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Reverse Engineering

Brian Hayes

Most of the machines we 
encounter in everyday life 

are one-way devices. Kitchen applianc-
es turn bread into toast and cabbage 
into cole slaw, but they cannot perform 
the opposite transformations. Even 
machines that claim to be reversible 
adopt a very shallow notion of what 
it means to go backwards. The drill 
in my tool box has settings marked 
“forward” and “reverse,” but no mat-
ter which I choose, I cannot undrill a 
hole. The gearshift in my car also has 
a position labeled R, but when I back 
up, the engine keeps turning in the 
same direction; if the car were truly 
reversed, it would suck in pollution 
through the tailpipe, converting it into 
gasoline and air.

Computers, too, are mostly irrevers-
ible machines. When a program is run-
ning, there’s no way to turn it around 
and have it step through the same in-
structions in the opposite order. Even 
if that were feasible, the backward-
running program would not uncom-
pute an answer. Some of the individ-
ual instructions would also have to 
be reversed, or inverted; for example, 
undoing addition requires subtraction. 
For computers of the current genera-
tion, such reversals of logic and arith-
metic are simply not possible.

In the case of toasters and gasoline 
engines, full reversibility is too much 
to ask, but no fundamental law forbids 
reversible computing. The theoretical 
possibility of a digital computer that can 
run forward and backward with equal 
ease has been recognized for more than 
30 years. A few silicon prototypes have 
been built and shown to work. Still, 
up to now, reversible computing has 

been a toy technology, more of interest 
to theorists than to engineers. Only a 
small community of devotees believed 
it would ever be anything more.

That attitude is changing now. The 
reason is that reversible computing 
holds out the promise of dramatically 
lower power consumption, which is 
becoming an urgent need. Also, any 
computer based on quantum technol-
ogy will necessarily be a reversible 
machine. As a result, forward-thinking 
chip designers are thinking backwards 
too. It’s not too soon to ask what it 
might be like to have a reversible com-
puter on your desk, or to write pro-
grams that can run in either direction.

Computational Fuel Economy
Why is power consumption so impor-
tant, and what does it have to do with 
reversibility? The chain of reasoning 
that links these concepts is a fairly long 
and tangled one, but the individual 
steps are easy enough to follow.

In the past two decades the per-
formance of microprocessors has im-
proved by a factor of 1,000, but the 
trends that have made computers 
more powerful have also made them 
more power-hungry. Some chips dis-
sipate more than 100 watts and re-
quire elaborate fans, heat sinks and 
even liquid cooling. Designers would 
welcome another thousandfold gain 
in performance, but they cannot cope 
with any further increase in power 
density. Single chips that consume 

electricity by the kilowatt are just not 
a practical option.

Where does all the energy go? Much 
power is lost because neither conduc-
tors nor insulators are perfect; electrons 
meet resistance where they ought to 
pass unopposed, and they leak through 
materials where current ought to be 
blocked. Both of these problems will get 
more severe as silicon devices continue 
to shrink. Another energy drain is the 
need to accelerate and decelerate elec-
tric charges as signals move through 
the circuitry; this cost goes up along 
with processor speed. And it always 
takes energy to push electrons “uphill” 
against a voltage gradient.

Some of the strategies for reducing 
the energy demands of a computer 
are much like measures to improve 
the fuel economy of an automobile. To 
get better gas mileage, you make a car 
lighter and aerodynamically sleeker; 
likewise in digital circuits, you can re-
duce inertia by using fewer electrons 
to represent each bit of information, 
and you can cut resistive losses with 
better conductors. In the car, you drive 
slower and more smoothly; in the com-
puter you operate at lower voltage and 
avoid abrupt swings in voltage. For 
even greater savings in an automobile, 
you might try a hybrid design, with a 
battery or a flywheel to recapture en-
ergy invested in acceleration and hill-
climbing; the electronic counterpart 
is an experimental technology called 
charge recovery.

In the world of chipmaking, some 
of these energy-conserving measures 
are already well-established tools, and 
others are likely to be adopted soon. 
For example, copper is replacing alu-
minum in the metal interconnections 
on some chips to improve conductivi-
ty. The voltage levels of on-chip signals 
have fallen from 5 volts to as little as 1 
volt. Further steps of the same general 
kind may well avert a silicon energy 
crisis for another decade or two. But 
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then what? If the number of operations 
per second is to increase by a factor 
of 1,000 without raising power con-
sumption, then the average energy per 
operation must be reduced to a thou-
sandth of its present value. Is that pos-
sible, even in principle? What about a 
millionth?

