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Trains of Thought

Brian Hayes

Guided by an unseen hand, a 
grimy railroad tank car nego-

tiates a series of switch points in the 
tracks, veering right, then right again, 
then left. Next comes a lime-green box 
car, which makes two lefts. I observe 
these events from the control tower of 
a railroad facility called a hump yard, 
where freight cars sort themselves into 
trains bound for various destinations. 
It is an eerie scene. The cars glide si-
lently downhill through the maze of 
tracks, seeming to steer themselves, as 
if each car knows just where it wants 
to go. This is an illusion; a computer 
two floors below me is making all the 
decisions, setting the switches a mo-
ment before each car arrives. But I can’t 
shake the impression that the hump 
yard itself is a kind of computer—that 
the railroad cars are executing some se-
cret algorithm.

It’s not such a far-fetched notion. 
In 1994 Adam Chalcraft and Michael 
Greene, who were then at the Univer-
sity of Cambridge, and later Maurice 
Margenstern of the University of Metz, 
designed railroad layouts that simu-
late the operation of a computer. The 
machine is programmed by setting 
switch points in a specific initial pat-
tern; then a locomotive running over 
the tracks resets some of the switches 
as it passes; the result of the computa-
tion is read from the final configura-
tion of the switches.

These constructions are wonderfully 
ingenious, although admittedly they 
have little to do with the day-to-day 
running of real railroads. Even at a 
more practical level, though, brawny 
steel rails and brainy silicon chips have 
surprisingly rich connections. The work 
of the hump yard is a case in point. Al-

gorithms for sorting are a specialty of 
computer science, but railroads were 
sorting freight cars decades before the 
first electronic computer was built. 
Methods invented by rail workers have 
served as metaphor and inspiration 
for the development of algorithms and 
data structures in computer science; 
conversely, the theoretical analysis of 
algorithms has suggested ways for rail-
roads to improve their operations.

What a Way to Run a Railroad
Railroads were the epitome of high 
tech in the later years of the 19th centu-
ry. Even more than dot-com businesses 
of recent times, they were a magnet 
for capital investment and intellectual 
talent. They dominated the economy; 
nine of the eleven companies in the 
earliest precursor of the Dow-Jones 
stock average were railroads. Techno-
logical innovations bloomed: Pneu-
matic brakes in 1869, automatic signals 
a decade later. Like the Internet today, 
railroads transformed aspects of daily 
life and culture, knitting together dis-
tant regions and even changing the 
way people kept time. 

Trains have also become a part of 
our mental furniture. They appear in 
paintings, poems, novels, songs, leg-
ends and figures of speech; children 
are still strangely enchanted by them. 
In the sciences, too, trains have made 
an impression. Einstein worked out 
some of his ideas on special relativity 
by thinking about hypothetical events 
inside railway carriages. Trains are also 

common props in the problems found 
at the end of the chapter in mathemat-
ics and physics textbooks.

Somewhat more challenging than 
a typical textbook problem are vari-
ous railway-switching puzzles that 
began appearing in the 1880s. W. W. 
Rouse Ball presented a few of them 
in his Mathematical Recreations and Es-
says, first published in 1892. A good 
example of the genre was discussed at 
length by A. K. Dewdney in 1987. East-
bound and westbound trains are chuff-
ing toward each other on a single track; 
they stop just in time to avert disaster, 
at a place where a short siding parallels 
the main track. The siding, which con-
nects to the main line through switches 
at both ends, can hold only one car or 
locomotive. The question is: Can the 
trains get past each other, so that both 
of them can continue in their original 
direction, pulling the same cars in the 
same order? (You might want to try 
finding a solution on your own before 
reading on or peeking at the diagram 
on page 111.)

If each train consisted of a single en-
gine, unaccompanied by any cars, the 
problem would be easy: Just have one 
engine (say the eastbound one) duck 
into the siding while the other engine 
proceeds along the main track; after-
ward, the eastbound engine can exit the 
siding and continue on its way without 
obstruction. In fact, this scheme works 
no matter what the length of the west-
bound train.

