
A reprint from

American Scientist
the magazine of Sigma Xi, The Scientific Research Society

This reprint is provided for personal and noncommercial use. For any other use, please send a request to Permissions, American
Scientist, P.O. Box 13975, Research Triangle Park, NC, 27709, U.S.A., or by electronic mail to perms@amsci.org. ©Sigma Xi, The
Scientific Research Society and other rightsholders

2006 March–April 107www.americanscientist.org

Computing Science

© 2006 Sigma Xi, The Scientific Research Society. Reproduction
with permission only. Contact perms@amsci.org.

Reverse Engineering

Brian Hayes

Most of the machines we
encounter in everyday life

are one-way devices. Kitchen applianc-
es turn bread into toast and cabbage
into cole slaw, but they cannot perform
the opposite transformations. Even
machines that claim to be reversible
adopt a very shallow notion of what
it means to go backwards. The drill
in my tool box has settings marked
“forward” and “reverse,” but no mat-
ter which I choose, I cannot undrill a
hole. The gearshift in my car also has
a position labeled R, but when I back
up, the engine keeps turning in the
same direction; if the car were truly
reversed, it would suck in pollution
through the tailpipe, converting it into
gasoline and air.

Computers, too, are mostly irrevers-
ible machines. When a program is run-
ning, there’s no way to turn it around
and have it step through the same in-
structions in the opposite order. Even
if that were feasible, the backward-
running program would not uncom-
pute an answer. Some of the individ-
ual instructions would also have to
be reversed, or inverted; for example,
undoing addition requires subtraction.
For computers of the current genera-
tion, such reversals of logic and arith-
metic are simply not possible.

In the case of toasters and gasoline
engines, full reversibility is too much
to ask, but no fundamental law forbids
reversible computing. The theoretical
possibility of a digital computer that can
run forward and backward with equal
ease has been recognized for more than
30 years. A few silicon prototypes have
been built and shown to work. Still,
up to now, reversible computing has

been a toy technology, more of interest
to theorists than to engineers. Only a
small community of devotees believed
it would ever be anything more.

That attitude is changing now. The
reason is that reversible computing
holds out the promise of dramatically
lower power consumption, which is
becoming an urgent need. Also, any
computer based on quantum technol-
ogy will necessarily be a reversible
machine. As a result, forward-thinking
chip designers are thinking backwards
too. It’s not too soon to ask what it
might be like to have a reversible com-
puter on your desk, or to write pro-
grams that can run in either direction.

Computational Fuel Economy
Why is power consumption so impor-
tant, and what does it have to do with
reversibility? The chain of reasoning
that links these concepts is a fairly long
and tangled one, but the individual
steps are easy enough to follow.

In the past two decades the per-
formance of microprocessors has im-
proved by a factor of 1,000, but the
trends that have made computers
more powerful have also made them
more power-hungry. Some chips dis-
sipate more than 100 watts and re-
quire elaborate fans, heat sinks and
even liquid cooling. Designers would
welcome another thousandfold gain
in performance, but they cannot cope
with any further increase in power
density. Single chips that consume

electricity by the kilowatt are just not
a practical option.

Where does all the energy go? Much
power is lost because neither conduc-
tors nor insulators are perfect; electrons
meet resistance where they ought to
pass unopposed, and they leak through
materials where current ought to be
blocked. Both of these problems will get
more severe as silicon devices continue
to shrink. Another energy drain is the
need to accelerate and decelerate elec-
tric charges as signals move through
the circuitry; this cost goes up along
with processor speed. And it always
takes energy to push electrons “uphill”
against a voltage gradient.

Some of the strategies for reducing
the energy demands of a computer
are much like measures to improve
the fuel economy of an automobile. To
get better gas mileage, you make a car
lighter and aerodynamically sleeker;
likewise in digital circuits, you can re-
duce inertia by using fewer electrons
to represent each bit of information,
and you can cut resistive losses with
better conductors. In the car, you drive
slower and more smoothly; in the com-
puter you operate at lower voltage and
avoid abrupt swings in voltage. For
even greater savings in an automobile,
you might try a hybrid design, with a
battery or a flywheel to recapture en-
ergy invested in acceleration and hill-
climbing; the electronic counterpart
is an experimental technology called
charge recovery.

