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Unwed Numbers

Brian Hayes

A few years ago, if you had 
noticed someone filling in a 

crossword puzzle with numbers instead 
of letters, you might well have looked 
askance. Today you would know that 
the puzzle is not a crossword but a Su-
doku. The craze has circled the globe. 
It’s in the newspaper, the bookstore, the 
supermarket checkout line; Web sites 
offer puzzles on demand; you can even 
play it on your cell phone.

Just in case this column might fall 
into the hands of the last person in 
North America who hasn’t seen a Su-
doku, an example is given on the op-
posite page. The standard puzzle grid 
has 81 cells, organized into nine rows 
and nine columns and also marked off 
into nine three-by-three blocks. Some 
of the cells are already filled in with 
numbers called givens. The aim is to 
complete the grid in such a way that 
every row, every column and every 
block has exactly one instance of each 
number from 1 to 9. A well-formed 
puzzle has one and only one solution.

The instructions that accompany 
Sudoku often reassure the number-
shy solver that “No mathematics is 
required.” What this really means is 
that no arithmetic is required. You don’t 
have to add up columns of figures; you 
don’t even have to count. As a matter of 
fact, the symbols in the grid need not be 
numbers at all; letters or colors or fruits 
would do as well. In this sense it’s true 
that solving the puzzle is not a test of 
skill in arithmetic. On the other hand, if 
we look into Sudoku a little more deep-
ly, we may well find some mathemati-
cal ideas lurking in the background.

A Puzzling Provenance
The name “Sudoku” is Japanese, but the 
game itself is almost surely an Ameri-
can invention. The earliest known ex-

amples were published in 1979 in Dell 
Pencil Puzzles & Word Games, where 
they were given the title Number 
Place. The constructor of the puzzles 
is not identified in the magazine, but 
Will Shortz, the puzzles editor of The 
New York Times, thinks he has identi-
fied the author through a process of 
logical deduction reminiscent of what 
it takes to solve a Sudoku. Shortz ex-
amined the list of contributors in sev-
eral Dell magazines; he found a single 
name that was always present if an 
issue included a Number Place puzzle, 
and never present otherwise. The pu-
tative inventor identified in this way 
was Howard Garns, an architect from 
Indianapolis who died in 1989. Mark 
Lagasse, senior executive editor of 
Dell Puzzle Magazines, concurs with 
Shortz’s conclusion, although he says 
Dell has no records attesting to Garns’s 
authorship, and none of the editors 
now on the staff were there in 1979.

The later history is easier to trace. 
Dell continued publishing the puzzles, 
and in 1984 the Japanese firm Nikoli 
began including puzzles of the same 
design in one of its magazines. (Puzzle 
publishers, it seems, are adept at the 
sincerest form of flattery.) Nikoli named 
the puzzle “su– ji wa dokushin ni ka-
giru,” (数字は独身に限る), which I am 
told means “the numbers must be sin-
gle”—single in the sense of unmarried. 
The name was soon shortened to Su-
doku (数独), which is usually translated 
as “single numbers.” Nikoli secured a 
trademark on this term in Japan, and so 

later Japanese practitioners of sincere 
flattery have had to adopt other names. 
Ed Pegg, writing in the Mathematical 
Association of America’s MAA Online, 
points out an ironic consequence: Many 
Japanese know the puzzle by its Eng-
lish name Number Place, whereas the 
English-speaking world prefers the 
Japanese term Sudoku.

The next stage in the puzzle’s east-
to-west circumnavigation was a brief 
detour to the south. Wayne Gould, a 
New Zealander who was a judge in 
Hong Kong before the British lease ex-
pired in 1997, discovered Sudoku on 
a trip to Japan and wrote a computer 
program to generate the puzzles. Even-
tually he persuaded The Times of Lon-
don to print them; the first appeared in 
November 2004. The subsequent fad in 
the U.K. was swift and intense. Other 
newspapers joined in, with The Daily 
Telegraph running the puzzle on its front 
page. There was boasting about who 
had the most and the best Sudoku, and 
bickering over the supposed virtues of 
handmade versus computer-generated 
puzzles. In July 2005 a Sudoku tourna-
ment was televised in Britain; the event 
was promoted by carving a 275-foot 
grid into a grassy hillside near Bristol. 
(It soon emerged that this “world’s larg-
est Sudoku” was defective.)

