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Up a Lazy River

Brian Hayes

Water runs downhill—we 
all know that. As a rule, it fol-­

lows the path of steepest descent, seek-­
ing out the shortest and fastest route 
from top to bottom. So how can we 
make sense of meandering rivers, which 
wiggle-­waggle down the valley, pro-­
longing their journey to the sea and 
greatly lengthening their course? Why 
doesn’t the flowing water—acting un-­
der the tug of gravity—just carve out a 
shortcut across all those loops?

I first encountered the mysteries 
of meanders in an article by Luna B. 
Leopold and Walter Langbein, pub-­
lished 40 years ago in Scientific Ameri-
can. They gave a lucid account of how 
meanders form and why they assume 
their characteristic sinuous shapes. I 
was a student at the time, and the arti-­
cle made a lasting impression. Not that 
I was inspired to go off and pursue a 
career in potamology, but the Leopold-
Langbein theory of meanders was an 
eye-opener all the same. It brought 
home to me the curious fact that the 
world is a comprehensible place: You 
can look at a landform, say, and ex-­
pect to understand what you see. The 
patterns of nature make sense, if you 
know how to read them.

Luna Leopold died last February at 
age 90. Reading accounts of his life 
and work led me back to that fondly 
remembered Scientific American article 
from 1966, as well as another article 
published a few years earlier in Ameri-
can Scientist. I found them still lucid 
and engaging—and yet, on reflection, 
not quite fully satisfying. It’s not so 
much that the answers now seemed 
less compelling, but they led to many 

further questions, which I had lacked 
the wit to ask the first time around. 
Maybe nature is indeed comprehen-­
sible, but I couldn’t say that I truly un-­
derstood river meanders. So I delved 
deeper into the work of Leopold and 
his colleagues, and I looked at how 
others have approached the same 
problems. I even tried a few simplis-­
tic computer experiments of my own. 
After all that, there’s still no shortage 
of questions.

Old Man River
Luna Bergere Leopold had a river 
meandering through his childhood. 
It was the Wisconsin River, which 
passed by an abandoned farm north of 
Madison where his family spent their 
weekends in a converted chicken coop. 
Luna’s father was Aldo Leopold—for-­
ester, outdoorsman and pioneering 
conservationist, a philosopher among 
the lumberjacks. It was Luna Leopold 
who assembled and edited his father’s 
book of essays, A Sand County Almanac, 
published posthumously in 1949.

Luna Leopold studied civil engineer-­
ing, then meteorology and finally geol-­
ogy. He worked more than 20 years 
with the U.S. Geological Survey, in-­
cluding a decade as Chief Hydrologist. 
Then he had a second long career at 
the University of California, Berkeley. 
I think it safe to say that Leopold was 
the foremost American student of rivers 
and the landscapes they create. And he 
did not study them from a Washington 
office or a Berkeley classroom; he got 

his feet wet. An obituary in the Wash-
ington Post described his way of life:

Well known for his scientific 
fieldwork, he also made bows 
and arrows, hunted and fished, 
rode horses, composed piano and 
guitar music, danced, flew planes, 
painted landscapes, wrote poetry, 
bound books, acted on stage, built 
furniture, claimed to cook straw-­
berry shortcake in a camp Dutch 
oven and told campfire stories. 
He floated on a raft through the 
Grand Canyon to measure the 
depth of the Colorado River.

Most of Leopold’s work was done in 
collaboration with colleagues, but for 
brevity in what follows I shall refer to 
joint work by his name alone.

Around the Bend
Leopold brought a distinctively quan-­
titative and mathematical style to the 
study of rivers. For example, he formu-­
lated scaling laws that describe how 
the cross section of a natural channel 
changes as a function of the volume of 
water flowing through it. He even did 
some computer simulations—without 
a computer! Using shuffled decks of 
cards or tables of random numbers, 
he carried out probabilistic studies of 
landform features such as the branch-­
ing of a drainage network.

The serpentine shapes of meanders 
certainly invite mathematical analysis. 
Although in nature the curves are high-­
ly irregular—no two alike, perhaps—
Leopold argued that they all derive 
from a specific underlying form, which 
he called a sine-generated curve.