In the world of chipmaking, some
of these energy-conserving measures
are already well-established tools, and
others are likely to be adopted soon.
For example, copper is replacing alu-
minum in the metal interconnections
on some chips to improve conductivi-
ty. The voltage levels of on-chip signals
have fallen from 5 volts to as little as 1
volt. Further steps of the same general
kind may well avert a silicon energy
crisis for another decade or two. But

Brian Hayes is Senior Writer for American Sci-
entist. He is the author of Infrastructure: A Field
Guide to the Industrial Landscape, just published
by W. W. Norton, and a new weblog at the URL:
http://bit-player.org. Address: 211 Dacian Avenue,
Durham, NC 27701. Internet: bhayes@amsci.org

backward and
forward both run
to need may they
,faster run to are

computers If

108 American Scientist, Volume 94 © 2006 Sigma Xi, The Scientific Research Society. Reproduction
with permission only. Contact perms@amsci.org.

then what? If the number of operations
per second is to increase by a factor
of 1,000 without raising power con-
sumption, then the average energy per
operation must be reduced to a thou-
sandth of its present value. Is that pos-
sible, even in principle? What about a
millionth?

Zeptojoules
For a long time it was taken for granted
that storing, manipulating and transmit-
ting information would always neces-
sarily dissipate some nonzero quantity
of energy. Engineering prowess might
lower the energy cost somewhat, but
there was a threshold level, a lower lim-
it we could never cross. A device that
could compute without loss of energy
was seen as the information equivalent
of a perpetual-motion machine.

John von Neumann, in a 1949 lec-
ture, set the minimum price of “an el-
ementary act of information” at kT ln 2.
In this formula k is Boltzmann’s con-
stant, which is the conversion factor for
expressing temperature in energy units;
its numerical value is 1.4 × 10–23 joules
per kelvin. T is the absolute tempera-
ture, and ln 2 is the natural logarithm of
2, a number that appears here because
it corresponds to one bit of informa-
tion—the amount of information need-

ed to distinguish between two equally
likely alternatives. At room tempera-
ture (300 kelvins), kT ln 2 works out to
about 3 × 10–21 joule, or 3 zeptojoules.
This is a minuscule amount of energy;
Ralph C. Merkle of the Georgia Insti-
tute of Technology estimates that it is
the average kinetic energy of a single
air molecule at room temperature.

Von Neumann’s pronouncement was
based on a thermodynamic argument.
Consider a computation that answers
a single yes/no question, where the two
possible outcomes appear equally like-
ly at the outset. Once the question has
been settled, we know one bit more
than we did beforehand, and so the
computational process reduces the un-
certainty or entropy of the computing
system by one bit. But the second law
of thermodynamics says that total en-
tropy can never decrease, and so the
reduction inside the computer must be
compensated by an entropy increase
elsewhere. Specifically, the computer
must stir up at least one bit’s worth of
disorder in its surroundings by expel-
ling an amount of heat equal to kT ln 2.
Von Neumann—along with everyone
else at the time—assumed that every
“elementary act of information” has
the effect of settling at least one yes/no
question, and thus it seemed that each

step in the computer’s operation in-
evitably dissipates at least three zepto-
joules of energy.

Von Neumann’s ideas on the ther-
modynamics of computation were
widely accepted but never formal-
ly proved. In the early 1960s Rolf
Landauer set out to supply such a
proof and found that he couldn’t. He
discovered that only a certain subclass
of computational events have an un-
avoidable three-zeptojoule cost. Ironi-
cally, these expensive operations are
not those that produce information but
rather those that destroy it, such as
erasing a bit from a memory cell.

Landauer’s work on the cost of for-
getting was counterintuitive, and ini-
tially it got a frosty reception. Now the
idea has been thoroughly assimilated,
and it’s hard to see what the contro-
versy was all about. Erasing a memory
cell amounts to ignoring its present
contents—which may in fact be un-
known—and resetting the cell to some
standardized state (usually 0). Thus
an indeterminate bit becomes a fully
specified one, and the entropy of the
machine is diminished accordingly. For
this reason the corresponding amount
of heat energy (kT ln 2) has to be re-
jected into the environment. The con-
sequences are even clearer if you think
about erasing the entire memory of a
computer, so that the system goes from
a random state to a highly ordered one;
this is a process of refrigeration, and so
it obviously gives off heat.

An Unturing Machine
Although erasing takes energy, Landau-
er found that not all computer opera-
tions are subject to the three-zeptojoule
stricture. The simplest counterexample
is the logical not gate, which inverts
the state of a single bit, changing 1 to 0
or 0 to 1. No information is lost in this
process; the state of the bit is completely
known both before and after. Thus there
is no fundamental reason for a not gate
to be dissipating energy. Present-day
implementations of the not function
may very well produce just as much
heat as erasing a memory cell, but that
energy loss is not required by the laws
of thermodynamics.