Sudoku came back to the U.S. in the 
spring of 2005. Here too the puzzle has 
become a popular pastime, although 
perhaps not quite the all-consuming 
obsession it was in the U.K. I don’t be-
lieve anyone will notice a dip in the 
U.S. gross domestic product as a result 
of this mass distraction. On the other 
hand, I must report that my own mo-
tive for writing on the subject is partly 
to justify the appalling number of hours 
I have squandered solving Sudoku.

Hints and Heuristics
If you take a pencil to a few Sudoku 
problems, you’ll quickly discover vari-
ous useful rules and tricks. The most 
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elementary strategy for solving the 
puzzle is to examine each cell and list 
all its possible occupants—that is, all 
the numbers not ruled out by a conflict 
with another cell. If you find a cell that 
has only one allowed value, then obvi-
ously you can write that value in. The 
complementary approach is to note all 
the cells within a row, a column or a 
block where some particular number 
can appear; again, if there is a number 
that can be put in only one position, 
then you should put it there. In either 
case, you can eliminate the selected 
number as a candidate in all other cells 
in the same neighborhood.

Some Sudoku can be solved by 
nothing more than repeated applica-
tion of these two rules—but if all the 
puzzles were so straightforward, the 
fad would not have lasted long. Barry 
Cipra, a mathematician and writer 
in Northfield, Minnesota, describes a 
hierarchy of rules of increasing com-
plexity. The rules mentioned above 
constitute level 1: They restrict a cell 
to a single value or restrict a value to 
a single cell. At level 2 are rules that 
apply to pairs of cells within a row, 
column or block; when two such cells 
have only two possible values, those 
values are excluded elsewhere in the 
neighborhood. Level-3 rules work 
with triples of cells and values in the 
same way. In principle, the tower of 
rules might rise all the way to level 9.

This sequence of rules suggests a 
simple scheme for rating the difficulty 
of puzzles. Unfortunately, however, not 
all Sudoku can be solved by these rules 
alone; some of the puzzles seem to de-
mand analytic methods that don’t have 
a clear place in the hierarchy. A few of 
these tactics have even acquired names, 
such as “swordfish” and “x-wing.” The 
subtlest of them are nonlocal rules that 
bring together information from across 
a wide swath of the matrix.

When you are solving a specific puz-
zle, the search for patterns that trigger 
the various rules is where the fun is (as-
suming you go in for that sort of thing). 
But if you are trying to gain a higher-
level understanding of Sudoku, compil-
ing a catalog of such techniques doesn’t 
seem very promising. The rules are too 
many, too various and too specialized. 

Rather than discuss methods for solv-
ing specific puzzles, I want to ask some 
more-general questions about Sudoku, 
and look at it as a computational prob-
lem rather than a logic puzzle. How 
hard a problem is it? Pencil-and-paper 

experience suggests that some instances 
are much tougher than others, but are 
there any clear-cut criteria for ranking 
or classifying the puzzles?

Counting Solutions
In the search for general principles, a 
first step is to generalize the puzzle it-
self. The standard 81-cell Sudoku grid 
is not the only possibility. For any posi-
tive integer n, we can draw an order-n 
Sudoku grid with n2 rows, n2 columns 
and n2 blocks; the grid has a total of 
n4 cells, which are to be filled with 
numbers in the range from 1 to n2. The 
standard grid with 81 cells is of order 
3. Some publishers produce puzzles 
of order 4 (256 cells) and order 5 (625 
cells). On the smaller side, there’s not 
much to say about the order-1 puzzle. 
The order-2 Sudoku (with 4 rows, col-
umns and blocks, and 16 cells in all) 
is no challenge as a puzzle, but it does 
serve as a useful test case for studying 
concepts and algorithms.

How many Sudoku solutions exist 
for each n? To put the question another 
way: Starting from a blank grid—with 
no givens at all—how many ways can 
the pattern be completed while obeying 
the Sudoku constraints? As a first ap-
proximation, we can simplify the prob-

lem by ignoring the blocks in the Sudo-
ku grid, allowing any solution in which 
each column and each row has exactly 
one instance of each number. A pattern 
of this kind is known as a Latin square, 
and it was already familiar to Leonhard 
Euler more than 200 years ago. 