What if both trains have several cars? 
The trains can still pass, but the crews 
will have a busy day, coupling and un-
coupling cars and throwing switches. 
The basic idea is to break the east-
bound train into single cars and pass 
them through the siding one at a time. 
(The westbound train remains intact 
throughout the procedure.) The east-
bound engine can slip by in the way 
described previously; for the rest of 
the process, the westbound train does 
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all the work. First it moves forward 
and grabs the leading eastbound car; 
then the train backs up into the sid-
ing and uncouples the car, leaving it 
there. Now the train performs a ma-
neuver called a runaround, backing 
out of the eastern end of the siding, 
driving forward along the main track 
until it is clear of the western switch, 
then reversing again into the siding in 
order to push the eastbound car out 
and hitch it to the waiting eastbound 
locomotive. The runaround procedure 
is repeated for each of the remaining 
eastbound cars; for each one the crew 
has to perform three hitching and three 
unhitching operations, and the west-
bound train reverses direction twice.

Track Topology
Playing with a puzzle like this one will 
quickly acquaint you with a salient fact 
about railroads: They are one-dimen-
sional. Rail cars cannot jump over or 
go around one another. Indeed, if a rail 
line has no switch points—if it is an 
unbranched length or loop of track—
then the order of the cars is absolutely 
invariant. So is their orientation, or 
polarity; each car always faces in the 
same direction along the track. As a 
matter of fact, even in the presence of 
sidings like the one in Dewdney’s puz-
zle, no rearrangement of the cars can 
ever alter their orientation; you can 
shuffle their sequence but you cannot 
change the direction they are facing. 
Certain other configurations of tracks 
and switches, however, do allow the 
orientation to be reversed.

Railroad switches (also known as 
turnouts, or points) have roughly the 
same geometry as highway on-ramps 
and off-ramps:

The action of the switch is asymmetri-
cal. A train departing A and moving 
from right to left can be steered either 
to B or to C, but trains traveling from 
left to right have no choices. The switch 
does not allow a turn from B to C or 
from C to B (except by going through 
the switch toward A and then backing 
up). For trains headed right to left, a 
switch in this configuration is called a 
facing-point switch; for those going left 
to right it is a trailing-point switch.

Switches combine with straight and 
curved sections of track to form the 
basic structural motifs of railroad lay-
outs. The simplest such element (other 
than an unbranched length of track) is 

a lead, or stub: a dead-end branch con-
nected to the main track by a switch at 
one end. Depending on a train’s direc-
tion of travel, leads are entered either 
head-on through a facing-point switch 
or by backing up through a trailing-
point switch.

A siding, as mentioned above, is a 
parallel track with connections to the 
main line at both ends; the two switch-
es face in opposite directions, which 
means that a train can run through the 
siding and return to the main track 
still going the same way. A turnaround 

Rail cars roll off the hump and into the classification tracks of a freight yard in Linwood, 
North Carolina, operated by the Norfolk Southern railway. The yard sorts cars onto more than 
40 tracks in order to assemble trains bound for various destinations. As each car rolls down a 
slight grade, a computer identifies it from a radio-frequency tag, regulates its speed and sets 
the switch points according to the car’s destination. (Photograph by the author.)

Railroad-track topology can reshuffle the cars and locomotives of a train as it travels through a 
rail network. Leads and sidings can be used to change the sequence of cars; a jug-handle turn-
around loop or a wye can also alter orientation (the direction a car is facing). 
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loop has a jug-handle shape, with two 
switches that face in the same direc-
tion; turnarounds are rare except at 
the terminus of a rail line. Finally there 
is the wye, a configuration of three 
switches joining three tracks, and al-
lowing a train on any track to reach 
either of the other tracks. Turnarounds 
and wyes differ from other track ele-
ments in that they change a car’s ori-
entation: The car can go in facing east 
and come out facing west.

