
A reprint from

American Scientist
the magazine of Sigma Xi, The Scientific Research Society

This reprint is provided for personal and noncommercial use. For any other use, please send a request Brian Hayes by
electronic mail to bhayes@amsci.org.

108 American Scientist, Volume 95

Computing Science

© 2007 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

Trains of Thought

Brian Hayes

Guided by an unseen hand, a
grimy railroad tank car nego-

tiates a series of switch points in the
tracks, veering right, then right again,
then left. Next comes a lime-green box
car, which makes two lefts. I observe
these events from the control tower of
a railroad facility called a hump yard,
where freight cars sort themselves into
trains bound for various destinations.
It is an eerie scene. The cars glide si-
lently downhill through the maze of
tracks, seeming to steer themselves, as
if each car knows just where it wants
to go. This is an illusion; a computer
two floors below me is making all the
decisions, setting the switches a mo-
ment before each car arrives. But I can’t
shake the impression that the hump
yard itself is a kind of computer—that
the railroad cars are executing some se-
cret algorithm.

It’s not such a far-fetched notion.
In 1994 Adam Chalcraft and Michael
Greene, who were then at the Univer-
sity of Cambridge, and later Maurice
Margenstern of the University of Metz,
designed railroad layouts that simu-
late the operation of a computer. The
machine is programmed by setting
switch points in a specific initial pat-
tern; then a locomotive running over
the tracks resets some of the switches
as it passes; the result of the computa-
tion is read from the final configura-
tion of the switches.

These constructions are wonderfully
ingenious, although admittedly they
have little to do with the day-to-day
running of real railroads. Even at a
more practical level, though, brawny
steel rails and brainy silicon chips have
surprisingly rich connections. The work
of the hump yard is a case in point. Al-

gorithms for sorting are a specialty of
computer science, but railroads were
sorting freight cars decades before the
first electronic computer was built.
Methods invented by rail workers have
served as metaphor and inspiration
for the development of algorithms and
data structures in computer science;
conversely, the theoretical analysis of
algorithms has suggested ways for rail-
roads to improve their operations.

What a Way to Run a Railroad
Railroads were the epitome of high
tech in the later years of the 19th centu-
ry. Even more than dot-com businesses
of recent times, they were a magnet
for capital investment and intellectual
talent. They dominated the economy;
nine of the eleven companies in the
earliest precursor of the Dow-Jones
stock average were railroads. Techno-
logical innovations bloomed: Pneu-
matic brakes in 1869, automatic signals
a decade later. Like the Internet today,
railroads transformed aspects of daily
life and culture, knitting together dis-
tant regions and even changing the
way people kept time.

Trains have also become a part of
our mental furniture. They appear in
paintings, poems, novels, songs, leg-
ends and figures of speech; children
are still strangely enchanted by them.
In the sciences, too, trains have made
an impression. Einstein worked out
some of his ideas on special relativity
by thinking about hypothetical events
inside railway carriages. Trains are also

common props in the problems found
at the end of the chapter in mathemat-
ics and physics textbooks.

Somewhat more challenging than
a typical textbook problem are vari-
ous railway-switching puzzles that
began appearing in the 1880s. W. W.
Rouse Ball presented a few of them
in his Mathematical Recreations and Es-
says, first published in 1892. A good
example of the genre was discussed at
length by A. K. Dewdney in 1987. East-
bound and westbound trains are chuff-
ing toward each other on a single track;
they stop just in time to avert disaster,
at a place where a short siding parallels
the main track. The siding, which con-
nects to the main line through switches
at both ends, can hold only one car or
locomotive. The question is: Can the
trains get past each other, so that both
of them can continue in their original
direction, pulling the same cars in the
same order? (You might want to try
finding a solution on your own before
reading on or peeking at the diagram
on page 111.)

If each train consisted of a single en-
gine, unaccompanied by any cars, the
problem would be easy: Just have one
engine (say the eastbound one) duck
into the siding while the other engine
proceeds along the main track; after-
ward, the eastbound engine can exit the
siding and continue on its way without
obstruction. In fact, this scheme works
no matter what the length of the west-
bound train.