Imagine you are canoeing down a 
meandering river with a compass in 
hand, making note of your heading 
at regular intervals. According to Leo-­
pold, your direction should vary sinu-­
soidally as a function of the distance 
you have traveled along the river cen-­
terline. This is not to say that the shape 
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of the river itself is a sine curve; rather, 
the sine function specifies the heading. 
The governing equation is:

θ = w sin s.

Here θ is the heading angle, measured 
with respect to the mean down-­valley 
direction (the path the river would fol-­
low if it did not meander at all); s is 
distance along the stream centerline; 
and w is the maximum angle that the 
path makes with the down-valley axis. 
For small values of w, less than 90 de-­
grees, the sine-generated curve has 
gentle undulations, so that the river 
weaves back and forth but at all times 
maintains a down-valley component 
of motion. At w = 90 degrees, the path 
of the stream crosses perpendicular to 
the valley axis. At still larger values 
of w, the lobes of the curve become 
horseshoe-shaped, and for part of each 
meander cycle the river’s course takes 
it back up the valley. A little beyond 
w = 120 degrees, adjacent lobes of the 
curve begin to overlap. On graph paper 
the lines merely cross, but in a river 
this event signals the development of a 
“cutoff,” diverting the flow and leaving 
behind a stranded oxbow lake.

The sine-generated curve looks like 
a plausible candidate for describing 
meanders, at least within a limited pa-­
rameter range. But what made Leo-­

pold so sure it was the one right can-­
didate? His argument goes as follows. 
Take two points a and b connected by 
a stretch of river of length L, where L is 
greater than the straight-line distance 
from a to b. Now think of all the ways 
of bending and folding this segment 
of river into a smooth curve without 
changing its length or detaching it 
from its end points. Among all such 
paths, the sine-generated curve has 
three interesting properties: It is the 
path of minimal bending stress, it is the 
path of minimal variance in direction, 
and it is the path representing the most 
likely random walk. I shall first discuss 
the two minimization principles and 
return later to the random walks. 

The bending stress of a river is the 
work or energy that has to be expend-­
ed to make its path deviate from a 
straight line. At each point along the 
route, the bending stress is proportion-­
al to the square of the curvature at that 
point. For a straight segment, bending 
stress and curvature are both zero; they 
increase as a turn gets sharper. Among 
all smooth, length-L curves from a to b, 
the sine-generated curve has the small-­
est squared curvature summed over 
the entire path.

Directional variance is a similar con-­
cept. As you follow the river from a 
to b, measure at each point along the 

way how much your heading deviates 
from the mean down-valley direction, 
then compute the sum of the squares of 
these angles. Again, the sine-generated 
curve yields the smallest possible total.

These properties of the sine-generat-­
ed curve are mildly surprising. I would 
have guessed that an arc of a circle—
the most symmetrical curve—would 
have the lowest squared curvature and 
directional variance, but that is not the 
case. (Of course a straight line is supe-­
rior, but that solution is forbidden by 
the length constraint.)

Leopold offers a simple demonstra-­
tion of how the sine-generated curve 
emerges as a natural solution to a prob-­
lem of minimizing work or energy. If 
you hold the ends of a strip of spring 
steel so that it forms a horseshoe-
shaped loop, the metal spontaneously 
adopts the form of a sine-­generated 
curve. I couldn’t resist trying this my-­
self. I found that it works reliably only 
for single loops. If you try to fold the 
spring into multiple meanders, the con-­
figuration is unstable.

The Best of All Possible Meanders
Perhaps the strongest rationale in sup-­
port of Leopold’s theory of meanders 
is simply that meanders look more like 
sine-generated curves than like other 
common objects from the mathemati-­

In no particular hurry to get where it’s going, the Irtysh River meanders across the West Siberian Plain of southern Russia, joined by even 
squigglier tributaries and leaving behind a wake of oxbow lakes. This reach of the Irtysh flows west-northwest. The image, made by the Land-
sat 7 satellite, includes data from an infrared channel that makes fresh vegetation appear pink. The silt-laden water of the active river channel 
shows up as a lighter blue than the still water of the cutoff lakes.
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cal cupboard. But why should we 
expect meanders to have any simple 
mathematical form?

