
A reprint from

American Scientist
the magazine of Sigma Xi, The Scientific Research Society

This reprint is provided for personal and noncommercial use. For any other use, please send a request to Brian Hayes by
electronic mail to bhayes@amsci.org.

2006 July–August 299www.americanscientist.org

Computing Science

© 2006 Brian Hayes. Reproduction with permission only.
 Contact bhayes@amsci.org.

The Semicolon Wars

Brian Hayes

If you want to be a thorough-
going world traveler, you need to

learn 6,912 ways to say “Where is the
toilet, please?” That’s the number of
languages known to be spoken by the
peoples of planet Earth, according to
Ethnologue.com.

If you want to be the complete poly-
glot programmer, you also have quite
a challenge ahead of you, learning all
the ways to say:

printf("hello, world\n");

(This one is in C.) A catalog maintained
by Bill Kinnersley of the University of
Kansas lists about 2,500 programming
languages. Another survey, compiled
by Diarmuid Piggott, puts the total
even higher, at more than 8,500. And
keep in mind that whereas human lan-
guages have had millennia to evolve
and diversify, all the computer languag-
es have sprung up in just 50 years. Even
by the more-conservative standards of
the Kinnersley count, that means we’ve
been inventing one language a week,
on average, ever since Fortran.

For ethnologists, linguistic diversity
is a cultural resource to be nurtured
and preserved, much like biodiversity.
All human languages are valuable; the
more the better. That attitude of de-
tached reverence is harder to sustain
when it comes to computer languages,
which are products of design or en-
gineering rather than evolution. The
creators of a new programming lan-
guage are not just adding variety for
its own sake; they are trying to make
something demonstrably better. But
the very fact that the proliferation of
languages goes on and on argues that
we still haven’t gotten it right. We still
don’t know the best notation—or even

a good-enough notation—for express-
ing an algorithm or defining a data
structure.

There are programmers of my ac-
quaintance who will dispute that last
statement. I expect to hear from them.
They will argue—zealously, ardently,
vehemently—that we have indeed
found the right programming lan-
guage, and for me to claim otherwise
is willful ignorance. The one true lan-
guage may not yet be perfect, they’ll
concede, but it’s built on a sound foun-
dation and solves the main problems,
and now we should all work together
to refine and improve it. The catch, of
course, is that each of these friends will
favor a different language. It’s Lisp,
says one. No, it’s Python. It’s Ruby. It’s
Java, C#, Lua, Haskell, Prolog, Curl.

Sadly, linguistic diversity has a dark
side. Communities separated by dif-
ferences of language don’t always get
along peaceably; the term “Balkaniza-
tion” comes to mind. And, like weary,
war-torn countries, the computing pro-
fessions have had their share of sectar-
ian strife and schism. As far as I know,
the conflicts have never come to actual
bloodshed, but harsh words have been
exchanged (in many languages).

The Endian Wars
In 1726 Jonathan Swift told of a dis-
pute between the Little-Endians of Lil-
liput and the Big-Endians of Blefuscu;
41,000 perished in a war fought to de-

cide which end of a boiled egg to crack.
This famous tempest in an egg cup was
replayed 250 years later by designers of
computer hardware and communica-
tions protocols. When a block of data is
stored or transmitted, either the least-
significant bit or the most-significant
bit can go first. Which way is better?
It hardly matters, although life would
be easier if everyone made the same
choice. But that’s not what has hap-
pened, and so quite a lot of hardware
and software is needed just to swap
ends at boundaries between systems.

This modern echo of Swift’s Endian
wars was first pointed out by Danny
Cohen of the University of Southern
California in a brilliant 1980 memo,
“On holy wars and a plea for peace.”
The memo, subsequently published
in Computer, was widely read and ad-
mired; the plea for peace was ignored.