Some versions of the passing puzzle 
have the trains confronting each other 
at a wye instead of a siding. The third 
track attached to the wye is a short 
spur, with room for just one car. De-
spite this change in topology, essen-
tially the same procedure can be used 
to get the trains past each other. Again 
the intact westbound train shuttles 
back and forth, parking the eastbound 
cars one at a time on the spur, then do-
ing a runaround before pulling them 
out and shoving them along to the 
east. But there’s a difference: The cars 
come out of the spur with reversed 
orientation. Turning them to face in 
the right direction takes another pass 
through the wye.

Can the trains pass if all they have to 
work with is a one-car, dead-end lead? 
Around 1900 Sam Loyd published a 
solution for trains of length 4 and 5. It 
takes 33 reversals of direction.

Another famous railroad puzzle 
asks if a train can make a U-turn at 
a wye with a one-car-length spur. A 
suitable unit of measure for the work 
done in turning the train around is the 
effort expended in moving a single car 
through its own length. For a train of 
n cars, Dewdney gave an algorithm 
requiring an amount of work propor-
tional to n3; in essence, n cars move 
through n car-lengths n times. In 1988 
Nancy Amato, Manuel Blum, Sandra 
Irani and Ronitt Ruvinfeld (all then at 
the University of California, Berkeley) 
found an improvement, reducing the 
effort required to n2 log2 n.

Tracking Data
Sidings, wyes and other devices for 
directing trains inspired some of the 
earliest ideas about managing the flow 
of information through a computer 
program. In 1961 Edsger W. Dijkstra 
included a diagram of a railroad wye 
in a memorandum about methods 
of translating the new programming 
language Algol 60. In parsing an ex-
pression such as 3 × (5 + 2), the seven 

Devices and data structures in computer science have railroading counterparts. A queue is a 
first-in, first-out buffer; data elements (or railroad cars) enter and exit in the same order. (But the 
order can be permuted by the use of multiple queues in parallel, as in the arrangement shown 
here.) A stack enforces the opposite protocol: The first item in is the last one out. The stack at 
the upper right has the effect of reversing the orientation of each car that passes through it from 
input to output. The series of dead-end leads at left can also be operated as an array of stacks, 
which do not change a car’s orientation. The elaborate structure at the bottom is a double-ended 
queue, or deque, which allows cars to be added and removed at either end. If engines are al-
lowed to back up, then a simple siding can also function as a deque.

A railroad worker throws a switch lever in a small freight yard in Greensboro, North Carolina, 
where cars are put in order for delivery. Once the switch is set, the locomotive will couple to 
and pull out the line of cars farthest to the right. (Photograph by the author.)
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symbols are read from left to right, but 
they must be acted on in a different or-
der: First the subexpression inside the 
parentheses is evaluated by adding 5 
and 2, then the result of this operation 
is multiplied by 3. Dijkstra showed that 
the reordering can be accomplished by 
temporarily storing the operators (such 
as × and +) in a data structure called 
a stack. The stack is a first-in, last-out 
storage device; in this case the × sign 
goes in first, followed by the + sign, but 
they come out in the opposite order. 
Dijkstra chose to explain this principle 
in terms of a railroad wye. One of the 
three tracks serves as input, one as out-
put, and the third provides the first-in, 
last-out storage.

A few years later Donald E. Knuth, 
in the first volume of The Art of Com-
puter Programming, gave railroading 
interpretations of three important data 
structures: the stack, the queue and 
the double-ended queue, or deque. 
The queue is the simplest of these—at 
least for railroaders. A queue is a first-
in, first-out data structure, and so it is 
represented by a simple straight length 
of track. Cars put in at one end of the 
queue come out the other end in the 
same order. A deque is an arrangement 
of tracks allowing cars to be added at 
either end and removed from either 
end (but there is no access to cars in 
the middle of the train). Knuth illus-
trates a deque by a complicated layout 
of two back-to-back jug-handle loops, 
requiring four switches. The same func-
tions can also be accomplished by an 
ordinary siding, provided that trains 
are allowed to back up in order to pass 
through a trailing-point switch. (The 
siding and the double-jug-handle lay-
outs differ in their effect on the orienta-
tion of the cars.)