Zeptojoules
For a long time it was taken for granted 
that storing, manipulating and transmit-
ting information would always neces-
sarily dissipate some nonzero quantity 
of energy. Engineering prowess might 
lower the energy cost somewhat, but 
there was a threshold level, a lower lim-
it we could never cross. A device that 
could compute without loss of energy 
was seen as the information equivalent 
of a perpetual-motion machine.

John von Neumann, in a 1949 lec-
ture, set the minimum price of “an el-
ementary act of information” at kT ln 2. 
In this formula k is Boltzmann’s con-
stant, which is the conversion factor for 
expressing temperature in energy units; 
its numerical value is 1.4 × 10–23 joules 
per kelvin. T is the absolute tempera-
ture, and ln 2 is the natural logarithm of 
2, a number that appears here because 
it corresponds to one bit of informa-
tion—the amount of information need-

ed to distinguish between two equally 
likely alternatives. At room tempera-
ture (300 kelvins), kT ln 2 works out to 
about 3 × 10–21 joule, or 3 zeptojoules. 
This is a minuscule amount of energy; 
Ralph C. Merkle of the Georgia Insti-
tute of Technology estimates that it is 
the average kinetic energy of a single 
air molecule at room temperature.

Von Neumann’s pronouncement was 
based on a thermodynamic argument. 
Consider a computation that answers 
a single yes/no question, where the two 
possible outcomes appear equally like-
ly at the outset. Once the question has 
been settled, we know one bit more 
than we did beforehand, and so the 
computational process reduces the un-
certainty or entropy of the computing 
system by one bit. But the second law 
of thermodynamics says that total en-
tropy can never decrease, and so the 
reduction inside the computer must be 
compensated by an entropy increase 
elsewhere. Specifically, the computer 
must stir up at least one bit’s worth of 
disorder in its surroundings by expel-
ling an amount of heat equal to kT ln 2. 
Von Neumann—along with everyone 
else at the time—assumed that every 
“elementary act of information” has 
the effect of settling at least one yes/no 
question, and thus it seemed that each 

step in the computer’s operation in-
evitably dissipates at least three zepto-
joules of energy.

Von Neumann’s ideas on the ther-
modynamics of computation were 
widely accepted but never formal-
ly proved. In the early 1960s Rolf 
Landauer set out to supply such a 
proof and found that he couldn’t. He 
discovered that only a certain subclass 
of computational events have an un-
avoidable three-zeptojoule cost. Ironi-
cally, these expensive operations are 
not those that produce information but 
rather those that destroy it, such as 
erasing a bit from a memory cell. 

Landauer’s work on the cost of for-
getting was counterintuitive, and ini-
tially it got a frosty reception. Now the 
idea has been thoroughly assimilated, 
and it’s hard to see what the contro-
versy was all about. Erasing a memory 
cell amounts to ignoring its present 
contents—which may in fact be un-
known—and resetting the cell to some 
standardized state (usually 0). Thus 
an indeterminate bit becomes a fully 
specified one, and the entropy of the 
machine is diminished accordingly. For 
this reason the corresponding amount 
of heat energy (kT ln 2) has to be re-
jected into the environment. The con-
sequences are even clearer if you think 
about erasing the entire memory of a 
computer, so that the system goes from 
a random state to a highly ordered one; 
this is a process of refrigeration, and so 
it obviously gives off heat.

An Unturing Machine
Although erasing takes energy, Landau-
er found that not all computer opera-
tions are subject to the three-zeptojoule 
stricture. The simplest counterexample 
is the logical not gate, which inverts 
the state of a single bit, changing 1 to 0 
or 0 to 1. No information is lost in this 
process; the state of the bit is completely 
known both before and after. Thus there 
is no fundamental reason for a not gate 
to be dissipating energy. Present-day 
implementations of the not function 
may very well produce just as much 
heat as erasing a memory cell, but that 
energy loss is not required by the laws 
of thermodynamics.

