-
deed be above average.
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of a power-law behavior. For each possible value, x, of the function 10?, the graph records the 
relative frequency at which that value of x is observed. The frequency of x is proportional to 
x–a, where a has a value of about 1.07. The bumpiness at the extreme tail of the distribution 
can be attributed to the finite sample size (10 million evaluations of the n? function).