Another feud—largely forgotten,
I think, but never settled by truce or
treaty—focused on the semicolon. In
Algol and Pascal, program statements
have to be separated by semicolons. For
example, in x:=0; y:=x+1; z:=2 the
semicolons tell the compiler where one
statement ends and the next begins. C
programs are also peppered with semi-
colons, but in C they are statement ter-
minators, not separators. What’s the dif-
ference? C needs a semicolon after the
last statement, but Pascal doesn’t. This
discrepancy was one of the gripes cited
by Brian W. Kernighan of AT&T Bell
Labs in a 1981 diatribe, “Why Pascal
is not my favorite programming lan-
guage.” Although Kernighan’s paper
was never published, it circulated wide-
ly in samizdat, and in retrospect it can be
seen as the beginning of the end of Pas-
cal as a serious programming tool.

Still another perennially conten-
tious issue is how to count. This one
brings out the snarling dogmatism in
the meekest programmer. Suppose we
have a list of three items. Do we num-
ber them 1, 2, 3, or should it be 0, 1, 2?

Brian Hayes is Senior Writer for American Sci-
entist. Additional material related to the “Comput-
ing Science” column appears in Hayes’s weblog at
http://bit-player.org. Address: 211 Dacian Avenue,
Durham, NC 27701. Internet: bhayes@amsci.org

Every programmer
knows there is one
true programming

language. A new one
every week

300 American Scientist, Volume 94 © 2006 Brian Hayes. Reproduction with permission only.
 Contact bhayes@amsci.org.

Everyone in computerdom knows the
answer to that question, and knows
it as an eternal truth held with the
deepest, visceral conviction. Only one
of the alternatives is logically tenable.
But which is it? Consider the Java
expression Date(2006,1,1); what
calendar date do you suppose that
specifies? The answer is February 1,
3906. In Java we count months start-
ing with 0, days starting with 1, and
years starting with 1,900.

Even the parts of a program that
aren’t really part of the program can
provoke discord. “Comments” are
meant for the human reader and have
to be marked in some way so that the
computer will ignore them. You might
think it would be easy to choose some
marker that could be reserved for this
purpose in all languages. But a com-
pendium of programming-language
syntax compiled by Pascal Rigaux—a
marvelous resource, by the way—lists

some 39 incompatible ways to desig-
nate comments: # in awk, \ in Forth,
(*...*) in Pascal, /*...*/ in C, and
so on. There’s also a running debate
over whether comments should be
“nestable”—whether it’s permissible
to have comments inside comments.

Then there’s the CamelCase contro-
versy. Most programming languages
insist that names of things—vari-
ables, procedures, etc.—be single
words, without spaces inside them;

A chronology of selected programming languages shows a few of the links between them. The diagram is not a genealogy but merely indicates
major patterns of influence. The classification of languages as imperative, functional, object-oriented or declarative is also approximate; only a few
“pure” languages belong exclusively to one of these categories. The chronology is based in part on time lines constructed by Éric Lévénez and by
Pascal Rigaux and on information from the Association for Computing Machinery History of Programming Languages conferences.

�������

��������
�����

����

�����������

������

�����

����
���������

���������

��

�������

�������

����

������

���������

�����

������

����

����

�����

����������

������

���

���� ���

�

���

�

����

����

���

��

������

���

�

������������

����

����

����

����

����

����

����

����

����

����

������

����������

����������

���������������

�����������

���

2006 July–August 301www.americanscientist.org © 2006 Brian Hayes. Reproduction with permission only.
 Contact bhayes@amsci.org.

but runningthewordstogether makes
them unreadable. Hence CamelCase,
with humps in the middle (also known
as BumpyCaps and NerdCaps; but
sTuDLy CaPs are something else).
To tell the truth, I don’t think there’s
much actual controversy about the use
of CamelCase, but the name has occa-
sioned lively and erudite discussions,
revisiting old questions about Camelus
dromedarius and C. bactrius, and offer-
ing glimpses of such further refine-
ments as sulkingCamelCase (with a
droopy head).

Organizing Babel
I mock the pettiness of these squabbles—
and I believe some of them deserve
mocking—and yet I don’t want to give
the impression that only cosmetic issues
are in dispute, or that programming lan-
guages are really all alike under the skin.
On the contrary, what’s most fascinating
about programming languages is how
dramatically they differ. I would argue
that the distance between C and Lisp,
for example, is greater than that between
any pair of human languages.