A notable property of the not func-
tion is its reversibility. When bit A is 
transformed into not A, all that’s need-
ed to undo the action and restore the 
original state is a second application of 
the not function—(not (not A)) = A. 
The erasure of a bit is quite different; it 
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The energy cost of computing—measured in joules per logic operation—must fall steadily if 
computer performance is to continue its exponential growth. The data displayed here were 
gathered and analyzed by Rolf Landauer in 1988; although the trend in more recent years may 
not have followed Landauer’s projection exactly, it seems clear that energy levels will soon be 
approaching important landmarks. One electron-volt is the energy of a single electron at a po-
tential of one volt. A thermodynamic limit at about 3 zeptojoules is expressed by the formula 
kT ln 2; to get below this threshold, computers will have to be operated reversibly.
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can’t be undone because there’s no way 
of knowing whether the previous state 
was a 0 or a 1. 

Functions such as and are also logi-
cally irreversible. A two-input and 
gate produces an output of 1 if and 
only if both inputs are 1; otherwise the 
output is 0. Thus if the output hap-
pens to be 1, we know that both inputs 
were also 1, but when the output is 
0, we can’t distinguish between three 
alternative pairs of inputs (0 and 1, 1 
and 0, 0 and 0). A similar analysis ap-
plies to or. At a higher level, standard 
arithmetic operations such as +, –, × 
and ÷ also throw away information 
and are therefore irreversible. Take the 
equation 5 + 3 = 8; given the left side, 
it’s easy to regenerate the right, but 
you can’t go the other way.

Landauer showed that only the logi-
cally irreversible steps in a computa-
tion carry an unavoidable energy pen-
alty. If we could compute entirely with 
reversible operations, there would be 
no lower limit on energy consumption. 
We could run a supercomputer on a 
watch battery.

The question remained: Is it possible 
to build a fully capable computer out 
of nothing but logically reversible com-
ponents? Initially, Landauer himself 
thought the answer was no. After all, 
most of the familiar building blocks of 
computers, such as and and or gates, 

are irreversible devices. Then in 1973 
Charles H. Bennett, now of IBM Re-
search, came up with a remarkably 
direct demonstration that any compu-
tation by an irreversible computer can 
also be done reversibly.

Bennett presented his idea in terms 
of a Turing machine, the abstract mod-
el of a computer that reads, writes and 
erases symbols on a tape. Erasures 
make the standard Turing machine ir-
reversible, so Bennett added a second 
tape, called the history tape, where the 
machine keeps notes about erased or 
overwritten data. At the end of a com-
putation, the final answer can be cop-
ied onto yet another tape for safekeep-
ing. Then the machine is put in reverse 
gear, and with the help of the history 
tape, all the operations are undone, 
one by one, until the system returns to 
its initial condition. 

The latter half of this operating cycle 
strikes many people as bizarrely coun-
terproductive. How can you save en-
ergy by running the machine for twice 
as long, regardless of whether it’s go-
ing forward or backward? Wouldn’t it 
be better just to throw away the extra 
tape? Experience with ordinary ma-
chines in everyday life does not pre-
pare us to answer these questions. 
When you drive a car 10 miles down 
the road, you can’t recover the fuel 
you burned by backing up over the 

same route. But suppose the car had 
a history tape that kept track of all the 
molecules involved in the combustion 
process; then, in principle, you could 
unburn the gasoline by bringing those 
molecules back together in the right or-
der. This is not a feasible scheme in au-
tomotive engineering, but in the tidier, 
discrete universe of digital computers, 
the history-tape trick does work.

Maybe even the reverse-combustion 
process isn’t quite as outlandish as it 
seems. Bennett, who began his career 
as a chemist, also described a biochemi-
cal model of a reversible computation. 
When the enzyme RNA polymerase 
reads off the sequence of bases in a 
strand of DNA and assembles a cor-
responding molecule of RNA, the RNA 
is conceptually equivalent to the history 
tape in Bennett’s Turing machine. The 
same enzyme can then work in reverse 
to disassemble the RNA, base by base—
but only for RNA that matches the DNA 
template. Bennett points out that this 
orderly reversal of the assembly process 
is energetically more efficient than dis-
posing of the RNA with enzymes that 
degrade any such molecule.