What if both trains have several cars?
The trains can still pass, but the crews
will have a busy day, coupling and un-
coupling cars and throwing switches.
The basic idea is to break the east-
bound train into single cars and pass
them through the siding one at a time.
(The westbound train remains intact
throughout the procedure.) The east-
bound engine can slip by in the way
described previously; for the rest of
the process, the westbound train does

Brian Hayes is Senior Writer for American Sci-
entist. Additional material related to the “Comput-
ing Science” column appears in Hayes’s Weblog at
http://bit-player.org. Address: 211 Dacian Avenue,
Durham, NC 27701. Internet: bhayes@amsci.org

Computing
with locomotives
and box cars takes
a one-track mind

2007 March–April 109www.americanscientist.org © 2007 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

all the work. First it moves forward
and grabs the leading eastbound car;
then the train backs up into the sid-
ing and uncouples the car, leaving it
there. Now the train performs a ma-
neuver called a runaround, backing
out of the eastern end of the siding,
driving forward along the main track
until it is clear of the western switch,
then reversing again into the siding in
order to push the eastbound car out
and hitch it to the waiting eastbound
locomotive. The runaround procedure
is repeated for each of the remaining
eastbound cars; for each one the crew
has to perform three hitching and three
unhitching operations, and the west-
bound train reverses direction twice.

Track Topology
Playing with a puzzle like this one will
quickly acquaint you with a salient fact
about railroads: They are one-dimen-
sional. Rail cars cannot jump over or
go around one another. Indeed, if a rail
line has no switch points—if it is an
unbranched length or loop of track—
then the order of the cars is absolutely
invariant. So is their orientation, or
polarity; each car always faces in the
same direction along the track. As a
matter of fact, even in the presence of
sidings like the one in Dewdney’s puz-
zle, no rearrangement of the cars can
ever alter their orientation; you can
shuffle their sequence but you cannot
change the direction they are facing.
Certain other configurations of tracks
and switches, however, do allow the
orientation to be reversed.

Railroad switches (also known as
turnouts, or points) have roughly the
same geometry as highway on-ramps
and off-ramps:

The action of the switch is asymmetri-
cal. A train departing A and moving
from right to left can be steered either
to B or to C, but trains traveling from
left to right have no choices. The switch
does not allow a turn from B to C or
from C to B (except by going through
the switch toward A and then backing
up). For trains headed right to left, a
switch in this configuration is called a
facing-point switch; for those going left
to right it is a trailing-point switch.

Switches combine with straight and
curved sections of track to form the
basic structural motifs of railroad lay-
outs. The simplest such element (other
than an unbranched length of track) is

a lead, or stub: a dead-end branch con-
nected to the main track by a switch at
one end. Depending on a train’s direc-
tion of travel, leads are entered either
head-on through a facing-point switch
or by backing up through a trailing-
point switch.

A siding, as mentioned above, is a
parallel track with connections to the
main line at both ends; the two switch-
es face in opposite directions, which
means that a train can run through the
siding and return to the main track
still going the same way. A turnaround

Rail cars roll off the hump and into the classification tracks of a freight yard in Linwood,
North Carolina, operated by the Norfolk Southern railway. The yard sorts cars onto more than
40 tracks in order to assemble trains bound for various destinations. As each car rolls down a
slight grade, a computer identifies it from a radio-frequency tag, regulates its speed and sets
the switch points according to the car’s destination. (Photograph by the author.)

Railroad-track topology can reshuffle the cars and locomotives of a train as it travels through a
rail network. Leads and sidings can be used to change the sequence of cars; a jug-handle turn-
around loop or a wye can also alter orientation (the direction a car is facing).

110 American Scientist, Volume 95 © 2007 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

loop has a jug-handle shape, with two
switches that face in the same direc-
tion; turnarounds are rare except at
the terminus of a rail line. Finally there
is the wye, a configuration of three
switches joining three tracks, and al-
lowing a train on any track to reach
either of the other tracks. Turnarounds
and wyes differ from other track ele-
ments in that they change a car’s ori-
entation: The car can go in facing east
and come out facing west.

Some versions of the passing puzzle
have the trains confronting each other
at a wye instead of a siding. The third
track attached to the wye is a short
spur, with room for just one car. De-
spite this change in topology, essen-
tially the same procedure can be used
to get the trains past each other. Again
the intact westbound train shuttles
back and forth, parking the eastbound
cars one at a time on the spur, then do-
ing a runaround before pulling them
out and shoving them along to the
east. But there’s a difference: The cars
come out of the spur with reversed
orientation. Turning them to face in
the right direction takes another pass
through the wye.