The explanations based on bend-­
ing stress and directional variance rest 
on principles of global optimization. 
The favored path is one that optimizes 
some property measured over the en-­
tire course of the river. By choosing the 
path with the smallest total squared 
curvature, for example, the river mini-­
mizes the energy it invests in turning 
through sharp bends.

The physical sciences are full of 
such optimization laws. Optics, for ex-­
ample, has the principle of least time, 
which explains the geometry of re-­
fraction by saying that light always 
follows the path that can be traversed 
fastest. This manner of reasoning has 
proved very successful, and yet it can 
be tricky to apply. Why does light take 
the path of shortest travel time? And 
how does a photon know what an-­
gle of refraction will get it through a 
windowpane most quickly?

In the case of the meandering river, 
it’s not obvious which variables ought 
to be optimized. Minimizing energy 
cost seems plausible enough, but what 
about directional variance? Leopold 
himself points out that it might make 
more sense to minimize the variance 
in curvature, so that the work of turn-­
ing the river would be spread out as 
uniformly as possible. But that choice 
would favor the circle over the sine-
generated curve.

It’s also hard to know where to stop 
optimizing. The curves under discus-­
sion here are the best possible curves 
only if one accepts a number of con-­
straints or assumptions, some of which 
seem rather arbitrary. For example, 
as the experiment with a steel spring 
reveals, bending stress can be further 
reduced by converting a series of little 
meanders into a single big one. Thus if 
minimal bending stress were the only 
criterion governing the river’s plan 
form, all meanders would be as large 
as possible—but they aren’t. Most 
meanders have a characteristic scale, 
proportional to the width of the river. 
An even more critical assumption is 
the fixed length L. We could make the 
meander problem go away altogether 
just by shortening the river.

Finally, to have much explanatory 
power, a global optimization principle 
needs to be linked to some local mech-­
anism that puts it into effect. We may 
well calculate that a certain shape of 
bend minimizes energy loss, but what 
are the forces at each point along the 
river channel that create and maintain 
that shape? The river can’t think glob-­
ally; it can only act locally.

River of Randomness
The random-walk model of river 
meandering is one example of how a 
local rule—in this case aimless wan-­
dering—might give rise to large-scale 
regularity. The premise is that over de-­
cades or centuries, a river channel can 
drift over its floodplain, twisting and 
shifting at random (although always 
subject to certain constraints, such as 
not flowing uphill). Any configuration 
is possible, but all of the most likely 
ones, according to Leopold, look some-­
thing like a sine-generated curve.

The mention of random walks in 
this context both intrigued and con-­
fused me. Random walks have become 
a common notion in recent years, and 
yet the kind of walk that yields the 
sine-generated curve was not one I 

A thin strip of spring steel tends to form loops that look much like those of a sine-generated 
curve, or like river meanders. Here the ends of a strip are restrained by nails, and the middle 
has been coaxed into a three-lobed form. But the configuration is unstable: Moments after this 
photograph was made, the middle lobe snapped upward, creating one big loop.

The sine-generated curve was proposed by Luna Leopold and others as a mathematical model 
of river meanders. The panel at the upper left is a graph of the sine function, which is distinct 
from but gives rise to the sine-generated curve at the upper right. The amplitude of the sine 
wave is interpreted as an angle, which in this case reaches a maximum of w =110 degrees; the 
angle at each point then defines the direction of the corresponding sine-generated curve. The 
lower panel shows sine-generated curves with three other values of the parameter w .
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had encountered before. From Leo-­
pold’s description I was not able to 
grasp all the details. He referred to ear-­
lier work by Hermann von Schelling, 
but the crucial document was a 1964 
technical report from the General Elec-­
tric Company, which I had a hard time 
tracking down. Eventually I found a 
copy at the Smith College library.