Reversible Logic
A Turing machine is fine for reasoning 
about computers, but it’s not an ideal 
model for building them. Some more-
practical components of reversible 
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Logic gates are the conceptual building blocks of both irreversible and reversible computers. The action of each gate is defined by a truth table, 
which lists the gate’s output for every possible combination of inputs. The most familiar gates, at left, are basic elements of Boolean logic: 
NOT, AND, OR and XOR. In this group, only NOT is reversible. At right, the Toffoli gate (also known as the controlled-controlled NOT gate) and the 
Fredkin gate (or controlled swap gate) are elements of a reversible logic. In these gates, every set of inputs corresponds to a unique output; by 
examining the outputs, you can tell what the input must have been, and thereby reverse the operation of the gate.
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logic were introduced in the 1980s by 
Edward F. Fredkin and Tommaso Tof-
foli, who were then working together 
at MIT. (Fredkin is now at Carnegie 
Mellon University, Toffoli at Boston 
University.) The components are logic 
gates, somewhat like and and or gates 
but designed for reversibility. 

In any reversible gate the number 
of inputs must equal the number of 
outputs. Moreover, each possible set of 
inputs must yield a distinct set of out-
puts. If this were not the case—that is, 
if two or more input patterns had the 
same output—then the reverse action 
of the gate would be ambiguous.

The devices now known as the 
Fredkin gate and the Toffoli gate (see 
illustration on page 109) both have 
three inputs and three outputs; and, 
as required for reversibility, each input 
pattern maps to a unique output. In 
the Fredkin gate, one signal controls 
whether the other two data lines pass 
straight through the gate or else have 

their positions swapped. In the Tof-
foli gate, two of the signals control the 
third; if the first two bits are both 1, 
then the third bit is inverted.

Like the not gate, both the Fredkin 
and the Toffoli gates are their own in-
verses: No matter what the values of 
the three input signals, running them 
through two successive copies of the 
same gate will return the signals to 
their original values. Both gates are 
also computationally universal, mean-
ing that a computer assembled from 
multiple Fredkin or Toffoli gates (and 
no other components) could simulate a 
Turing machine or any other device of 
equivalent computational power. Thus 
the gates might be considered candi-
dates for a real reversible computer.

Of course logic gates are still just ab-
stract devices; they have to be given 
some physical implementation with 
transistors or other kinds of hardware. 
Starting in the early 1990s, several 
groups have been designing and build-
ing prototypes of reversible (or nearly 
reversible) digital circuits. For example, 
at MIT a group including Michael Frank 
and Thomas F. Knight, Jr., fabricated a 
series of small but complete processor 
chips based on a reversible technology; 
Frank continues this work at Florida 
State University. At the University of 
Gent in Belgium, Alexis De Vos and his 
colleagues have built several reversible 
adders and other circuits.

It’s important to note that building 
a computer according to a reversible 
logic diagram does not guarantee low-
power operation. Reversibility removes 

the thermodynamic floor at kT ln 2, but 
the circuit must still be designed to at-
tain that level of energy savings. The 
current state of the art is far above the 
theoretical floor; even the most efficient 
chips, reversible or not, dissipate some-
where between 10,000 and 10 million 
times kT ln 2 for each logical operation. 
Thus it will be some years before re-
versible technology can be put to the 
ultimate test of challenging the three-
zeptojoule barrier. In the meantime, 
however, it turns out that some con-
cepts derived from reversible logic are 
already useful in low-power circuits. 
One of these is charge recovery, which 
attempts to recycle packets of electric 
charge rather than let them drain to 
ground. Another is adiabatic switching, 
which avoids wasteful current surges 
by closing switches only after voltages 
have had a chance to equalize.

Back to the Future
Making a computer run backwards is 
not just a problem for hardware hack-
ers and logic designers. There are also 
issues at higher levels of abstraction. 
What will it be like to write and run a 
program on a machine that can bounce 
back and forth in time?

Most of us already have some ex-
perience with a rudimentary form of 
reversibility—namely the undo com-
mand. Even this simple facility for un-
winding a computation has its seman-
tic hazards. (Should “undo undo” leave 
you two steps back, or none?) In many 
programs, undo is a bit of a sham; it 
doesn’t turn the program around but 
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The evolution of a computational process can be represented as a path in an abstract space. Every point in the space corresponds to some possible 
state of the machine, and the coordinates of the point encode everything that can be known about the state. As the computer goes from one state 
to the next, it traces out a trajectory. The path of a nondeterministic computer can have both merge points (where a state has two or more prede-
cessors) and branch points (where a state has multiple successors). It is the branch points that make this process nondeterministic; a computer 
that behaves in this unpredictable and inconsistent way is usually considered broken. An irreversible trajectory can have merge points but not 
branch points. (If the computation were reversed, the merge points would become branch points, and determinism would be lost.) A reversible 
computer must evolve along a simple path with neither merge points nor branch points. In a finite space, the path must be closed.