Can the trains pass if all they have to
work with is a one-car, dead-end lead?
Around 1900 Sam Loyd published a
solution for trains of length 4 and 5. It
takes 33 reversals of direction.

Another famous railroad puzzle
asks if a train can make a U-turn at
a wye with a one-car-length spur. A
suitable unit of measure for the work
done in turning the train around is the
effort expended in moving a single car
through its own length. For a train of
n cars, Dewdney gave an algorithm
requiring an amount of work propor-
tional to n3; in essence, n cars move
through n car-lengths n times. In 1988
Nancy Amato, Manuel Blum, Sandra
Irani and Ronitt Ruvinfeld (all then at
the University of California, Berkeley)
found an improvement, reducing the
effort required to n2 log2 n.

Tracking Data
Sidings, wyes and other devices for
directing trains inspired some of the
earliest ideas about managing the flow
of information through a computer
program. In 1961 Edsger W. Dijkstra
included a diagram of a railroad wye
in a memorandum about methods
of translating the new programming
language Algol 60. In parsing an ex-
pression such as 3 × (5 + 2), the seven

Devices and data structures in computer science have railroading counterparts. A queue is a
first-in, first-out buffer; data elements (or railroad cars) enter and exit in the same order. (But the
order can be permuted by the use of multiple queues in parallel, as in the arrangement shown
here.) A stack enforces the opposite protocol: The first item in is the last one out. The stack at
the upper right has the effect of reversing the orientation of each car that passes through it from
input to output. The series of dead-end leads at left can also be operated as an array of stacks,
which do not change a car’s orientation. The elaborate structure at the bottom is a double-ended
queue, or deque, which allows cars to be added and removed at either end. If engines are al-
lowed to back up, then a simple siding can also function as a deque.

A railroad worker throws a switch lever in a small freight yard in Greensboro, North Carolina,
where cars are put in order for delivery. Once the switch is set, the locomotive will couple to
and pull out the line of cars farthest to the right. (Photograph by the author.)

2007 March–April 111www.americanscientist.org © 2007 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

symbols are read from left to right, but
they must be acted on in a different or-
der: First the subexpression inside the
parentheses is evaluated by adding 5
and 2, then the result of this operation
is multiplied by 3. Dijkstra showed that
the reordering can be accomplished by
temporarily storing the operators (such
as × and +) in a data structure called
a stack. The stack is a first-in, last-out
storage device; in this case the × sign
goes in first, followed by the + sign, but
they come out in the opposite order.
Dijkstra chose to explain this principle
in terms of a railroad wye. One of the
three tracks serves as input, one as out-
put, and the third provides the first-in,
last-out storage.

A few years later Donald E. Knuth,
in the first volume of The Art of Com-
puter Programming, gave railroading
interpretations of three important data
structures: the stack, the queue and
the double-ended queue, or deque.
The queue is the simplest of these—at
least for railroaders. A queue is a first-
in, first-out data structure, and so it is
represented by a simple straight length
of track. Cars put in at one end of the
queue come out the other end in the
same order. A deque is an arrangement
of tracks allowing cars to be added at
either end and removed from either
end (but there is no access to cars in
the middle of the train). Knuth illus-
trates a deque by a complicated layout
of two back-to-back jug-handle loops,
requiring four switches. The same func-
tions can also be accomplished by an
ordinary siding, provided that trains
are allowed to back up in order to pass
through a trailing-point switch. (The
siding and the double-jug-handle lay-
outs differ in their effect on the orienta-
tion of the cars.)

On the Right Track
Routing and sorting are at the heart of
railroad logistics. Cars enter the system
from many points of origin, and they
must be hauled to many destinations.
Other transportation networks, such
as shipping lines and the postal sys-
tem, also sort their cargoes according
to destination, but they do not have to
deal with the strict one-dimensional
constraint of railroad tracks.

Computer science offers a fully-
stocked toolbox of methods for sort-
ing—for putting things in order. The
textbooks are filled with such algo-
rithms: merge sort, insertion sort, se-
lection sort, shell sort, heap sort, quick

sort, bubble sort. It seems there’s a
sorting algorithm adapted to every
imaginable purpose—except maybe
the sorting of railroad cars.