Consider the 4×4 Latin square (which 
corresponds to the order-2 Sudoku). 
Euler counted them: There are exactly 
576 ways of arranging the numbers 1, 2, 
3 and 4 in a square array with no dupli-
cations in any row or column. It follows 
that 576 is an upper limit on the num-
ber of order-2 Sudoku. (Every Sudoku 
solution is necessarily a Latin square, 
but not every Latin square is a valid 
Sudoku.) In a series of postings on the 
Sudoku Programmers Forum, Frazer 
Jarvis of the University of Sheffield 
showed that exactly half the 4×4 Latin 
squares are Sudoku solutions; that is, 
there are 288 valid arrangements. (The 
method of counting is summarized in 
the illustration on the next page.)

Moving to higher-order Sudoku and 
larger Latin squares, the counting gets 
harder in a hurry. Euler got only as 
far as the 5×5 case, and the 9×9 Latin 
squares were not enumerated until 
1975; the tally is 5,524,751,496,156,892, 
842,531,225,600, or about 6×1027. The 
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Sudoku puzzles have to be filled in so that each number appears exactly once in each column, 
each row and each of the blocks delineated by heavier lines. The order-1 puzzle is a trivial 1×1 
grid; the order-2 Sudoku is a 4×4 grid to be filled with integers from 1 to 4; the order-3 puzzle 
is a 9×9 grid where the allowed numbers are 1 through 9. Some useful terminology: The in-
dividual compartments are cells; the n×n groups of cells are blocks; the cells are arranged in 
horizontal rows and vertical columns; the blocks likewise are organized in horizontal bands 
and vertical stacks; the union of a cell’s row, column and block is called its neighborhood; the 
numbers supplied in the initial state are givens. The order-3 Sudoku shown here is a variation 
on the very first puzzle published, in 1979 in Dell Pencil Puzzles & Word Games; by present-
day standards it is quite easy. Cells marked in blue are fully determined by the givens alone.
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order-3 Sudoku must be a subset of 
these squares. They were counted in 
June 2005 by Bertram Felgenhauer of 
the Technical University of Dresden 
in collaboration with Jarvis. The total 
they computed is 6,670,903,752,021,072, 
936,960, or 7×1021. Thus, among all the 
9×9 Latin squares, a little more than 
one in a million are also Sudoku grids.

It’s a matter of definition, however, 
whether all those patterns are really 
different. The Sudoku grid has many 
symmetries. If you take any solu-
tion and rotate it by a multiple of 90 
degrees, you get another valid grid; 
in the tabulations above, these vari-
ants are counted as separate entries. 
Beyond the obvious rotations and re-
flections, you can permute the rows 
within a horizontal band of blocks or 
the columns within a vertical stack of 
blocks, and you can also freely shuffle 
the bands and stacks themselves. Fur-
thermore, the numerals in the cells are 
arbitrary markers, which can also be 
permuted; for example, if you switch 
all the 5s and 6s in a puzzle, you get 
another valid puzzle.

When all these symmetries are taken 
into account, the number of essentially 

different Sudoku patterns is reduced 
substantially. In the case of the order-2 
Sudoku, it turns out there are actually 
only two distinct grids! All the rest of 
the 288 patterns can all be generated 
from these two by applying various 
symmetry operations. In the order-3 
case, the reduction is also dramatic, 
although it still leaves an impressive 
number of genuinely different solu-
tions: 3,546,146,300,288, or 4×1012. 

Does the large number of order-3 Su-
doku grids tell us anything about the dif-
ficulty of solving the puzzle? Maybe. If 
we set out to solve it by some kind of 
search algorithm, then the number of 
patterns to be considered is a relevant 
factor. But any strategy that involves 
generating all 6,670,903,752,021,072, 
936,960 grids is probably not the best 
way to go about solving the puzzle.

NP or Not NP, That Is the Question
Computer science has an elaborate hier-
archy for classifying problems accord-
ing to difficulty, and the question of 
where Sudoku fits into this scheme has 
elicited some controversy and confu-
sion. It is widely reported that Sudoku 
belongs in the class NP, a set of notori-

ously difficult problems; meanwhile, 
however, many computer programs 
effortlessly solve any order-3 Sudoku 
puzzle. There is actually no contradic-
tion in these facts, but there is also not 
much help in dispelling the confusion.