On the Right Track
Routing and sorting are at the heart of 
railroad logistics. Cars enter the system 
from many points of origin, and they 
must be hauled to many destinations. 
Other transportation networks, such 
as shipping lines and the postal sys-
tem, also sort their cargoes according 
to destination, but they do not have to 
deal with the strict one-dimensional 
constraint of railroad tracks.

Computer science offers a fully-
stocked toolbox of methods for sort-
ing—for putting things in order. The 
textbooks are filled with such algo-
rithms: merge sort, insertion sort, se-
lection sort, shell sort, heap sort, quick 

sort, bubble sort. It seems there’s a 
sorting algorithm adapted to every 
imaginable purpose—except maybe 
the sorting of railroad cars. 

When computer scientists evalu-
ate the performance of a sorting al-
gorithm, the usual practice is to mea-
sure the mental work done (deciding 
where each item goes) while ignoring 
the physical labor of actually mov-
ing things. An algorithm is judged to 
be more efficient if it requires fewer 
decisions, regardless of how often or 
how far the data have to be moved. 
This convention is reasonable when 
the things being sorted are bits and 
bytes of data, represented by packets 
of electric charge with a mass of maybe 
a zeptogram. The situation is different 
when you are sorting 100-ton rail cars.

Railroad sorting is usually done in 
two stages. First, a batch of cars going to 
the same general area is made up into a 
train; then the cars within a train are ar-
ranged in the best linear order for deliv-
ery to their individual destinations. The 
hump yard is mainly concerned with 

the first phase of this process. An in-
coming train is pushed slowly up a hill, 
and at the crest a worker “pulls the pin” 
to uncouple each car in turn. The sepa-
rated car then rolls down the other side 
of the hill into a fan of diverging tracks. 
In a large yard there might be 40 or 50 
of these “classification” tracks, where 
trains are assembled. 

As each car comes over the hump, 
switches have to be set to direct it to the 
correct track. Years ago this was done by 
workers yanking on iron levers. Other 
workers, called runners, rode along 
on the coasting freight cars, cranking 
the hand brake to regulate speed so 
that the car would retain just enough 
momentum to couple with any other 
cars already on the classification track. 
The runners and the switch tenders are 
gone now. An unseen computer sets the 
switches and controls each car’s speed 
through a mechanism called a retarder, 
which squeezes a passing car’s wheels 
to slow it down. The speed is measured 
by radar units much like those used by 
the highway patrol. Each car is identi-

A train-passing puzzle has variations going back well over a century. The green eastbound 
train and the red westbound train need to pass each other using a siding that has room for 
only one car or locomotive at a time. In the solution shown here the westbound train does 
almost all the work, pulling each car into the siding, going around it, and finally pushing it 
rearward. The algorithm generalizes to trains with any number of cars.
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fied (so that the computer knows where 
to send it) by a radio-frequency ID tag.

From a computational point of view, 
the hump yard is an array of queues ar-
ranged in parallel. Each car coming over 
the hump is steered onto a specific track, 
where the car is appended to the rear of 
the queue of cars already present there. 
When the train is complete, a locomo-
tive extracts the line of cars from the far 
end of the classification track. Because of 
the first-in, first-out property of a queue, 
this process does not change the order 
of the cars within each train. (To be more 
precise: If car A is ahead of car B in the 
incoming train, and if A and B are both 
directed to the same classification track, 
then A remains in front of B in the out-
going train.)

Solitaire Sorting
The second phase of the freight-car 
sorting process—putting the cars in or-
der for delivery—is typically done in 
smaller, local switching yards. These 
are humpless “flat yards”; the cars are 
moved by engines rather than gravity. 
The tracks can be arranged as queues, as 
in a hump yard, or as stacks—dead-end 
leads—so that cars have to be pushed 
in and pulled out from the same end. 
Suppose a train has cars numbered 1 
through n, but on arrival at the yard 
they are scrambled in some arbitrary 
order; the departing train should have 
the cars in ascending sequence, with 
car 1 just behind the engine and car n at 
the end. How many classification tracks 
are needed to achieve this result? How 

many times do cars have to be pushed 
onto and pulled out of the tracks? These 
are questions of obvious practical im-
portance to railroaders. They are also 
questions that yield to mathematical 
and algorithmic analysis.