When computer scientists evalu-
ate the performance of a sorting al-
gorithm, the usual practice is to mea-
sure the mental work done (deciding
where each item goes) while ignoring
the physical labor of actually mov-
ing things. An algorithm is judged to
be more efficient if it requires fewer
decisions, regardless of how often or
how far the data have to be moved.
This convention is reasonable when
the things being sorted are bits and
bytes of data, represented by packets
of electric charge with a mass of maybe
a zeptogram. The situation is different
when you are sorting 100-ton rail cars.

Railroad sorting is usually done in
two stages. First, a batch of cars going to
the same general area is made up into a
train; then the cars within a train are ar-
ranged in the best linear order for deliv-
ery to their individual destinations. The
hump yard is mainly concerned with

the first phase of this process. An in-
coming train is pushed slowly up a hill,
and at the crest a worker “pulls the pin”
to uncouple each car in turn. The sepa-
rated car then rolls down the other side
of the hill into a fan of diverging tracks.
In a large yard there might be 40 or 50
of these “classification” tracks, where
trains are assembled.

As each car comes over the hump,
switches have to be set to direct it to the
correct track. Years ago this was done by
workers yanking on iron levers. Other
workers, called runners, rode along
on the coasting freight cars, cranking
the hand brake to regulate speed so
that the car would retain just enough
momentum to couple with any other
cars already on the classification track.
The runners and the switch tenders are
gone now. An unseen computer sets the
switches and controls each car’s speed
through a mechanism called a retarder,
which squeezes a passing car’s wheels
to slow it down. The speed is measured
by radar units much like those used by
the highway patrol. Each car is identi-

A train-passing puzzle has variations going back well over a century. The green eastbound
train and the red westbound train need to pass each other using a siding that has room for
only one car or locomotive at a time. In the solution shown here the westbound train does
almost all the work, pulling each car into the siding, going around it, and finally pushing it
rearward. The algorithm generalizes to trains with any number of cars.

112 American Scientist, Volume 95 © 2007 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

fied (so that the computer knows where
to send it) by a radio-frequency ID tag.

From a computational point of view,
the hump yard is an array of queues ar-
ranged in parallel. Each car coming over
the hump is steered onto a specific track,
where the car is appended to the rear of
the queue of cars already present there.
When the train is complete, a locomo-
tive extracts the line of cars from the far
end of the classification track. Because of
the first-in, first-out property of a queue,
this process does not change the order
of the cars within each train. (To be more
precise: If car A is ahead of car B in the
incoming train, and if A and B are both
directed to the same classification track,
then A remains in front of B in the out-
going train.)

Solitaire Sorting
The second phase of the freight-car
sorting process—putting the cars in or-
der for delivery—is typically done in
smaller, local switching yards. These
are humpless “flat yards”; the cars are
moved by engines rather than gravity.
The tracks can be arranged as queues, as
in a hump yard, or as stacks—dead-end
leads—so that cars have to be pushed
in and pulled out from the same end.
Suppose a train has cars numbered 1
through n, but on arrival at the yard
they are scrambled in some arbitrary
order; the departing train should have
the cars in ascending sequence, with
car 1 just behind the engine and car n at
the end. How many classification tracks
are needed to achieve this result? How

many times do cars have to be pushed
onto and pulled out of the tracks? These
are questions of obvious practical im-
portance to railroaders. They are also
questions that yield to mathematical
and algorithmic analysis.

Robert Tarjan of Stanford University
answered some of the questions in 1972.
Here are a few of his results:

If a switch yard has an internal loop,
allowing cars at the output to be brought
back to the input for further processing,
then any sequence can be sorted. Con-
versely, in the absence of such loops,
no finite network of stacks, queues or
deques can sort all possible sequences,
even if the individual storage elements
are of unbounded capacity.

If the yard consists of m queues ar-
ranged in parallel, then a train can be
fully sorted if and only if the longest de-
creasing subsequence has no more than
m cars. (The cars of a decreasing subse-
quence don’t have to be consecutive;
for example, in the sequence 1 6 3 5 4 9 2
the longest decreasing subsequence is
6 5 4 2.) For a yard with m parallel stacks,
it’s the longest increasing subsequence
that governs. But these constraints are
somewhat artificial. They apply only if
cars must always move from the input
to a stack or a queue and then directly to
the output. Real rail yards are more flex-
ible; cars can be pulled from one stack
and pushed onto another. When moves
like this are allowed, it’s harder to deter-
mine which sequences can be sorted.