Noam Chomsky asserts that all hu-
man languages have the same “deep
structure,” which may even be hard-
wired into the brain. In computer lan-
guages, too, certain features seem to
be universal. Almost all programming
languages are built on the same kind
of grammatical scaffold, called a con-
text-free grammar. At the semantic lev-
el, almost all programming languages
have the same computational power:
If you can compute something in one
language, you can get the same answer
in any other, given enough effort. But
this formal equivalence is misleading.
Raw computational power is not what
people care about in a programming
language; the real criterion is how
readily you can express your ideas.

In the 1930s the linguists Edward
Sapir and Benjamin Lee Whorf argued
that what you can think is conditioned
by what language you think in. For
natural languages, the Sapir-Whorf
hypothesis has met with much skepti-
cism, but for computer languages the
idea seems more plausible. Different
categories of programming languages
elicit quite different modes of thinking
and problem solving.

Programming languages are usually
classified in four families. Imperative
languages are built on commands: do
this, do that, do the next thing. The com-
mands act on stored data, modifying

the overall state of the system. The im-
perative approach was the default in
most early programming languages,
including Fortran, cobol and Algol.

A functional language is modeled
on the idea of a mathematical func-
tion, such as f(x) = x2. The function is
a black box that accepts arguments
as input and returns values as out-
put. A key point is that the calcula-
tion depends only on the arguments
and affects only the value; there are
no extraneous side effects. This prop-
erty makes it easier to reason about
functional programs, since there’s no
need to keep track of the state of the
entire machine. Functional program-
ming began with Lisp, although most
versions of Lisp allow other styles of
programming as well. John Backus,
the lead developer of Fortran and a
contributor to Algol, later became
an advocate of functional languages.
Several “pure” functional languages
have emerged since then, including
ML, Miranda and Haskell.

In object-oriented programming
languages the root idea is to bind to-
gether imperative commands and the
data they act on, forming encapsulated
objects. Instead of defining a proce-
dure to manipulate a data structure,
one “teaches” the data structure how
to carry out operations on itself. Most
object-oriented languages also have
some notion of inheritance, whereby
an object is born already knowing de-
fault behaviors. The object-oriented
languages trace their heritage back to
simula 67, but they began to attract
attention only in the 1980s with Small-
talk. In a curious turn of events, ob-
ject-oriented principles became wildly
popular, but the result was not the
widespread adoption of Smalltalk;
instead, object-oriented features were
bolted onto other languages. From C,
for example, came C++ and Objective
C and eventually C#; Java is also in
this family. Object-oriented notions are
now so deeply ingrained that they in-
fluence almost every new language.

The languages of the fourth catego-
ry are variously known as logic, rela-
tional or declarative languages. What
they have in common is the idea of
programming not by spelling out step-
by-step algorithms but by stating facts
or relations. The best-known exemplar
of this technique is Prolog, which re-
lies on an method called unification
to make deductions from stated facts.
Related concepts also turn up in less-

exotic areas such as database-query
languages and spreadsheets.

These four categories suggest the
breadth of the programming-language
spectrum, but there are further varia-
tions across many other dimensions.
At the most superficial level, the vari-
ous languages simply look different. C
is terse, cobol quite verbose. Lisp is full
of parentheses. Perl, said some wag,
looks like Snoopy swearing: @&$^^#@!.

Languages can also be distinguished
as “low-level” or “high-level.” The
low-level ones allow more-direct ac-
cess to aspects of the underlying hard-
ware, such as addresses in memory or
input and output devices. High-level
languages provide an insulating layer
of abstraction.

A generation of languages created
in the 1970s emphasized “structured
programming”—otherwise known as
bondage and discipline. Pascal is in this
group: It enforces strict rules about types
of data and the flow of control through
a program. The reaction against such
constraints produced “hacker-friendly”
languages, including C.

Languages also differ in their in-
tended audience or area of application.
Fortran began as a language for scien-
tific computing, cobol for business.
Quite a few interesting languages were
designed for teaching or for children.
basic, Pascal and Smalltalk are all in
this class, and so is Logo. (All of them
have had to struggle to be taken seri-
ously as languages for grownups.)