A notable property of the not func-
tion is its reversibility. When bit A is
transformed into not A, all that’s need-
ed to undo the action and restore the
original state is a second application of
the not function—(not (not A)) = A.
The erasure of a bit is quite different; it

����

�

����

����

�����

�����

�����

�����

��
��

��
��

��
���

��
��

��
��

��
��

��
���

��
��

�

���� ���� ���� ���� ���� ���� ���� ����

�����������������������

���������������������������������

����

The energy cost of computing—measured in joules per logic operation—must fall steadily if
computer performance is to continue its exponential growth. The data displayed here were
gathered and analyzed by Rolf Landauer in 1988; although the trend in more recent years may
not have followed Landauer’s projection exactly, it seems clear that energy levels will soon be
approaching important landmarks. One electron-volt is the energy of a single electron at a po-
tential of one volt. A thermodynamic limit at about 3 zeptojoules is expressed by the formula
kT ln 2; to get below this threshold, computers will have to be operated reversibly.

2006 March–April 109www.americanscientist.org © 2006 Sigma Xi, The Scientific Research Society. Reproduction
with permission only. Contact perms@amsci.org.

can’t be undone because there’s no way
of knowing whether the previous state
was a 0 or a 1.

Functions such as and are also logi-
cally irreversible. A two-input and
gate produces an output of 1 if and
only if both inputs are 1; otherwise the
output is 0. Thus if the output hap-
pens to be 1, we know that both inputs
were also 1, but when the output is
0, we can’t distinguish between three
alternative pairs of inputs (0 and 1, 1
and 0, 0 and 0). A similar analysis ap-
plies to or. At a higher level, standard
arithmetic operations such as +, –, ×
and ÷ also throw away information
and are therefore irreversible. Take the
equation 5 + 3 = 8; given the left side,
it’s easy to regenerate the right, but
you can’t go the other way.

Landauer showed that only the logi-
cally irreversible steps in a computa-
tion carry an unavoidable energy pen-
alty. If we could compute entirely with
reversible operations, there would be
no lower limit on energy consumption.
We could run a supercomputer on a
watch battery.

The question remained: Is it possible
to build a fully capable computer out
of nothing but logically reversible com-
ponents? Initially, Landauer himself
thought the answer was no. After all,
most of the familiar building blocks of
computers, such as and and or gates,

are irreversible devices. Then in 1973
Charles H. Bennett, now of IBM Re-
search, came up with a remarkably
direct demonstration that any compu-
tation by an irreversible computer can
also be done reversibly.

Bennett presented his idea in terms
of a Turing machine, the abstract mod-
el of a computer that reads, writes and
erases symbols on a tape. Erasures
make the standard Turing machine ir-
reversible, so Bennett added a second
tape, called the history tape, where the
machine keeps notes about erased or
overwritten data. At the end of a com-
putation, the final answer can be cop-
ied onto yet another tape for safekeep-
ing. Then the machine is put in reverse
gear, and with the help of the history
tape, all the operations are undone,
one by one, until the system returns to
its initial condition.

The latter half of this operating cycle
strikes many people as bizarrely coun-
terproductive. How can you save en-
ergy by running the machine for twice
as long, regardless of whether it’s go-
ing forward or backward? Wouldn’t it
be better just to throw away the extra
tape? Experience with ordinary ma-
chines in everyday life does not pre-
pare us to answer these questions.
When you drive a car 10 miles down
the road, you can’t recover the fuel
you burned by backing up over the

same route. But suppose the car had
a history tape that kept track of all the
molecules involved in the combustion
process; then, in principle, you could
unburn the gasoline by bringing those
molecules back together in the right or-
der. This is not a feasible scheme in au-
tomotive engineering, but in the tidier,
discrete universe of digital computers,
the history-tape trick does work.

Maybe even the reverse-combustion
process isn’t quite as outlandish as it
seems. Bennett, who began his career
as a chemist, also described a biochemi-
cal model of a reversible computation.
When the enzyme RNA polymerase
reads off the sequence of bases in a
strand of DNA and assembles a cor-
responding molecule of RNA, the RNA
is conceptually equivalent to the history
tape in Bennett’s Turing machine. The
same enzyme can then work in reverse
to disassemble the RNA, base by base—
but only for RNA that matches the DNA
template. Bennett points out that this
orderly reversal of the assembly process
is energetically more efficient than dis-
posing of the RNA with enzymes that
degrade any such molecule.