The process studied by von Schelling 
is one in which a walker takes a step of 
unit length, turns through a randomly 
selected angle, takes another step in 
the new direction, and so on. Not just 
any such walk qualifies, however. To 
be admitted, a walk must begin by 
leaving point a at a specified angle; 
it must end by reaching point b; and 
in between it must cover a specified 
distance L. Among random paths that 
satisfy these constraints, von Schelling 
asked what the most frequent or likely 
paths might look like. If the walker 
chooses each step’s direction from a 
uniform probability distribution (so 
that any angle is equally likely), von 
Schelling got no nontrivial answer. But 
he did find a solution for a walk where 
the turning angle at each step is drawn 
at random from a normal, or Gaussian, 
distribution with a mean of zero.

Von Schelling’s mathematical solu-­
tion takes the form of an integral that 
he found difficult to evaluate. The sine-
generated curve is an approximation 
to the value of this integral—inexact, 
but quite close within the range of pa-­
rameter values of interest for river me-­
anders. Strictly speaking, the proper-­
ties of minimal squared curvature and 
minimal directional variance have been 
proved only for the exact curve defined 
by the integral, not for the approxima-­
tion. At the level of detail needed for 
describing river channels, however, the 
discrepancy is of no consequence.

From a computational point of view, 
the trouble with these most-frequent 
random walks is that they’re not nearly 
frequent enough. The naive algorithm 
for generating examples of such paths 
calls for launching many walkers from 
point a, all in the appropriate initial di-­
rection, and then discarding all walks 
except those that happen to reach point 
b after exactly L unit-length steps. There 
are infinitely many walks that satisfy 
these criteria, and yet the probability of 
ever seeing one is zero. Life is too short 
to wait for such events.

In order to get some rough idea of 
what individual von Schelling walks 
might look like, I have tried a sloppier 

algorithm. Instead of insisting that a 
walk end precisely at point b, I accept 
any walk that takes the requisite num-­
ber of steps and lands within one fur-­
ther step of b. Even with this relaxed 
criterion, the algorithm is practical 
only for fairly short walks.

Superimposing a few hundred of 
these walks produces quite a frizzy 
hairball, but taking the average of all the 
paths yields a smooth arc that resembles 
a sine-generated curve. One peculiarity 
of the average walk is its asymmetry: 
It leans one way or the other, depend-­
ing on the departure angle at point a. 
The reason is that we have specified the 
direction of the initial segment but put 
no constraint on the final step at b. This 
may have been an oversight in the way 
the problem was formulated by von 
Schelling. (On the other hand, for what 
it’s worth, many river meanders exhibit 
systematic asymmetry, typically cross-­
ing the valley at a sharper angle on the 
upstream leg.)

A deeper perplexity awaits when we 
go in search of von Schelling’s “most 

likely” or “most frequent” random walk. 
Should we look for it among the indi-­
vidual walk trajectories, or in the aver-­
age of all such walks? Which of these is 
the right model for a river meander? Of-­
ten, the terms “typical” and “average” 
are nearly synonymous, and Leopold 
clearly thought that the average would 
be representative of the population; “the 
most probable path is the average path 
of a random walk,” he wrote. In other 
words, if you choose a random walk at 
random, it will probably be much like 
the average of all random walks. Von 
Schelling offered an analogy with ther-­
modynamics, where uncommon events 
(such as perfume returning to its bottle) 
are so utterly improbable that we in-­
vent laws of physics to forbid them. It’s 
a fundamental assumption, he wrote, 
“that in our environment random walks 
are approaching most frequent paths 
in an overwhelming majority of cases.” 
But then he added: “This is far from be-­
ing self-evident.”