Robert Tarjan of Stanford University 
answered some of the questions in 1972. 
Here are a few of his results:

If a switch yard has an internal loop, 
allowing cars at the output to be brought 
back to the input for further processing, 
then any sequence can be sorted. Con-
versely, in the absence of such loops, 
no finite network of stacks, queues or 
deques can sort all possible sequences, 
even if the individual storage elements 
are of unbounded capacity.

If the yard consists of m queues ar-
ranged in parallel, then a train can be 
fully sorted if and only if the longest de-
creasing subsequence has no more than 
m cars. (The cars of a decreasing subse-
quence don’t have to be consecutive; 
for example, in the sequence 1 6 3 5 4 9 2 
the longest decreasing subsequence is 
6 5 4 2.) For a yard with m parallel stacks, 
it’s the longest increasing subsequence 
that governs. But these constraints are 
somewhat artificial. They apply only if 
cars must always move from the input 
to a stack or a queue and then directly to 
the output. Real rail yards are more flex-
ible; cars can be pulled from one stack 
and pushed onto another. When moves 
like this are allowed, it’s harder to deter-
mine which sequences can be sorted.

In 2000 Elias Dahlhaus, Peter Horak, 
Mirka Miller and Joseph F. Ryan 
showed that a version of the switch-
yard problem is NP-complete (which 
means, roughly speaking, that there’s 
no efficient algorithm for solving it). 
Specifically, they proved it is difficult to 
decide how many tracks are needed.

Chinese mathematicians have taken a 
somewhat different and more-pragmatic 
approach to train-sorting problems, ap-
parently in response to a request from 
Chinese railroad officials. (The exact 
provenance of these ideas is somewhat 
murky. In 1976 an American delegation 
to China heard a lecture on the subject 
by Ma Chung-fan; notes on this talk 
were written up by Henry O. Pollak 
and published in a National Academy 
of Sciences report. A 1983 paper by Zhu 
Yongjin and Zhu Ruopeng covers simi-
lar ideas but does not mention Ma.)

Pollak’s lecture notes present an ex-
ample: Use an array of stacks to sort the 
10-car sequence 6324135726. (Cars 
with the same number are going to the 

Even with the cars of a train sorted in delivery order, getting them to their destinations requires 
strategy. Car 1 is to be deposited at lead A, car 2 at lead B and car 3 at siding C. The diagram 
shows only selected steps in the solution. The numbers at the right give the cumulative total of 
engine reversals (r), couplings (c) and uncouplings (u). The procedure shown includes a total 
of 15 such events. Can it be done in fewer steps? Would a different initial ordering of the train 
allow more efficient deliveries? Is any ordering worse than this one? The lowest possible score 
is four reversals, no couplings and three uncouplings: Can this be attained? What if regulations 
forbid leaving cars unattended on the main line? (Some rules: Each lead or siding holds one car, 
and there is room for only one car on the main line between A and B, between B and C and be-
tween the two switches of siding C. Cars can be moved only when coupled to the engine.)
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same destination and thus should be 
grouped together.) Here I am going to 
consider the same example but look at 
it from a different point of view.

One approach to sorting the ex-
ample sequence resembles a game of 
solitaire, building multiple stacks of 
cars in nondecreasing order. Work-
ing from the rear of the train toward 
the front, we examine the number on 
each car and push the car onto a stack. 
Suppose the car we have just reached 
bears number k. If there is exactly one 
nonempty stack whose topmost ele-
ment is greater than or equal to k, then 
we put the car on that stack. If there 
are multiple stacks with a top element 
greater than or equal to k, we choose 
the stack with the smallest top entry. If 
no stack qualifies to receive car k, then 
we have to start a new stack.