Reversible Logic
A Turing machine is fine for reasoning
about computers, but it’s not an ideal
model for building them. Some more-
practical components of reversible

�����������
������������
������������
������������
������������

�����
�

������
������

�����������
������������
������������
������������
������������

���������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

���������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���

��

������������ ������������

�

�

�

�
�

����������
������������
������������
������������
������������

���
�

�
�

�

���� � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

��

���

���

Logic gates are the conceptual building blocks of both irreversible and reversible computers. The action of each gate is defined by a truth table,
which lists the gate’s output for every possible combination of inputs. The most familiar gates, at left, are basic elements of Boolean logic:
NOT, AND, OR and XOR. In this group, only NOT is reversible. At right, the Toffoli gate (also known as the controlled-controlled NOT gate) and the
Fredkin gate (or controlled swap gate) are elements of a reversible logic. In these gates, every set of inputs corresponds to a unique output; by
examining the outputs, you can tell what the input must have been, and thereby reverse the operation of the gate.

110 American Scientist, Volume 94 © 2006 Sigma Xi, The Scientific Research Society. Reproduction
with permission only. Contact perms@amsci.org.

logic were introduced in the 1980s by
Edward F. Fredkin and Tommaso Tof-
foli, who were then working together
at MIT. (Fredkin is now at Carnegie
Mellon University, Toffoli at Boston
University.) The components are logic
gates, somewhat like and and or gates
but designed for reversibility.

In any reversible gate the number
of inputs must equal the number of
outputs. Moreover, each possible set of
inputs must yield a distinct set of out-
puts. If this were not the case—that is,
if two or more input patterns had the
same output—then the reverse action
of the gate would be ambiguous.

The devices now known as the
Fredkin gate and the Toffoli gate (see
illustration on page 109) both have
three inputs and three outputs; and,
as required for reversibility, each input
pattern maps to a unique output. In
the Fredkin gate, one signal controls
whether the other two data lines pass
straight through the gate or else have

their positions swapped. In the Tof-
foli gate, two of the signals control the
third; if the first two bits are both 1,
then the third bit is inverted.

Like the not gate, both the Fredkin
and the Toffoli gates are their own in-
verses: No matter what the values of
the three input signals, running them
through two successive copies of the
same gate will return the signals to
their original values. Both gates are
also computationally universal, mean-
ing that a computer assembled from
multiple Fredkin or Toffoli gates (and
no other components) could simulate a
Turing machine or any other device of
equivalent computational power. Thus
the gates might be considered candi-
dates for a real reversible computer.

Of course logic gates are still just ab-
stract devices; they have to be given
some physical implementation with
transistors or other kinds of hardware.
Starting in the early 1990s, several
groups have been designing and build-
ing prototypes of reversible (or nearly
reversible) digital circuits. For example,
at MIT a group including Michael Frank
and Thomas F. Knight, Jr., fabricated a
series of small but complete processor
chips based on a reversible technology;
Frank continues this work at Florida
State University. At the University of
Gent in Belgium, Alexis De Vos and his
colleagues have built several reversible
adders and other circuits.

It’s important to note that building
a computer according to a reversible
logic diagram does not guarantee low-
power operation. Reversibility removes

the thermodynamic floor at kT ln 2, but
the circuit must still be designed to at-
tain that level of energy savings. The
current state of the art is far above the
theoretical floor; even the most efficient
chips, reversible or not, dissipate some-
where between 10,000 and 10 million
times kT ln 2 for each logical operation.
Thus it will be some years before re-
versible technology can be put to the
ultimate test of challenging the three-
zeptojoule barrier. In the meantime,
however, it turns out that some con-
cepts derived from reversible logic are
already useful in low-power circuits.
One of these is charge recovery, which
attempts to recycle packets of electric
charge rather than let them drain to
ground. Another is adiabatic switching,
which avoids wasteful current surges
by closing switches only after voltages
have had a chance to equalize.

Back to the Future
Making a computer run backwards is
not just a problem for hardware hack-
ers and logic designers. There are also
issues at higher levels of abstraction.
What will it be like to write and run a
program on a machine that can bounce
back and forth in time?