Complexity classes such as NP do not 
measure the difficulty of any specific 
problem instance but rather describe the 
rate at which difficulty grows as a func-
tion of problem size. If we can solve an 
order-n Sudoku, how much harder will 
we have to work to solve a puzzle of or-
der n+1? For problems in NP, the effort 
needed grows exponentially.

Most discussions of the complexity 
of Sudoku refer to the work of Takayuki 
Yato and Takahiro Seta of the Univer-
sity of Tokyo, whose analysis relates the 
task of solving Sudoku to the similar 
problem of completing a partially speci-
fied Latin square. The latter problem 
in turn has been connected with oth-
ers that are already known to be in NP. 
This process of “reduction” from one 
problem to another is the standard way 
of establishing the complexity classes of 
computational problems. Yato and Seta 
employ an unusual form of reduction 
that addresses the difficulty of finding 
an additional solution after a first solu-
tion is already known. In Sudoku, of 
course, well-formed puzzles are expect-
ed to have only one solution. Yato and 
Seta say their result applies nonetheless. 
I don’t quite follow their reasoning on 
this point, but the literature of complex-
ity theory is vast and technical, and the 
fault is likely my own.

When you lay down your pencil on 
a completed Sudoku, the thought that 
you’ve just dispatched a problem in the 
class NP may boost your psychological 
wellbeing, but the NP label doesn’t say 
anything about the relative difficulty of 
individual Sudoku puzzles. For that, a 
different kind of hierarchy is needed.

Many publishers rank their Sudoku 
on a scale from easy to hard (or from 
gentle to diabolical). The criteria for 
these ratings are not stated, and it’s a 
common experience to breeze through 
a “very hard” puzzle and then get 
stuck on a “medium.”

One easily measured factor that 
might be expected to influence difficul-
ty is the number of givens. In general, 
having fewer cells specified at the out-
set ought to make for a harder puzzle. 
At the extremes of the range, it’s clear 
that having all the cells filled in makes 
a puzzle very easy indeed, and having 
none filled in leaves the problem under-
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Order-2 Sudoku are small enough that all possible configurations can be conveniently enu-
merated. When the block in the upper-left quadrant of the grid is held fixed, the rules of 
Sudoku allow four variations in the upper-right quadrant and four more in the lower-left, 
generating the 16 grids shown here. For 12 of these, the lower-right quadrant can be filled in 
in just one way; in the remaining four cases (orange), no completion of the grid is possible. 
Thus there are a total of 12 states for the given configuration of the upper-left quadrant. But 
that quadrant can actually have any of 24 permutations, and so the total number of grids is 
12×24, or 288. In another sense, there are only two distinct grids. The entire set of 288 solutions 
can be generated from the two arrangements at the upper left (blue).
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specified. What is the minimum num-
ber of givens that can ensure a unique 
solution? For an order-n grid, there is a 
lower bound of n2–1. For example, on 
an order-3 grid with fewer than eight 
givens, there must be at least two num-
bers that appear nowhere among the 
givens. With no constraints on those 
symbols, there are at least two solutions 
in which their roles are interchanged.

Can the n2–1 bound be achieved in 
practice? For n=1 the answer is yes. 
On the order-2 grid there are uniquely 
solvable puzzles with four givens but 
not, I think, with three. (Finding the 
arrangements with just four givens is 
itself a pleasant puzzle.) For order 3, 
the minimum number of givens is un-
known. Gordon Royle of the Univer-
sity of Western Australia has collected 
more than 24,000 examples of uniquely 
solvable grids with 17 givens, and he 
has found none with fewer than 17, 
but a proof is lacking.

Published puzzles generally have 
between 25 and 30 givens. Within this 
range, the correlation between number 
of givens and difficulty rating is weak. 
In one book, I found that the “gentle” 
puzzles averaged 28.3 givens and the 
“diabolical” ones 28.0.