It’s certainly not evident in the little 
sample of walks I generated. Not one 

Trajectories of random walks meandering across a plane may hold clues to the nature of river 
meanders. A walker departs from point a at an initial bearing of 110 degrees (counterclockwise 
from the positive x axis) and takes steps of unit length; at each step the walker’s direction 
rotates by an angle selected at random from a normal distribution with a mean of zero and a 
standard deviation of about 17 degrees. After exactly 40 steps, if the walker is within one unit of 
point b, it moves directly to b; all other walks are discarded. A million trials yielded 259 success-
ful walks. The average trajectory (yellow) is calculated by averaging the x and y coordinates of 
the accepted walks at each step; it traces the movement of the center of mass of the population 
of walkers. The average path resembles a sine-generated curve, but the individual paths are 
highly variable; some even intersect themselves, as shown by the example highlighted in red.
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of the individual walks looks anything 
like the average of all the walks. If we 
imagine a river channel wandering over 
a floodplain according to this algorithm, 
wouldn’t a snapshot made at some ar-­
bitrary moment be likely to resemble a 
single random walk, rather than the av-­
erage? But it’s the average of the walks 
that corresponds more closely to the 
sine-generated curve and to the shapes 
seen in real landscapes.

Admittedly, the algorithm that gen-­
erated these specimens is inexact, at 
best. Von Schelling’s calculations call 
for taking a limit as the step size goes 
to zero, and my simulations are no-­
where near that limit. Also, it should 
be noted that individual walks can be 
made more like the average walk by 
reducing the standard deviation of 
the angular distribution—by squeez-­
ing the randomness out of the random 
walk. Still, as von Schelling noted, it’s 
far from self-evident that the typical 
path will ever come to resemble the 
average path.

Shifting Sands
Let me return to the question with 
which I began this column: Why 
doesn’t a river just take the shortest 
path to the sea? From the point of view 
of a drop of water moving with the 
current, there is no paradox in the ex-­
istence of meanders. The water follows 
the local gravitational gradient, which 
always points downriver. But how 

does that gradient get twisted into 
such tortuous shapes? The issue is not 
how the channel guides the river but 
how the river carves the channel.

Simple curves, random walks and 
optimization principles may not be 
enough to answer such questions. We 
may need to get into the nitty-gritty of 
erosion, deposition and sediment trans-­
port. Leopold dealt with these matters 
in his accounts of meanders, as others 
had before him, going back a century 
or more. The basic idea is that once a 
bend has formed, differential erosion 
and deposition tend to exaggerate it. 
Water flows more rapidly near the out-­
er bank, which therefore tends to wash 
away. Meanwhile the slower current 
near the inner bank drops its load of 
sediment, forming a “point bar.” The 
net effect is to shift the channel in a 
way that widens the bend.

Computer simulations of this pro-­
cess have produced some very realis-­
tic-looking meanders. The models are 
detailed and elaborate, incorporating 
dozens of subtle effects—cross-channel 
currents, graded sediment, variations 
in bank erodibility. The output repro-­
duces not only the static form of natu-­
ral meanders but also their evolution.

Is that the answer, then: What we 
need to understand meandering is not 
abstract mathematics but a bucket of 
sand and silt? I would be willing to 
leave it at that but for one extraordi-­
nary fact: Rivers meander even when 

they carry no sediment, and even when 
they have no banks! Meltwater streams 
atop glaciers, with no sand to deposit 
in point bars, meander much like other 
rivers. And the Gulf Stream, flowing 
unconfined in the open ocean, also 
meanders in a way remarkably like 
that of a river carving its way through 
continental alluvium. It appears there 
may be some principle at work that 
transcends the particular dynamics of 
the erosion-deposition cycle.

Reviewing the state of meander 
studies in 1998, David Knighton of 
the University of Sheffield concluded, 
“There is no general agreement as to 
how or why streams meander.” That’s 
a bit of a step backward from where 
I began—with admiration for Luna 
Leopold’s simple and elegant theory. 
But I haven’t lost my admiration, or 
given up on simple and elegant ex-­
planations. Although meanders have 
so far wriggled out of my grasp, I still 
think the universe will turn out to be a 
comprehensible place.
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During his 20-year tenure with the U.S. Geological Survey, Luna Leopold made a personal 
project of monitoring Watts Branch, a meandering stream near Rockville, Maryland. With 
guidance from Andrew J. Miller of the University of Maryland, Baltimore County, I was able to 
find the reach of the stream that Leopold began studying in the early 1950s. It flowed through a 
cow pasture then; now it is surrounded by suburban housing. Note the point bar on the convex 
bank; the stone revetment on the concave bank is meant to halt migration of the meanders.