Most of us already have some ex-
perience with a rudimentary form of
reversibility—namely the undo com-
mand. Even this simple facility for un-
winding a computation has its seman-
tic hazards. (Should “undo undo” leave
you two steps back, or none?) In many
programs, undo is a bit of a sham; it
doesn’t turn the program around but

��������������������������� ����������������������� ���������������������

The evolution of a computational process can be represented as a path in an abstract space. Every point in the space corresponds to some possible
state of the machine, and the coordinates of the point encode everything that can be known about the state. As the computer goes from one state
to the next, it traces out a trajectory. The path of a nondeterministic computer can have both merge points (where a state has two or more prede-
cessors) and branch points (where a state has multiple successors). It is the branch points that make this process nondeterministic; a computer
that behaves in this unpredictable and inconsistent way is usually considered broken. An irreversible trajectory can have merge points but not
branch points. (If the computation were reversed, the merge points would become branch points, and determinism would be lost.) A reversible
computer must evolve along a simple path with neither merge points nor branch points. In a finite space, the path must be closed.

This prototype reversible circuit was designed
and fabricated by Alexis De Vos and his col-
leagues at the University of Gent. The circuit
is a four-bit adder, implemented with Toffoli
gates and related devices. The area shown is a
little more than half a millimeter wide. (Pho-
tograph courtesy of Alexis De Vos.)

2006 March–April 111www.americanscientist.org © 2006 Sigma Xi, The Scientific Research Society. Reproduction
with permission only. Contact perms@amsci.org.

just revisits saved snapshots. Software
that really runs in reverse has some
harder problems to solve.

Consider the matter of rounding.
Most numerical calculations are done
with limited precision; all numbers
have to fit into 32 bits, say. When that’s
not enough room, the least-significant
digits are discarded. But dropping dig-
its is a no-no in the world of reversible
computing. If 1/3 gets converted into
0.33333, then reversing the process must
somehow yield exactly 1/3 again.

Even arithmetic with exact numbers
can get us into trouble, if one of those
numbers happens to be zero. Division
by zero is forbidden everywhere in
civil society; in a reversible machine,
we might also have to outlaw multi-
plication by zero, because it amounts
to erasure, yielding a result of zero no
matter what the value of the multipli-
cand. Personally, I rather like this idea
of treating division and multiplication
symmetrically, but it runs counter to
hundreds of years of habit.

Henry G. Baker, in a thoughtful es-
say that touches on several issues of
reversibility, cites another example:
Newton’s method for approximating
square roots. In Newton’s algorithm,
you approach the square root of N by
starting with an arbitrary guess, x, and
then calculating (x + N/x)/2. The re-
sult of this expression becomes a new
guess, and you repeat the procedure
until you reach the desired accuracy.
Almost any guess will converge on the
true root; in other words, the algorithm
“exemplifies a large class of computa-
tions in which the output appears to be
independent of the input.” The method
also appears to be highly irreversible,
since all those different inputs lead to
the same output. If the computation
were reversed, how could the algo-
rithm find its way back from the one
output to each of the many possible
inputs? But in fact it can (at least if the
initial x is greater than the square root
of N). If the computation is done with-
out rounding or truncating intermedi-
ate results, all of the information need-
ed to reverse the process is preserved
in the “insignificant” decimal places of
the answers. Each initial guess can be
reconstructed exactly.

Baker and others also point out that
a reversible computer would be a won-
derful device for debugging programs.
With conventional hardware, you can
set a breakpoint to stop a program
when it goes off the rails, but then

it’s a struggle to figure out what path
brought it to the trouble spot. With a
reversible device, you can just back
it up. Running a compiler in reverse
might also be fun. Generating source
code from an executable program is
a handy trick (which the vendors of
commercial software would no doubt
want to disable).

Let’s Get Physical
Landauer, who died in 1999, cham-
pioned the slogan “Information is
physical.” He meant, first of all, that
information cannot exist in the abstract
but has to be embodied somehow—in
electrons, photons, chalk marks, neural
excitations. But the slogan can also be
taken as a call to heed the laws of phys-
ics when dealing with information, just
as one must with matter and energy. In
this respect irreversible computers are
notorious scofflaws. They make bits
appear out of nothing and then disap-
pear into the void again when they’re
no longer needed. They obey no con-
servation laws.

A reversible computer is a better-
behaved device, more at home in the
universe we live in. As Toffoli wrote in
1982: “Computation—whether by man
or by machine—is a physical activity.
If we want to compute more, faster,
better, more efficiently, and more intel-
ligently, we will have to learn more
about nature. In a sense, nature has
been continually computing the ‘next
state’ of the universe for billions of
years; all we have to do—and, actually,
all we can do—is ‘hitch a ride’ on this
huge ongoing computation, and try to
discover which parts of it happen to go
near to where we want.”