This prototype reversible circuit was designed 
and fabricated by Alexis De Vos and his col-
leagues at the University of Gent. The circuit 
is a four-bit adder, implemented with Toffoli 
gates and related devices. The area shown is a 
little more than half a millimeter wide. (Pho-
tograph courtesy of Alexis De Vos.)
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just revisits saved snapshots. Software 
that really runs in reverse has some 
harder problems to solve.

Consider the matter of rounding. 
Most numerical calculations are done 
with limited precision; all numbers 
have to fit into 32 bits, say. When that’s 
not enough room, the least-significant 
digits are discarded. But dropping dig-
its is a no-no in the world of reversible 
computing. If 1/3 gets converted into 
0.33333, then reversing the process must 
somehow yield exactly 1/3 again.

Even arithmetic with exact numbers 
can get us into trouble, if one of those 
numbers happens to be zero. Division 
by zero is forbidden everywhere in 
civil society; in a reversible machine, 
we might also have to outlaw multi-
plication by zero, because it amounts 
to erasure, yielding a result of zero no 
matter what the value of the multipli-
cand. Personally, I rather like this idea 
of treating division and multiplication 
symmetrically, but it runs counter to 
hundreds of years of habit.

Henry G. Baker, in a thoughtful es-
say that touches on several issues of 
reversibility, cites another example: 
Newton’s method for approximating 
square roots. In Newton’s algorithm, 
you approach the square root of N by 
starting with an arbitrary guess, x, and 
then calculating (x + N/x)/2. The re-
sult of this expression becomes a new 
guess, and you repeat the procedure 
until you reach the desired accuracy. 
Almost any guess will converge on the 
true root; in other words, the algorithm 
“exemplifies a large class of computa-
tions in which the output appears to be 
independent of the input.” The method 
also appears to be highly irreversible, 
since all those different inputs lead to 
the same output. If the computation 
were reversed, how could the algo-
rithm find its way back from the one 
output to each of the many possible 
inputs? But in fact it can (at least if the 
initial x is greater than the square root 
of N). If the computation is done with-
out rounding or truncating intermedi-
ate results, all of the information need-
ed to reverse the process is preserved 
in the “insignificant” decimal places of 
the answers. Each initial guess can be 
reconstructed exactly.

Baker and others also point out that 
a reversible computer would be a won-
derful device for debugging programs. 
With conventional hardware, you can 
set a breakpoint to stop a program 
when it goes off the rails, but then 

it’s a struggle to figure out what path 
brought it to the trouble spot. With a 
reversible device, you can just back 
it up. Running a compiler in reverse 
might also be fun. Generating source 
code from an executable program is 
a handy trick (which the vendors of 
commercial software would no doubt 
want to disable).

Let’s Get Physical
Landauer, who died in 1999, cham-
pioned the slogan “Information is 
physical.” He meant, first of all, that 
information cannot exist in the abstract 
but has to be embodied somehow—in 
electrons, photons, chalk marks, neural 
excitations. But the slogan can also be 
taken as a call to heed the laws of phys-
ics when dealing with information, just 
as one must with matter and energy. In 
this respect irreversible computers are 
notorious scofflaws. They make bits 
appear out of nothing and then disap-
pear into the void again when they’re 
no longer needed. They obey no con-
servation laws.

A reversible computer is a better-
behaved device, more at home in the 
universe we live in. As Toffoli wrote in 
1982: “Computation—whether by man 
or by machine—is a physical activity. 
If we want to compute more, faster, 
better, more efficiently, and more intel-
ligently, we will have to learn more 
about nature. In a sense, nature has 
been continually computing the ‘next 
state’ of the universe for billions of 
years; all we have to do—and, actually, 
all we can do—is ‘hitch a ride’ on this 
huge ongoing computation, and try to 
discover which parts of it happen to go 
near to where we want.”
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