Zealotry
The remarkably wide range of pro-
gramming languages would seem
to offer something for everyone. We
could celebrate diversity. We could let
a thousand flowers bloom. What actu-
ally happens, more often, is that we
launch a crusade to convert the infi-
dels—or else exterminate them.

In 1975 Edsger W. Dijkstra, a major
figure in the structured-programming
movement, wrote a memo titled “How
Do We Tell Truths that Might Hurt?”
The “truths” were mostly Dijkstra’s
opinions of programming languages;
how he told them was very bluntly.
Fortran is “an infantile disorder,” PL/I
“a fatal disease,” APL “a mistake, car-
ried through to perfection.” Students
exposed to basic “are mentally muti-
lated beyond hope of regeneration,”
he said. “The use of cobol cripples the
mind; its teaching should, therefore, be
regarded as a criminal offense.” When

302 American Scientist, Volume 94 © 2006 Brian Hayes. Reproduction with permission only.
 Contact bhayes@amsci.org.

the memo was published a few years
later, defenders of cobol and basic re-
plied in kind, although none of them
were quite able to match Dijkstra’s acid
rhetoric.

In fairness, I should note that most
disputes over programming languages
are neither as vicious nor as humor-
less as the affair of Dijkstra’s “truths.”
Today’s missionaries take an upbeat
approach, spending more time in pro-
moting their own religion and less in
dissing the other person’s beliefs. The
message is no longer “You’ll burn in
hell if you write C.” It’s “Look what a
paradise Python offers you!” (I think
maybe I liked the old sermons better.)

Much of this proselytizing is done
with the best of intentions. When you
have found a tool that seems artful
and elegant, you want to spread the
good news. This is a generous im-
pulse. But there is also self-interest at
work. For programming language P to

prosper, it must have a community of
users—people who write P programs
and buy books about P, who teach P
to students, who agitate to get P sup-
ported on new platforms, who hire P
programmers. Every convert to P im-
proves P’s chance of survival; if the
convert comes from the rival language
Q, so much the better.

Quarrels over notation are hardly
unique to the world of computing. In
mathematics there was the famous im-
passe between the Leibnizian dx/dt and
the Newtonian x· (known as the war
between deity and dotage). Chemists
wrangle about how to name molecules.
Even chess players have fought over
how to record moves. But the situation
in computer science is of a different or-
der. Calculus never had 2,500 ways to
write a derivative.

Over the years, the cacophony of
programming languages has repeated-
ly been cited as a threat to further prog-

ress in computing. The usual response
has been—what else?—to propose
yet another programming language.
“If we could all just get together and
agree on one last, greatest language....”
In the 1960s this was the ambition of
PL/I, the language that Dijkstra called
a fatal disease. Later, Ada was to re-
unify all of computing—by mandate
of the U.S. Department of Defense. A
decade ago Java was the shining hope,
promoted with the slogan “Write once,
run anywhere.”

A few programming languages—
most notably Fortran and Lisp—seem
to be all but immortal; the rest are like
waves washing ashore and then drain-
ing into the sand. Riding the crest of
the latest wave are the scripting lan-
guages, especially Python and Ruby.
Their origins are humble. The idea of
scripting began with batch-command
languages, used as “glue” to bind to-
gether other programs, and with ex-
tension languages, meant to be em-
bedded inside programs. But scripting
languages have grown up into gen-
eral-purpose programming languages.
They are popular now for writing In-
ternet applications. Python also has a
following in scientific computing.

The Internet has brought anoth-
er encouraging development: a new
multilingualism. Merely managing a
Web site these days requires fluency in
half a dozen programming and data-
formatting languages. There’s HTML
(Hypertext Markup Language) for the
basic structure of the pages and CSS
(Cascading Style Sheets) for details
of presentation, as well as JavaScript
for annoyances such as pop-up win-
dows. On the server side, content is
likely to be encoded in some form of
XML (Extensible Markup Language)
and accessed through a database query
language such SQL. All the pieces are
held together by a scripting language,
which might be PHP, Perl, Python or
Ruby. (Of course this situation cries out
for yet another language to unify or
replace all the others. At least two lan-
guages are already contending for this
role—Curl and Links.)