In 2000 Elias Dahlhaus, Peter Horak,
Mirka Miller and Joseph F. Ryan
showed that a version of the switch-
yard problem is NP-complete (which
means, roughly speaking, that there’s
no efficient algorithm for solving it).
Specifically, they proved it is difficult to
decide how many tracks are needed.

Chinese mathematicians have taken a
somewhat different and more-pragmatic
approach to train-sorting problems, ap-
parently in response to a request from
Chinese railroad officials. (The exact
provenance of these ideas is somewhat
murky. In 1976 an American delegation
to China heard a lecture on the subject
by Ma Chung-fan; notes on this talk
were written up by Henry O. Pollak
and published in a National Academy
of Sciences report. A 1983 paper by Zhu
Yongjin and Zhu Ruopeng covers simi-
lar ideas but does not mention Ma.)

Pollak’s lecture notes present an ex-
ample: Use an array of stacks to sort the
10-car sequence 6324135726. (Cars
with the same number are going to the

Even with the cars of a train sorted in delivery order, getting them to their destinations requires
strategy. Car 1 is to be deposited at lead A, car 2 at lead B and car 3 at siding C. The diagram
shows only selected steps in the solution. The numbers at the right give the cumulative total of
engine reversals (r), couplings (c) and uncouplings (u). The procedure shown includes a total
of 15 such events. Can it be done in fewer steps? Would a different initial ordering of the train
allow more efficient deliveries? Is any ordering worse than this one? The lowest possible score
is four reversals, no couplings and three uncouplings: Can this be attained? What if regulations
forbid leaving cars unattended on the main line? (Some rules: Each lead or siding holds one car,
and there is room for only one car on the main line between A and B, between B and C and be-
tween the two switches of siding C. Cars can be moved only when coupled to the engine.)

2007 March–April 113www.americanscientist.org © 2007 Brian Hayes. Reproduction with permission only.
Contact bhayes@amsci.org.

same destination and thus should be
grouped together.) Here I am going to
consider the same example but look at
it from a different point of view.

One approach to sorting the ex-
ample sequence resembles a game of
solitaire, building multiple stacks of
cars in nondecreasing order. Work-
ing from the rear of the train toward
the front, we examine the number on
each car and push the car onto a stack.
Suppose the car we have just reached
bears number k. If there is exactly one
nonempty stack whose topmost ele-
ment is greater than or equal to k, then
we put the car on that stack. If there
are multiple stacks with a top element
greater than or equal to k, we choose
the stack with the smallest top entry. If
no stack qualifies to receive car k, then
we have to start a new stack.

For the sequence 6324135726, we
begin with the rightmost 6, which nec-
essarily starts a new stack. We push 2
onto the same stack, but the 7 starts
a second stack, which can also accept
5 and 3. The 1 then goes on the first
stack, and the 4 inaugurates a third
stack. Working through the rest of the
sequence, we finally reach this con-
figuration of four stacks:

Now the cars can be pulled out of the
stacks in nondecreasing order; follow-
ing the guidelines indicated by the col-
ored blocks, this final assembly step
will take seven “pulls.” The sorted se-
quence, of course, is 1223345667.

In his Beijing lecture, Ma gave an
alternative sorting procedure; I’m go-
ing to call it the Chinese solitaire al-
gorithm. It partitions the sequence in
a way that requires just four pulls to
assemble the sorted train. Here is the
final state of the four stacks:

It’s easy to confirm that this configu-
ration can be reached from the origi-
nal train order, and that four pulls
do indeed yield the properly sorted
sequence. But by what rule were the
numbers dealt into these particular
groups? Both the notes on Ma’s lecture
and the paper by Zhu and Zhu give a
rather convoluted algorithm. In trying

to explain it I can do no better than
quote the lecture notes:

Start at the leftmost (in this case
the only) 1, put down all 1s, all 2s
to the right of the last 1, 3s to the
right of the last 2 if you have cov-
ered all the 2s, etc. In this case, the
first subset defined in this way is
12 The next subset takes the
other 2 and the second 3...; it can’t
get to the first 3. The next subset
takes the first 3, the 4, the 5, and
second 6; the last subset is 67.

This procedure works, but there’s an
easier way to generate the same par-
titioning: Repeatedly scan from left
to right, and on each pass extract the
longest possible nondecreasing subse-
quence starting with the leftmost num-
ber. In the example considered here, the
first such subsequence is 67, followed
by 3456, then 23 and finally 12.