Logic Rules
Many puzzle constructors distinguish 
between puzzles that can be solved “by 
logic alone” and those that require “trial 
and error.” If you solve by logic, you 
never write a number into a cell until 
you can prove that only that number 
can appear in that position. Trial and 
error allows for guessing: You fill in a 
number tentatively, explore the conse-
quences, and if necessary backtrack, re-
moving your choice and trying another. 
A logic solver can work with a pen; a 
backtracker needs a pencil and eraser.

For the logic-only strategy to work, a 
puzzle must have a quality of progres-
sivism: At every stage in the solution, 
there must be at least one cell whose 
value can be determined unambigu-
ously. Filling in that value must then 
uncover at least one other fully deter-
mined value, and so on. The backtrack-
ing protocol dispenses with progres-
sivism: When you reach a state where 
no choice is forced upon you—where 
every vacant cell has at least two candi-
dates—you choose a path arbitrarily.

The distinction between logic and 
backtracking seems like a promising 
criterion for rating the difficulty of puz-
zles, but on a closer look, it’s not clear 

the distinction even exists. Is there a 
subset of Sudoku puzzles that can be 
solved by backtracking but not by “log-
ic”? Here’s another way of asking the 
question: Are there puzzles that have a 
unique solution, and yet at some inter-
mediate stage reach an impasse, where 
no cell has a value that can be deduced 
unambiguously? Not, I think, unless we 
impose artificial restrictions on the rules 
allowed in making logical deductions. 

Backtracking itself can be viewed as a 
logical operation; it supplies a proof by 
contradiction. If you make a speculative 
entry in one cell and, as a consequence, 
eventually find that some other cell has 
no legal entry, then you have discov-
ered a logical relation between the cells. 
The chain of implication could be very 
intricate, but the logical relation is no 
different in kind from the simple rule 
that says two cells in the same row can’t 
have the same value. (David Eppstein 
of the University of California at Irvine 
has formulated some extremely subtle 
Sudoku rules, which capture the kind 
of information gleaned from a back-
tracking analysis, yet work in a for-
ward-looking, nonspeculative mode.)

A Satisfied Mind
From a computational point of view, 
Sudoku is a constraint-satisfaction 
problem. The constraints are the rules 
forbidding two cells in the same neigh-
borhood to have the same value; a solu-
tion is an assignment of values to cells 
that satisfies all the constraints simulta-
neously. In one obvious encoding, there 
are 810 constraints in an order-3 grid.

It’s interesting to observe how differ-
ently one approaches such a problem 
when solving it by computer rather 
than by hand. A human solver may 
well decide that logic is all you need, 
but backtracking is the more appealing 
option for a program. For one thing, 
backtracking will always find the an-
swer, if there is one. It can even do the 
right thing if there are multiple solu-
tions or no solution. To make similar 
claims for a logic-only program, you 
would have to prove you had included 
every rule of inference that might pos-
sibly be needed.

Backtracking is also the simpler ap-
proach, in the sense that it relies on one 
big rule rather than many little ones. 
At each stage you choose a value for 
some cell and check to see if this new 
entry is consistent with the rest of the 
grid. If you detect a conflict, you have 
to undo the choice and try another. 

If you have exhausted all the candi-
dates for a given cell, then you must 
have taken a wrong turn earlier, and 
you need to backtrack further. This is 
not a clever algorithm; it amounts to a 
depth-first search of the tree of all pos-
sible solutions—a tree that could have 
981 leaves. There is no question that we 
are deep in the exponential territory of 
NP problems here. And yet, in prac-
tice, solving Sudoku by backtracking 
is embarrassingly easy.

There are many strategies for speed-
ing up the search, mostly focused on 
making a shrewd choice of which 
branch of the tree to try next. But such 
optimizations are hardly needed. On 
an order-3 Sudoku grid, even a rudi-
mentary backtracking search converges 
on the solution in a few dozen steps. 
Evidently, competing against a com-
puter in Sudoku is never going to be 
much fun.

Does that ruin the puzzle for the rest 
of us? In moments of frustration, when 
I’m struggling with a recalcitrant dia-
bolical, the thought that the machine 
across the room could instantly sweep 
away all my cobwebs of logic is indeed 
dispiriting. I begin to wonder whether 
this cross-correlation of columns, rows 
and blocks is a fit task for the human 
mind. But when I do make a break-
through, I take more pleasure in my 
success than the computer would.
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