For the sequence 6324135726, we 
begin with the rightmost 6, which nec-
essarily starts a new stack. We push 2 
onto the same stack, but the 7 starts 
a second stack, which can also accept 
5 and 3. The 1 then goes on the first 
stack, and the 4 inaugurates a third 
stack. Working through the rest of the 
sequence, we finally reach this con-
figuration of four stacks:

Now the cars can be pulled out of the 
stacks in nondecreasing order; follow-
ing the guidelines indicated by the col-
ored blocks, this final assembly step 
will take seven “pulls.” The sorted se-
quence, of course, is 1223345667.

In his Beijing lecture, Ma gave an 
alternative sorting procedure; I’m go-
ing to call it the Chinese solitaire al-
gorithm. It partitions the sequence in 
a way that requires just four pulls to 
assemble the sorted train. Here is the 
final state of the four stacks:

It’s easy to confirm that this configu-
ration can be reached from the origi-
nal train order, and that four pulls 
do indeed yield the properly sorted 
sequence. But by what rule were the 
numbers dealt into these particular 
groups? Both the notes on Ma’s lecture 
and the paper by Zhu and Zhu give a 
rather convoluted algorithm. In trying 

to explain it I can do no better than 
quote the lecture notes:

Start at the leftmost (in this case 
the only) 1, put down all 1s, all 2s 
to the right of the last 1, 3s to the 
right of the last 2 if you have cov-
ered all the 2s, etc. In this case, the 
first subset defined in this way is 
12 .... The next subset takes the 
other 2 and the second 3...; it can’t 
get to the first 3. The next subset 
takes the first 3, the 4, the 5, and 
second 6; the last subset is 67.

This procedure works, but there’s an 
easier way to generate the same par-
titioning: Repeatedly scan from left 
to right, and on each pass extract the 
longest possible nondecreasing subse-
quence starting with the leftmost num-
ber. In the example considered here, the 
first such subsequence is 67, followed 
by 3456, then 23 and finally 12.

Zhu and Zhu give a proof that the 
Chinese solitaire algorithm allows the 
train to be assembled with the mini-
mal number of pulls from the classifica-
tion tracks. But the proof counts only 
pulls. What about “pushes”—the train 
movements needed to place the cars on 
the stacks in the first place? For the ex-
ample sequence, the Chinese algorithm 
has the worst possible performance in 
this respect: Ten separate pushes are 
needed to stack up the 10 cars. The non-
Chinese solitaire method is somewhat 
better, at seven pushes. Taking the sum 
of pushes and pulls, the two methods 
score a tie at 14. I don’t know whether 
some other technique can do better.

All the Livelong Day
From the mathematical literature on 
railroad sorting, one might get the im-
pression that putting the train in order 
is the end of all difficulties. The cars 
can then be dropped off at their des-
tinations, one by one, without further 
thought. Train crews tell a different 
story. A memoir by Ralph E. Fisher, 
who worked on the Boston and Maine 
Railroad until the 1950s, refers to the 
process of making deliveries as a chess 
game. “Figuring out all these moves 
required no small skill if they were to be 
done in the shortest time and the least 
amount of motion.”

Inspired by Fisher’s stories, I offer 
the little puzzle on the opposite page. 
The task is simply to deliver cars 1, 2 
and 3 to destinations A, B and C. The 
cars are already in delivery order. The 
procedure shown requires six rever-

sals, three couplings and six uncou-
plings, for a total of 15 steps. Is there 
a better solution? Would some other 
initial permutation of the cars be more 
efficient? Is there a worse permutation?

The chess game of making freight-car 
deliveries is one aspect of railroading 
that has gotten easier in recent years. 
Many of the spur lines used for such 
local runs have been closed. Much rail 
freight is now shipped in containers or 
piggyback trailers that are lifted off the 
train at a central terminal and delivered 
by truck. Such “intermodal” transport 
doubtless has several advantages. One 
of them is escape from the tyranny of 
the one-track mind.
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