Zhu and Zhu give a proof that the
Chinese solitaire algorithm allows the
train to be assembled with the mini-
mal number of pulls from the classifica-
tion tracks. But the proof counts only
pulls. What about “pushes”—the train
movements needed to place the cars on
the stacks in the first place? For the ex-
ample sequence, the Chinese algorithm
has the worst possible performance in
this respect: Ten separate pushes are
needed to stack up the 10 cars. The non-
Chinese solitaire method is somewhat
better, at seven pushes. Taking the sum
of pushes and pulls, the two methods
score a tie at 14. I don’t know whether
some other technique can do better.

All the Livelong Day
From the mathematical literature on
railroad sorting, one might get the im-
pression that putting the train in order
is the end of all difficulties. The cars
can then be dropped off at their des-
tinations, one by one, without further
thought. Train crews tell a different
story. A memoir by Ralph E. Fisher,
who worked on the Boston and Maine
Railroad until the 1950s, refers to the
process of making deliveries as a chess
game. “Figuring out all these moves
required no small skill if they were to be
done in the shortest time and the least
amount of motion.”

Inspired by Fisher’s stories, I offer
the little puzzle on the opposite page.
The task is simply to deliver cars 1, 2
and 3 to destinations A, B and C. The
cars are already in delivery order. The
procedure shown requires six rever-

sals, three couplings and six uncou-
plings, for a total of 15 steps. Is there
a better solution? Would some other
initial permutation of the cars be more
efficient? Is there a worse permutation?

The chess game of making freight-car
deliveries is one aspect of railroading
that has gotten easier in recent years.
Many of the spur lines used for such
local runs have been closed. Much rail
freight is now shipped in containers or
piggyback trailers that are lifted off the
train at a central terminal and delivered
by truck. Such “intermodal” transport
doubtless has several advantages. One
of them is escape from the tyranny of
the one-track mind.

Bibliography
Amato, Nancy, Manuel Blum, Sandra Irani and

Ronitt Rubinfeld. 1989. Reversing trains: A
turn of the century sorting problem. Journal
of Algorithms 10:413–428.

Ball, W. W. Rouse. 1892. Mathematical Recre-
ations and Essays. Thirteenth edition. New
York: Dover Publications.

Chalcraft, Adam, and Michael Greene. 1994.
Train sets. Eureka 53:5–12.

Dahlhaus, Elias, Peter Horak, Mirka Miller and
Joseph F. Ryan. 2000. The train marshal-
ling problem. Discrete Applied Mathematics
103(1–3):41–54.

Dewdney, A. K. 1987. Algopuzzles: wherein
trains of thought follow algorithmic tracks to
solutions. Scientific American 256(6):128–130.

Dijkstra, Edsger W. 1961. Algol 60 transla-
tion. Algol Bulletin Supplement No. 10.
Mathematisch Centrum, Amsterdam.
http://www.cs.utexas.edu/users/EWD/
MCReps/MR35.PDF

Fisher, Ralph E. 1976. Vanishing Markers: Mem-
ories of Boston and Maine Railroading, 1946–
1952. Brattleboro, Vermont: The Stephen
Greene Press.

Fitzgerald, Anne, and Saunders Mac Lane.
1977. Pure and Applied Mathematics in the
People’s Republic of China: A Trip Report of
the American Pure and Applied Mathemat-
ics Delegation. Washington, D.C.: National
Academy of Sciences, pp. 42–44.

Knuth, Donald E. 1973. The Art of Computer
Programming: Volume 1, Fundamental Al-
gorithms; Volume 3, Sorting and Searching.
Reading, Mass.: Addison-Wesley.

Loyd, Sam. 1914. Cyclopedia of Puzzles. New
York: Lamb Publishing Co.

Margenstern, Maurice. 2001. Two railway cir-
cuits: a universal circuit and an NP-diffi-
cult one. Computer Science Journal of Moldova
9(1):3–33.

Stewart, Ian. 1994. Mathematical recreations: A
subway named Turing. Scientific American
271(3):90–92.

Tarjan, Robert. 1972. Sorting using networks of
queues and stacks. Journal of the Association
for Computing Machinery 19:341–346.

Zhu Yongjin and Zhu Ruopeng. 1983. Se-
quence reconstruction under some order-
type constraints. Scientia Sinica Series A
26:702–713.