Lisping in Numbers
My plea for peace in programmerhood
would carry more weight if I could
present myself as an impartial arbiter,
with no stake in the outcome of the
language race. But it’s time to confess.
I too have a favorite programming
language, which I cling to like a child

������������������
�����������������������
����������������
�������������������������
�����
��������������
���

������������������
����������������
������������
������
�����������������������
�����
���

����������

��������������

��������������

��������������

�

�

�

�

�

��

���������

�����������������������

���������������������������

���������������������������

���������������������������

���������������������������

���������

������������������� ������������������

������������������� ������������������

The imperative and the functional styles of programming correspond to different styles of
thought, even when applied to the same problem. The two programs shown here both calculate
the factorial of a number n: the product of all the integers from 1 through n. The imperative (or
iterative) procedure in the upper panel works by repeatedly overwriting the value of a vari-
able named accumulator. A program in the functional style (lower panel) relies instead on the
mechanism called recursion. The factorial of n is defined as n multiplied by the factorial of n–1.
Thus factR(4) is equal to 4 × factR(3), and factR(3) in turn is equal to 3 × factR(2). The sequence
of nested function calls continues until eventually factR(1) returns a simple value of 1, then the
product is calculated “from the inside out.” Although there are languages specialized for either
imperative or functional programming, both of these programs are written in the same language:
Lua, developed in the 1990s at the Pontifical Catholic University of Rio de Janeiro.

2006 July–August 303www.americanscientist.org © 2006 Brian Hayes. Reproduction with permission only.
 Contact bhayes@amsci.org.

with a bedraggled teddy bear. Don’t
you dare try to take away my Lisp!

Without engaging in missionary
zealotry of my own, it’s hard to ex-
plain my fondness for Lisp. I’ll just say
it’s a simple-minded language with
one trick that it does very well. Every
Lisp expression is a list, evaluated by
reading the first element of the list as
the name of a function and the remain-
ing elements as the arguments to the
function. For example, (/ (+ 3 5) 2)
is a program for dividing (+ 3 5) by
2, where (+ 3 5) is a subprogram for
adding 3 and 5. The value of the entire
expression is 4. The syntax is brutally
simple, even primitive, but that’s its
strength. Lisp evangelists always note
that data and programs are represent-
ed in the same way, which makes it
easy to write programs that manipu-
late other programs. That’s true, but
what appeals to me is just the unifor-
mity of the notation. Everything is
done the same way, and so there’s not
much to remember. (One thing I won’t
mention is the profusion of parenthe-
ses (which annoy some people). (What
the world needs (I think) is not (a Lisp
(with fewer parentheses)) but (an Eng-
lish (with more.))))

In the chronology of programming
languages, Lisp comes from the very
dawn of time. It was conceived nearly
50 years ago by John McCarthy, now of
Stanford University. My own acquain-
tance with the language goes back 25
years. To persist in using such an an-
tique idiom seems peculiar and affect-
ed, like speaking in Miltonic verses.
There’s something stubborn and cur-
mudgeonly about it. It looks like a re-
buke to all the effort expended on pro-
gramming-language design since the
1950s. Do I really mean to suggest that
not one of the 2,500 newer languages
has been able to improve on Lisp?

No, I don’t. And of course the Lisp
I speak today is not the language Mc-
Carthy introduced 50 years ago. It has
been augmented, overhauled, updated,
split into multiple dialects, then reas-
sembled in a standard called Common
Lisp. (Still, the parts of the language I
like best were there at the beginning
and have changed little.)

An International Lisp Conference
was held at Stanford a year ago. This
was a gathering of the faithful, and nat-
urally there was talk about how to bring
enlightenment to the rest of the world.
It was also an occasion showing that
even advocates of the same language are

quite capable of arguing among them-
selves deep into the night.