Bibliography
Baker, Henry G. 1992. NREVERSAL of for-

tune—the thermodynamics of garbage
collection. In Proceedings of the Interna-
tional Workshop on Memory Management, St.
Malo, France, September 17–19, 1992, pp.
507–524. London: Springer Verlag. (Later
version available at http://www.pipeline.
com/~hbaker1/ReverseGC.html)

Bennett, C. H. 1973. Logical reversibility of
computation. IBM Journal of Research and
Development 17:525–532.

Bennett, Charles H. 1982. The thermodynamics
of computation—a review. International Jour-
nal of Theoretical Physics 21:905–940. (Reprint
at http://www.research.ibm.com/people/
b/bennetc/bennettc1982666c3d53.pdf

Bennett, Charles H. 1988. Notes on the history
of reversible computation. IBM Journal of
Research and Development 32:16–23.

De Vos, Alexis, and Yvan Van Rentergem. 2005.
Reversible computing: from mathematical

group theory to electronical circuit experi-
ment. Proceedings of the Second Conference on
Computing Frontiers, Ischia, Italy, pp. 35–44.
New York: ACM Press.

Frank, Michael, Carlin Vieri, M. Josephine Am-
mer, Nicole Love, Norman H. Margolus
and Thomas F. Knight, Jr. 1998. A scalable
reversible computer in silicon. In Unconven-
tional Models of Computation, edited by C. S.
Calude, J. Casti and M. J. Dinneen, pp. 183–
200. Singapore: Springer. (Preprint avail-
able at http://www.ai.mit.edu/people/
mpf/rc/flattop/newpaper/flattop.pdf/
a-scalable-reversible-computer.pdf)

Frank, Michael P. 2005. Introduction to revers-
ible computing: motivation, progress, and
challenges. Proceedings of the Second Confer-
ence on Computing Frontiers, Ischia, Italy, pp.
385–390. New York: ACM Press.

Fredkin, Edward, and Tommaso Toffoli. 1982.
Conservative logic. International Journal of
Theoretical Physics 21:219–253.

Hey, Anthony J. G. (ed.). 1999. Feynman and
Computation: Exploring the Limits of Comput-
ers. Reading, Mass.: Perseus Books.

Landauer, R. 1961. Irreversibility and heat gen-
eration in the computing process. IBM Jour-
nal of Research and Development 5:183–191.

Landauer, Rolf. 1988. Dissipation and noise
immunity in computation and communica-
tion. Nature 335:779–784.

Landauer, Rolf. 1991. Information is physical.
Physics Today 44:23–29.

Lecerf, Yves. 1963. Machines de Turing révers-
ibles. Comptes Rendus Hebdomadaires des Sé-
ances de L’académie des Sciences 257:2597–
2600. (Also available at http://www.cise.
ufl.edu/~mpf/rc/Lecerf/lecerf.html)

Leeman, George B. Jr. 1986. A formal approach
to undo operations in programming lan-
guages. ACM Transactions on Programming
Languages and Systems 8:50–87.

Leff, Harvey S., and Andrew F. Rex (eds.).
2003. Maxwell’s Demon 2: Entropy, Classical
and Quantum Information, Computing. Bris-
tol: Institute of Physics Publishing.

Lutz, Christopher, and Howard Derby. 1982.
Janus: a time-reversible language. Unpub-
lished report, California Institute of Tech-
nology. http://www.cise.ufl.edu/~mpf/
rc/janus.html

Markov, Igor L. 2003. An introduction to re-
versible circuits. Proceedings of the 12th In-
ternational Workshop on Logic and Synthesis
(Laguna Beach, May 2003) pp. 318–319.

Mu, Shin-Cheng, Zhenjiang Hu and Masato
Takeichi. 2004. An injective language for
reversible computation. In Mathematics of
Program Construction 2004, pp. 289–313. Ber-
lin: Springer-Verlag.

Toffoli, Tommaso. 1980. Reversible comput-
ing. MIT Laboratory for Computer Science
Technical Memo 151, http://pm1.bu.edu/
~tt/publ/revcomp-rep.pdf.

Toffoli, Tommaso. 1982. Physics and computa-
tion. International Journal of Theoretical Phys-
ics 21:165–175.

Van Rentergem, Yvan, Alexis De Vos and Leo
Storme. 2005. Implementing an arbitrary
reversible logic gate. Journal Of Physics A:
Mathematical and General 38:3555–3577.

Zuliani, P. 2001. Logical reversibility. IBM Jour-
nal of Research and Development 45:807–817.