At the end of the final session, John
McCarthy rose to speak. He looked
around at his audience and remarked,
“If someone set off a bomb in this
room, it would wipe out half of the
worldwide Lisp community. That
might not be a bad thing for Lisp, be-
cause it would have to be reinvented.”
His meaning, as I understood it, was
partly that the Common Lisp standard
had stifled innovation. But he went
on to say that if he could go all the
way back to the beginning, there were
things he would do differently. Even
the maker of the language did not see
it as beyond improvement. I found Mc-
Carthy’s candor refreshing, but I also
had the thought: No, no, don’t tamper
with it. I like it just the way it is.

I do believe there are real differences
among programming languages—bet-
ter ones and worse ones—and I rank
Lisp among the better. When you get
to the bottom of it, however, I write
programs in Lisp for the same reason
I write prose in English—not because
it’s the best language, but because it’s
the language I know best.

Bibliography
Association of Lisp Users. International Lisp

Conference, Stanford University, June 19–22,
2005. http://international-lisp-conference.
org/2005/index.html

Bergin, Thomas J., and Richard G. Gibson, Jr.
(editors). 1996. History of Programming Lan-
guages II. New York: ACM Press.

Cohen, Danny. 1980. On holy wars and a plea
for peace. Internet Experiment Note IEN-137.
http://www.ietf.org/rfc/ien/ien137.txt. Re-
printed in Computer 14(10):48–54.

Cooper, Ezra, Sam Lindley, Philip Wadler and
Jeremy Yallop. 2006. Links: Web programming
without tiers. http://groups.inf.ed.ac.uk/
links/papers/links-icfp06/links-icfp06.pdf

Dijkstra, Edsger W. 1975. How do we tell truths
that might hurt? Memo EWD498. http://
www.cs.utexas.edu/~EWD/transcriptions/
EWD04xx/EWD498.html Reprinted in ACM
SIGPLAN Notices 17(5):13–15; also reprinted
in Dijkstra, Edsger W. 1982. Selected Writings
on Computing: A Personal Perspective, pp. 129–
131. New York: Springer-Verlag.

Gordon, Raymond G., Jr. (editor). 2005. Ethno-
logue: Languages of the World. Fifteenth edi-
tion. Dallas, Texas: SIL International. Online
version: http://www.ethnologue.com/

Ierusalimschy, Roberto, Luiz Henrique de
Figueiredo and Waldemar Celes. 2006. The
Evolution of Lua. http://www.tecgraf.
puc-rio.br/~lhf/ftp/doc/hopl.pdf

Kernighan, Brian W. 1981 (unpublished). Why
Pascal is not my favorite programming lan-
guage. Computer Science Technical Report
100, AT&T Bell Labs. http://www.lysator.
liu.se/c/bwk-on-pascal.html

Kinnersley, Bill. The language list. http://
people.ku.edu/~nkinners/LangList/Extras/
langlist.htm

Knuth, Donald E. 2003. Selected Papers on Com-
puter Languages. Stanford, Calif.: CSLI Pub-
lications.

Lévénez, Éric. 2006. Computer languages his-
tory. http://www.levenez.com/lang/

Patterson, Meredith L.. Weblog. Programming
languages and their relationship styles. http://
maradydd.livejournal.com/293666.html

Piggott, Diarmuid. 1995–2006. HOPL: An in-
teractive roster of programming languages.
http://hopl.murdoch.edu.au/

Rigaux, Pascal. Undated. Syntax across lan-
guages. http://merd.sourceforge.net/pixel/
language-study/syntax-across-languages/

Wexelblat, Richard L. (editor). 1978. History
of Programming Languages. New York: Aca-
demic Press.

Wiki. Camel Case. http://c2.com/cgi/
wiki?CamelCase

Wikipedia. CamelCase. http://en.wikipedia.
org/wiki/CamelCase

Carnage at the breakfast table is the outcome of the war between the Little-Endians and the Big-
Endians. (The engraving, from the 1838 edition of Gulliver’s Travels, is by J. J. Grandville.)

304 American Scientist, Volume 94 © 2006 Brian Hayes. Reproduction with permission only.
 Contact bhayes@amsci.org.

